Search results for: web 2.0 applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6457

Search results for: web 2.0 applications

547 Buddhist Cognitive Behavioral Therapy to Address Depression Among Elderly Population: Multi-cultural Model of Buddhist Based Cognitive Behavioral Therapy to Address Depression Among Elderly Population

Authors: Ashoke Priyadarshana Premananda

Abstract:

As per the suggestions of previously conducted research in Counseling Psychology, the necessity of forming culture- friendly approaches has been strongly emphasized by a number of scholars in the field. In response to that, Multicultural-model of Buddhist Based Cognitive Behavioral Therapy (MMBCBT) has been formed as a culture-friendly therapeutic approach to address psychological disturbances (depression) in late adulthood. Elderly population in the world is on the rise by leaps and bounds, and forming a culture-based therapeutic model which is blended with Buddhist teachings has been the major objective of the study. Buddhist teachings and cultural applications, which were mapped onto Cognitive Behavioral Therapy (CBT) in the West, ultimately resulted in MMBCBT. Therefore, MMBCBT is a blend of cultural therapeutic techniques and the essence of certain Buddhist teachings extracted from five crucial suttas, which include CBT principles. In the process of mapping, MeghiyaSutta, GirimānandaSutta, SallekhaSutta, DvedhāvitakkaSutta, and Vitakka- SaṇṭhānaSutta have been taken into consideration mainly because of their cognitive behavioral content. The practical components of Vitakka- Saṇṭhānasutta (Aññanimittapabbaṃ) and Sallekhasutta (SallekhaPariyāya and CittuppādaPariyāya) have been used in the model while mindfulness of breathing was also carried out with the participants. Basically, multi-cultural therapeutic approaches of MMBCBT aim at modifying behavior (behavioral modification), whereas the rest is centered to the cognitive restructuring process. Therefore, MMBCBT is endowed with Behavioral Therapy (BT) and Cognitive Therapy(CT). In order to find out the validation of MMBCBT as a newly formed approach, it was then followed by mixed research (quantitative and qualitative research) with a sample selected from the elderly population following the purposive sampling technique. 40 individuals were selected from three elderly homes as per the purposive sampling technique. Elderly people identified to be depressed via Geriatric Depression Scale underwent MMBCBT for two weeks continuously while action research was being conducted simultaneously. Additionally, a Focus Group interview was carried out to support the action research. As per the research findings, people who identified depressed prior to the exposure to MMBCBT were found to be showing positive changes after they were exposed to the model. “Paired Sample t test” showed that the Multicultural Model of Buddhist based Cognitive Behavioral Therapy reduced depression of elderly people (The mean value (x̄) of the sample (level of depression) before the model was 10.7 whereas the mean value after the model was 7.5.). Most importantly, MMBCBT has been found to be effectively used with people from all walks of life despite religious diversities.

Keywords: buddhist psychotherapy, cognitive behavioral therapy in buddhism, counseling in cultural context, gerontology, and buddhism

Procedia PDF Downloads 111
546 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 150
545 Intelligent Control of Agricultural Farms, Gardens, Greenhouses, Livestock

Authors: Vahid Bairami Rad

Abstract:

The intelligentization of agricultural fields can control the temperature, humidity, and variables affecting the growth of agricultural products online and on a mobile phone or computer. Smarting agricultural fields and gardens is one of the best and best ways to optimize agricultural equipment and has a 100 percent direct effect on the growth of plants and agricultural products and farms. Smart farms are the topic that we are going to discuss today, the Internet of Things and artificial intelligence. Agriculture is becoming smarter every day. From large industrial operations to individuals growing organic produce locally, technology is at the forefront of reducing costs, improving results and ensuring optimal delivery to market. A key element to having a smart agriculture is the use of useful data. Modern farmers have more tools to collect intelligent data than in previous years. Data related to soil chemistry also allows people to make informed decisions about fertilizing farmland. Moisture meter sensors and accurate irrigation controllers have made the irrigation processes to be optimized and at the same time reduce the cost of water consumption. Drones can apply pesticides precisely on the desired point. Automated harvesting machines navigate crop fields based on position and capacity sensors. The list goes on. Almost any process related to agriculture can use sensors that collect data to optimize existing processes and make informed decisions. The Internet of Things (IoT) is at the center of this great transformation. Internet of Things hardware has grown and developed rapidly to provide low-cost sensors for people's needs. These sensors are embedded in IoT devices with a battery and can be evaluated over the years and have access to a low-power and cost-effective mobile network. IoT device management platforms have also evolved rapidly and can now be used securely and manage existing devices at scale. IoT cloud services also provide a set of application enablement services that can be easily used by developers and allow them to build application business logic. Focus on yourself. These development processes have created powerful and new applications in the field of Internet of Things, and these programs can be used in various industries such as agriculture and building smart farms. But the question is, what makes today's farms truly smart farms? Let us put this question in another way. When will the technologies associated with smart farms reach the point where the range of intelligence they provide can exceed the intelligence of experienced and professional farmers?

Keywords: food security, IoT automation, wireless communication, hybrid lifestyle, arduino Uno

Procedia PDF Downloads 60
544 Integration of Entrepreneurial Mindset Learning in Green Chemistry and Processes Course

Authors: Tsvetanka Filipova

Abstract:

Entrepreneurial mindset learning (EML) is the combined process of instilling curiosity and invention, developing insight and value creation while building on other active pedagogy, such as project-based learning (PBL). It is essential to introduce students to chemistry and chemical engineering entrepreneurship in a manner that gives a holistic approach by first educating students on diverse entrepreneurial skills and then providing an opportunity to build their innovation. Chemistry and chemical engineering students have an opportunity to be engaged in an entrepreneurial class project in the Green Chemistry and Processes course at South Dakota Mines. The course provides future chemists and chemical engineers with the knowledge and skills required to enable them to design materials and processes in an environmentally benign way. This paper presents findings from implementing an open-ended design project in the Green Chemistry and Processes course. The goal of this team project is to have student teams design sustainable polymer materials to fulfill a need and/or opportunity related to a fictitious aerospace company that satisfies technical, safety, environmental, regulatory, economic, and social needs. Each student team is considered a start-up company charged with the task of designing sustainable polymer materials for aerospace applications. Through their work on the project, students utilize systems and entrepreneurial thinking in selecting their design project, being aware of the existent technologies (literature and patent search) and users and clients (connections), determining the goals and motivations (creating value), and what need or problem they are trying to address (curiosity). The project draws systems boundaries by focusing on student exploration of feedstocks to end-of-life of polymeric materials and products. Additional subtopics to explore are green processes for syntheses, green engineering for process design, and the economics of sustainable polymers designed for circularity. Project deliverables are team project reports and project presentations to a panel of industry, chemistry, and engineering professionals. Project deliverables are team project reports and project presentations to a panel of industry, chemistry, and engineering professionals. The impact of the entrepreneurial mindset project is evaluated through a student survey at the end of the semester. It has been found that the Innovative Solution project was excellent in promoting student curiosity, creativity, critical and systems thinking and teamwork. The results of this study suggest that incorporating EML positively impacted students’ professional skill development, their ability to understand and appreciate the socio-technical context of chemistry and engineering, and the cultivation of an entrepreneurial mindset to discover, evaluate and exploit opportunities.

Keywords: curriculum, entrepreneurial mindset learning, green chemistry and engineering, systems thinking

Procedia PDF Downloads 19
543 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 207
542 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle

Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha

Abstract:

An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.

Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe

Procedia PDF Downloads 243
541 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 326
540 Investigation of Mass Transfer for RPB Distillation at High Pressure

Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock

Abstract:

In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.

Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed

Procedia PDF Downloads 57
539 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 129
538 A Stochastic Vehicle Routing Problem with Ordered Customers and Collection of Two Similar Products

Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis

Abstract:

The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering or collecting products to or from customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from a depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity for the goods that are delivered or collected. In the present work, we present a specific capacitated stochastic vehicle routing problem which has many realistic applications. We develop and analyze a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a depot and visits N customers according to a particular sequence in order to collect from them two similar but not identical products. We name these products, product 1 and product 2. Each customer possesses items either of product 1 or product 2 with known probabilities. The number of the items of product 1 or product 2 that each customer possesses is a discrete random variable with known distribution. The actual quantity and the actual type of product that each customer possesses are revealed only when the vehicle arrives at the customer’s site. It is assumed that the vehicle has two compartments. We name these compartments, compartment 1 and compartment 2. It is assumed that compartment 1 is suitable for loading product 1 and compartment 2 is suitable for loading product 2. However, it is permitted to load items of product 1 into compartment 2 and items of product 2 into compartment 1. These actions cause costs that are due to extra labor. The vehicle is allowed during its route to return to the depot to unload the items of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. It is possible to develop a suitable dynamic programming algorithm for the determination of the optimal routing strategy. It is also possible to prove that the optimal routing strategy has a specific threshold-type strategy. Specifically, it is shown that for each customer the optimal actions are characterized by some critical integers. This structural result enables us to design a special-purpose dynamic programming algorithm that operates only over these strategies having this structural property. Extensive numerical results provide strong evidence that the special-purpose dynamic programming algorithm is considerably more efficient than the initial dynamic programming algorithm. Furthermore, if we consider the same problem without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing strategy can be computed if N is smaller or equal to eight.

Keywords: dynamic programming, similar products, stochastic demands, stochastic preferences, vehicle routing problem

Procedia PDF Downloads 260
537 Reflections of Narrative Architecture in Transformational Representations on the Architectural Design Studio

Authors: M. Mortas, H. Asar, P. Dursun Cebi

Abstract:

The visionary works of architectural representation in the 21st century's present situation, are practiced through the methodologies which try to expose the intellectual and theoretical essences of futurologist positions that are revealed with this era's interactions. Expansions of conceptual and contextual inputs related to one architectural design representation, depend on its deepness of critical attitudes, its interactions with the concepts such as experience, meaning, affection, psychology, perception and aura, as well as its communication with spatial, cultural and environmental factors. The purpose of this research study is to be able to offer methodological application areas for the design dimensions of experiential practices into architectural design studios, by focusing on the architectural representative narrations of 'transformation,' 'metamorphosis,' 'morphogenesis,' 'in-betweenness', 'superposition' and 'intertwine’ in which they affect and are affected by the today’s spatiotemporal hybridizations of architecture. The narrative representations and the visual theory paradigms of the designers are chosen under the main title of 'transformation' for the investigation of these visionary and critical representations' dismantlings and decodings. Case studies of this research area are chosen from Neil Spiller, Bryan Cantley, Perry Kulper and Dan Slavinsky’s transformative, morphogenetic representations. The theoretical dismantlings and decodings which are obtained from these artists’ contemporary architectural representations are tried to utilize and practice in the structural design studios as alternative methodologies when to approach architectural design processes, for enriching, differentiating, diversifying and 'transforming' the applications of so far used design process precedents. The research aims to indicate architectural students about how they can reproduce, rethink and reimagine their own representative lexicons and so languages of their architectural imaginations, regarding the newly perceived tectonics of prosthetic, biotechnology, synchronicity, nanotechnology or machinery into various experiential design workshops. The methodology of this work can be thought as revealing the technical and theoretical tools, lexicons and meanings of contemporary-visionary architectural representations of our decade, with the essential contents and components of hermeneutics, etymology, existentialism, post-humanism, phenomenology and avant-gardism disciplines to re-give meanings the architectural visual theorists’ transformative representations of our decade. The value of this study may be to emerge the superposed and overlapped atmospheres of futurologist architectural representations for the students who need to rethink on the transcultural, deterritorialized and post-humanist critical theories to create and use the representative visual lexicons of themselves for their architectural soft machines and beings by criticizing the now, to be imaginative for the future of architecture.

Keywords: architectural design studio, visionary lexicon, narrative architecture, transformative representation

Procedia PDF Downloads 145
536 Cytotoxic Effect of Biologically Transformed Propolis on HCT-116 Human Colon Cancer Cells

Authors: N. Selvi Gunel, L. M. Oktay, H. Memmedov, B. Durmaz, H. Kalkan Yildirim, E. Yildirim Sozmen

Abstract:

Object: Propolis which consists of compounds that are accepted as antioxidant, antimicrobial, antiseptic, antibacterial, anti-inflammatory, anti-mutagenic, immune-modulator and cytotoxic, is frequently used in current therapeutic applications. However, some of them result in allergic side effects, causing consumption to be restricted. Previously our group has succeeded in producing a new biotechnological product which was less allergenic. In this study, we purpose to optimize production conditions of this biologically-transformed propolis and determine the cytotoxic effects of obtained new products on colon cancer cell line (HCT-116). Method: Firstly, solid propolis samples were dissolved in water after weighing, grinding and sizing (sieve-35mesh) and applied 40 kHz/10 min ultrasonication. Samples were prepared according to inoculation with Lactobacillus plantarum in two different proportions (2.5% and 3.5%). Chromatographic analyzes of propolis were performed by UPLC-MS/MS (Waters, Milford, MA) system. Results were analysed by UPLC-MS/MS system MassLynx™ 4.1 software. HCT-116 cells were treated with propolis examples at 25-1000 µg/ml concentrations and cytotoxicity were measured by using WST-8 assay at 24, 48, and 72 hours. Samples with biological transformation were compared with the non-transformed control group samples. Our experiment groups were formed as follows: untreated (group 1), propolis dissolved in water ultrasonicated at 40 kHz/10 min (group 2), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 2.5% L. plantarum L1 strain (group 3), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 3.5% L. plantarum L3 strain (group 4). Obtained data were calculated with Graphpad Software V5 and analyzed by two-way ANOVA test followed by Bonferroni test. Result: As a result of our study, the cytotoxic effect of propolis samples on HCT-116 cells was evaluated. There was a 7.21 fold increase in group 3 compared to group 2 in the concentration of 1000 µg/ml, and it was a 6.66 fold increase in group 3 compared to group 1 at the end of 24 hours. At the end of 48 hours, in the concentration of 500 µg/ml, it was determined 4.7 fold increase in group 4 compared to group 3. At the same time, in the concentration of 750 µg/ml it was determined 2.01 fold increase in group 4 compared to group 3 and in the same concentration, it was determined 3.1 fold increase in group 4 compared to group 2. Also, at the 72 hours, in the concentration of 750 µg/ml, it was determined 2.42 fold increase in group 3 according to group 2 and in the same time, in the concentration of 1000 µg/ml, it was determined 2.13 fold increase in group 4 according to group 2. According to cytotoxicity results, the group which were ultrasonicated at 40 kHz/10min and inoculated 3.5% L. plantarum L3-strain had a higher cytotoxic effect. Conclusion: It is known that bioavailability of propolis is halved in six months. The data obtained from our results indicated that biologically-transformed propolis had more cytotoxic effect than non-transformed group on colon cancer cells. Consequently, we suggested that L. plantarum-transformation provides both reduction of allergenicity and extension of bioavailability period by enhancing healthful polyphenols.

Keywords: bio-transformation, propolis, colon cancer, cytotoxicity

Procedia PDF Downloads 145
535 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 193
534 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 110
533 A Mixed Method Approach for Modeling Entry Capacity at Rotary Intersections

Authors: Antonio Pratelli, Lorenzo Brocchini, Reginald Roy Souleyrette

Abstract:

A rotary is a traffic circle intersection where vehicles entering from branches give priority to circulating flow. Vehicles entering the intersection from converging roads move around the central island and weave out of the circle into their desired exiting branch. This creates merging and diverging conflicts among any entry and its successive exit, i.e., a section. Therefore, rotary capacity models are usually based on the weaving of the different movements in any section of the circle, and the maximum rate of flow value is then related to each weaving section of the rotary. Nevertheless, the single-section capacity value does not lead to the typical performance characteristics of the intersection, such as the entry average delay which is directly linked to its level of service. From another point of view, modern roundabout capacity models are based on the limitation of the flow entering from the single entrance due to the amount of flow circulating in front of the entrance itself. Modern roundabouts capacity models generally lead also to a performance evaluation. This paper aims to incorporate a modern roundabout capacity model into an old rotary capacity method to obtain from the latter the single input capacity and ultimately achieve the related performance indicators. Put simply; the main objective is to calculate the average delay of each single roundabout entrance to apply the most common Highway Capacity Manual, or HCM, criteria. The paper is organized as follows: firstly, the rotary and roundabout capacity models are sketched, and it has made a brief introduction to the model combination technique with some practical instances. The successive section is deserved to summarize the TRRL old rotary capacity model and the most recent HCM-7th modern roundabout capacity model. Then, the two models are combined through an iteration-based algorithm, especially set-up and linked to the concept of roundabout total capacity, i.e., the value reached due to a traffic flow pattern leading to the simultaneous congestion of all roundabout entrances. The solution is the average delay for each entrance of the rotary, by which is estimated its respective level of service. In view of further experimental applications, at this research stage, a collection of existing rotary intersections operating with the priority-to-circle rule has already started, both in the US and in Italy. The rotaries have been selected by direct inspection of aerial photos through a map viewer, namely Google Earth. Each instance has been recorded by location, general urban or rural, and its main geometrical patterns. Finally, conclusion remarks are drawn, and a discussion on some further research developments has opened.

Keywords: mixed methods, old rotary and modern roundabout capacity models, total capacity algorithm, level of service estimation

Procedia PDF Downloads 92
532 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque

Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya

Abstract:

The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.

Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot

Procedia PDF Downloads 247
531 The Influence of Operational Changes on Efficiency and Sustainability of Manufacturing Firms

Authors: Dimitrios Kafetzopoulos

Abstract:

Nowadays, companies are more concerned with adopting their own strategies for increased efficiency and sustainability. Dynamic environments are fertile fields for developing operational changes. For this purpose, organizations need to implement an advanced management philosophy that boosts changes to companies’ operation. Changes refer to new applications of knowledge, ideas, methods, and skills that can generate unique capabilities and leverage an organization’s competitiveness. So, in order to survive and compete in the global and niche markets, companies should incorporate the adoption of operational changes into their strategy with regard to their products and their processes. Creating the appropriate culture for changes in terms of products and processes helps companies to gain a sustainable competitive advantage in the market. Thus, the purpose of this study is to investigate the role of both incremental and radical changes into operations of a company, taking into consideration not only product changes but also process changes, and continues by measuring the impact of these two types of changes on business efficiency and sustainability of Greek manufacturing companies. The above discussion leads to the following hypotheses: H1: Radical operational changes have a positive impact on firm efficiency. H2: Incremental operational changes have a positive impact on firm efficiency. H3: Radical operational changes have a positive impact on firm sustainability. H4: Incremental operational changes have a positive impact on firm sustainability. In order to achieve the objectives of the present study, a research study was carried out in Greek manufacturing firms. A total of 380 valid questionnaires were received while a seven-point Likert scale was used to measure all the questionnaire items of the constructs (radical changes, incremental changes, efficiency and sustainability). The constructs of radical and incremental operational changes, each one as one variable, has been subdivided into product and process changes. Non-response bias, common method variance, multicollinearity, multivariate normal distribution and outliers have been checked. Moreover, the unidimensionality, reliability and validity of the latent factors were assessed. Exploratory Factor Analysis and Confirmatory Factor Analysis were applied to check the factorial structure of the constructs and the factor loadings of the items. In order to test the research hypotheses, the SEM technique was applied (maximum likelihood method). The goodness of fit of the basic structural model indicates an acceptable fit of the proposed model. According to the present study findings, radical operational changes and incremental operational changes significantly influence both efficiency and sustainability of Greek manufacturing firms. However, it is in the dimension of radical operational changes, meaning those in process and product, that the most significant contributors to firm efficiency are to be found, while its influence on sustainability is low albeit statistically significant. On the contrary, incremental operational changes influence sustainability more than firms’ efficiency. From the above, it is apparent that the embodiment of the concept of the changes into the products and processes operational practices of a firm has direct and positive consequences for what it achieves from efficiency and sustainability perspective.

Keywords: incremental operational changes, radical operational changes, efficiency, sustainability

Procedia PDF Downloads 142
530 Video Analytics on Pedagogy Using Big Data

Authors: Jamuna Loganath

Abstract:

Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.

Keywords: big data, cloud, CCTV, education process

Procedia PDF Downloads 242
529 Assessing the Material Determinants of Cavity Polariton Relaxation using Angle-Resolved Photoluminescence Excitation Spectroscopy

Authors: Elizabeth O. Odewale, Sachithra T. Wanasinghe, Aaron S. Rury

Abstract:

Cavity polaritons form when molecular excitons strongly couple to photons in carefully constructed optical cavities. These polaritons, which are hybrid light-matter states possessing a unique combination of photonic and excitonic properties, present the opportunity to manipulate the properties of various semiconductor materials. The systematic manipulation of materials through polariton formation could potentially improve the functionalities of many optoelectronic devices such as lasers, light-emitting diodes, photon-based quantum computers, and solar cells. However, the prospects of leveraging polariton formation for novel devices and device operation depend on more complete connections between the properties of molecular chromophores, and the hybrid light-matter states they form, which remains an outstanding scientific goal. Specifically, for most optoelectronic applications, it is paramount to understand how polariton formation affects the spectra of light absorbed by molecules coupled strongly to cavity photons. An essential feature of a polariton state is its dispersive energy, which occurs due to the enhanced spatial delocalization of the polaritons relative to bare molecules. To leverage the spatial delocalization of cavity polaritons, angle-resolved photoluminescence excitation spectroscopy was employed in characterizing light emission from the polaritonic states. Using lasers of appropriate energies, the polariton branches were resonantly excited to understand how molecular light absorption changes under different strong light-matter coupling conditions. Since an excited state has a finite lifetime, the photon absorbed by the polariton decays non-radiatively into lower-lying molecular states, from which radiative relaxation to the ground state occurs. The resulting fluorescence is collected across several angles of excitation incidence. By modeling the behavior of the light emission observed from the lower-lying molecular state and combining this result with the output of angle-resolved transmission measurements, inferences are drawn about how the behavior of molecules changes when they form polaritons. These results show how the intrinsic properties of molecules, such as the excitonic lifetime, affect the rate at which the polaritonic states relax. While it is true that the lifetime of the photon mediates the rate of relaxation in a cavity, the results from this study provide evidence that the lifetime of the molecular exciton also limits the rate of polariton relaxation.

Keywords: flourescece, molecules in cavityies, optical cavity, photoluminescence excitation, spectroscopy, strong coupling

Procedia PDF Downloads 77
528 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 158
527 Digital Literacy Transformation and Implications in Institutions of Higher Learning in Kenya

Authors: Emily Cherono Sawe, Elisha Ondieki Makori

Abstract:

Knowledge and digital economies have brought challenges and potential opportunities for universities to innovate and improve the quality of learning. Disruption technologies and information dynamics continue to transform and change the landscape in teaching, scholarship, and research activities across universities. Digital literacy is a fundamental and imperative element in higher education and training, as witnessed during the new norm. COVID-19 caused unprecedented disruption in universities, where teaching and learning depended on digital innovations and applications. Academic services and activities were provided online, including library information services. Information professionals were forced to adopt various digital platforms in order to provide information services to patrons. University libraries’ roles in fulfilling educational responsibilities continue to evolve in response to changes in pedagogy, technology, economy, society, policies, and strategies of parent institutions. Libraries are currently undergoing considerable transformational change as a result of the inclusion of a digital environment. Academic libraries have been at the forefront of providing online learning resources and online information services, as well as supporting students and staff to develop digital literacy skills via online courses, tutorials, and workshops. Digital literacy transformation and information staff are crucial elements reminiscent of the prioritization of skills and knowledge for lifelong learning. The purpose of this baseline research is to assess the implications of digital literacy transformation in institutions of higher learning in Kenya and share appropriate strategies to leverage and sustain teaching and research. Objectives include examining the leverage and preparedness of the digital literacy environment in streamlining learning in the universities, exploring and benchmarking imperative digital competence for information professionals, establishing the perception of information professionals towards digital literacy skills, and determining lessons, best practices, and strategies to accelerate digital literacy transformation for effective research and learning in the universities. The study will adopt a descriptive research design using questionnaires and document analysis as the instruments for data collection. The targeted population is librarians and information professionals, as well as academics in public and private universities teaching information literacy programmes. Data and information are to be collected through an online structured questionnaire and digital face-to-face interviews. Findings and results will provide promising lessons together with best practices and strategies to transform and change digital literacies in university libraries in Kenya.

Keywords: digital literacy, digital innovations, information professionals, librarians, higher education, university libraries, digital information literacy

Procedia PDF Downloads 100
526 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 164
525 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach

Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier

Abstract:

Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.

Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube

Procedia PDF Downloads 158
524 Evaluating the Teaching and Learning Value of Tablets

Authors: Willem J. A. Louw

Abstract:

The wave of new advanced computing technology that has been developed during the recent past has significantly changed the way we communicate, collaborate and collect information. It has created a new technology environment and paradigm in which our children and students grow-up and this impacts on their learning. Research confirmed that Generation Y students have a preference for learning in the new technology environment. The challenge or question is: How do we adjust our teaching and learning to make the most of these changes. The complexity of effective and efficient teaching and learning must not be underestimated and changes must be preceded by proper objective research to prevent any haphazard developments that could do more harm than benefit. A blended learning approach has been used in the Forestry department for a few numbers of years including the use of electronic-peer assisted learning (e-pal) in a fixed-computer set-up within a learning management system environment. It was decided to extend the investigation and do some exploratory research by using a range of different Tablet devices. For this purpose, learning activities or assignments were designed to cover aspects of communication, collaboration and collection of information. The Moodle learning management system was used to present normal module information, to communicate with students and for feedback and data collection. Student feedback was collected by using an online questionnaire and informal discussions. The research project was implemented in 2013, 2014 and 2015 amongst first and third-year students doing a forestry three-year technical tertiary qualification in commercial plantation management. In general, more than 80% of the students alluded to that the device was very useful in their learning environment while the rest indicated that the devices were not very useful. More than ninety percent of the students acknowledged that they would like to continue using the devices for all of their modules whilst the rest alluded to functioning efficiently without the devices. Results indicated that information collection (access to resources) was rated the highest advantageous factor followed by communication and collaboration. The main general advantages of using Tablets were listed by the students as being mobility (portability), 24/7 access to learning material and information of any kind on a user friendly device in a Wi-Fi environment, fast computing process speeds, saving time, effort and airtime through skyping and e-mail, and use of various applications. Ownership of the device is a critical factor while the risk was identified as a major potential constraint. Significant differences were reported between the different types and quality of Tablets. The preferred types are those with a bigger screen and the ones with overall better functionality and quality features. Tablets significantly increase the collaboration, communication and information collection needs of the students. It does, however, not replace the need of a computer/laptop because of limited storage and computation capacity, small screen size and inefficient typing.

Keywords: tablets, teaching, blended learning, tablet quality

Procedia PDF Downloads 250
523 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 432
522 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 80
521 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt

Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata

Abstract:

Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).

Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically

Procedia PDF Downloads 307
520 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 44
519 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 93
518 Investigation of Unusually High Ultrasonic Signal Attenuation in Water Observed in Various Combinations of Pairs of Lead Zirconate Titanate Pb(ZrxTi1-x)O3 (PZT) Piezoelectric Ceramics Positioned Adjacent to One Another Separated by an Intermediate Gap

Authors: S. M. Mabandla, P. Loveday, C. Gomes, D. T. Maiga, T. T. Phadi

Abstract:

Lead zirconate titanate (PZT) piezoelectric ceramics are widely used in ultrasonic applications due to their ability to effectively convert electrical energy into mechanical vibrations and vice versa. This paper presents a study on the behaviour of various combinations of pairs of PZT piezoelectric ceramic materials positioned adjacent to each other with an intermediate gap submerged in water, where one piezoelectric ceramic material is excited by a cyclic electric field with constant frequency and amplitude displacement. The transmitted ultrasonic sound propagates through the medium and is received by the PZT ceramic at the other end, the ultrasonic sound signal amplitude displacement experiences attenuation during propagation due to acoustic impedance. The investigation focuses on understanding the causes of extremely high amplitude displacement attenuation that have been observed in various combinations of piezoelectric ceramic pairs that are submerged in water arranged in a manner stipulated earlier. by examining various combinations of pairs of these piezoelectric ceramics, their physical, electrical, and acoustic properties, and behaviour and attributing them to the observed significant signal attenuation. The experimental setup involves exciting one piezoelectric ceramic material at one end with a burst square cyclic electric field signal of constant frequency, which generates a burst of ultrasonic sound that propagates through the water medium to the adjacent piezoelectric ceramic at the other end. Mechanical vibrations of a PZT piezoelectric ceramic are measured using a double-beam laser Doppler vibrometer to mimic the incident ultrasonic waves generated and received ultrasonic waves on the other end due to mechanical vibrations of a PZT. The measured ultrasonic sound wave signals are continuously compared to the applied cyclic electric field at both ends. The impedance matching networks are continuously tuned at both ends to eliminate electromechanical impedance mismatch to improve ultrasonic transmission and reception. The study delves into various physical, electrical, and acoustic properties of the PZT piezoelectric ceramics, such as the electromechanical coupling factor, acoustic coupling, and elasticity, among others. These properties are analyzed to identify potential factors contributing to the unusually high acoustic impedance in the water medium between the ceramics. Additionally, impedance-matching networks are investigated at both ends to offset the high signal attenuation and improve overall system performance. The findings will be reported in this paper.

Keywords: acoustic impedance, impedance mismatch, piezoelectric ceramics, ultrasonic sound

Procedia PDF Downloads 81