Search results for: numerical solutions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6900

Search results for: numerical solutions

1050 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers

Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage

Abstract:

The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.

Keywords: STD, machine learning, NLP, artificial intelligence

Procedia PDF Downloads 60
1049 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies

Authors: Harshit Vallecha, Prabha Bhola

Abstract:

‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.

Keywords: climate change, decentralized generation, electricity access, renewable energy

Procedia PDF Downloads 112
1048 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology

Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan

Abstract:

In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.  

Keywords: fluid dynamics, prototype design, natural ventilation, simulations, water table apparatus, wind incidence angles

Procedia PDF Downloads 212
1047 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 114
1046 Assessment on the Pivotal Role of the Philippine Entrepreneurship Education in the Development of Micro, Small, and Medium Enterprises (MSMEs)

Authors: Melchor C. Morandarte

Abstract:

Entrepreneurship education if well-designed, supported, and true to its sense in its implementation, can play a pivotal role in the development of Micro, small and Medium Enterprises (MSMEs) of the country. As its foundation, there is no amount of economic shocks that can prevent the country’s economic development and sustainability. Likewise, if properly developed, entrepreneurship education is the only kind of academic activity that rains employment opportunities propel and sustain economic growth. The study will try to find the contributions of the entrepreneurship education in the Philippines. Provide possible solutions that will solve academic heads and educators of entrepreneurship dilemma in making graduates of the program to engage or pursue a business after their graduation. Transforming BS in Entrepreneurship graduates from employment to an entrepreneurial minded individuals to establish and manage their owned businesses (as designed) whether micro, small or medium enterprises justifies the purpose within which it was created. Formally started in academic year 2006-2007, the program suffers in a very low enrollment in the first three academic years when it was first offered in the different HEIs all over the country. It started to experience only some increase in enrollment as a result of the moratorium in the Bachelor of Science in Business Administration (BSBA) in academic year 2011-2012 till today. The number of enrollees resulted in a substantial number of graduates. Considering the number of Bachelor of Science in Entrepreneurship graduates as of today, there would have been an additional number of business establishments from since the program started to be offered in the different HEIs throughout the country. In conclusion, coming up with a well-designed curriculum, relevant curricular, co-curricular and extra-curricular activities couple with much needed support from concerned government agencies, the institutions, other government and non-governmental institutions, private organizations, entrepreneurship practitioners can make the difference in terms of the mindset of the students of entrepreneurship.

Keywords: economic shocks, educators dilemma, rains employment opportunities, co-curricular

Procedia PDF Downloads 405
1045 Numerical Study of Natural Convection in Isothermal Open Cavities

Authors: Gaurav Prabhudesai, Gaetan Brill

Abstract:

The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.

Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities

Procedia PDF Downloads 271
1044 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach

Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat

Abstract:

A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.

Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings

Procedia PDF Downloads 121
1043 Need for Contemporization of Craft for Sustenance: A Study on Solapur Wall Hanging

Authors: Reena Aggarwal

Abstract:

Wall art is a manifestation of the human mind and an absorbing form of cultural expression. Solapur wall hanging making art reflects cultural values, regional sensibilities, beliefs, and identity and helps to preserve the many different communities. The tango of warp and weft in many ways than one tells the story of civilization itself. Solapur wall hanging is a poem in multicolor, written with the warp and weft having long, rich, and complex history with indigenous design vocabularies made by the Padmasali communities. The wall-hanging weaving of Solapur has remained unaltered for years, from being very basic and monochrome having landscapes and portraits catering only to the local market, thereby becoming a potential family income generation tool. The study focuses on the need for contemporization of the Solapur wall hanging and also deliberates on the fact that wherever the culture of native people has been aided by intervention, in nearly every case, the quality of their craft has began to be enhanced. The study also found the underlying reason for diminishing sales to a declining market, low sales, lack of innovation in design, and product development. Keeping in mind that the artisans of Solapur have heroically always hold on to their ancient beliefs and practices, which give them strength and identity, and a sense of pride, an intervention program was developed with an objective of widening the market and help artisans have a sustaining income which include urban consumers and create designs suitable for the urban market. The process of defining and measuring the advantages of design intervention was achieved by using qualitative research methods. An ethnographic research methodology was adopted, which includes six months of close interface with artisans from ten families engaged in making of wall hanging in Solapur. Design solutions were proposed in terms of product diversification and design extensions of the existing product line for increased variety. A collection of contemporary wall arts (wall decor) and room dividers were designed and developed.

Keywords: wall hanging, Solapur, contemporization, traditional, sustainable

Procedia PDF Downloads 292
1042 Design Forms Urban Space

Authors: Amir Shouri, Fereshteh Tabe

Abstract:

Thoughtful and sequential design strategies will shape the future of human being’s lifestyle. Design, as a product, either being for small furniture on sidewalk or a multi-story structure in urban scale, will be important in creating the sense of quality for citizens of a city. Technology besides economy has played a major role in improving design process and increasing awareness of clients about the character of their required design product. Architects along with other design professionals benefited from improvements in aesthetics and technology in building industry. Accordingly, the expectation platforms of people about the quality of habitable space have risen. However, the question is if the quality of architectural design product has increased with the same speed as technology and client’s expectations. Is it behind or a head of technological and economical improvements? This study will work on developing a model of planning for New York City, from the past to present to future. The role of thoughtful thinking at design stage regardless of where or when it is for; may result in a positive or negative aspect. However, considering design objectives based on the need of human being may help in developing a successful design plan. Technology, economy, culture and people’s support may be other parameters in designing a good product. ‘Design Forms Urban Space’ is going to be done in an analytical, qualitative and quantitative work frame, where it will study cases from all over the world and their achievements compared to New York City’s development. Technology, Organic Design, Materiality, Urban forms, city politics and sustainability will be discussed in different cases in international scale. From design professional’s interest in doing a high quality work for a particular answer to importance of being a follower, the ‘Zero-Carbon City’ in Persian Gulf to ‘Polluted City’ in China, from ‘Urban Scale Furniture’ in cities to ‘Seasonal installations’ of a Megacity, will all be studied with references and detailed look to analysis of each case in order to propose the most resourceful, practical and realistic solutions to questions on ‘A Good Design in a City’, ‘New City Planning and social activities’ and ‘New Strategic Architecture for better Cities’.

Keywords: design quality, urban scale, active city, city installations, architecture for better cities

Procedia PDF Downloads 328
1041 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 113
1040 Study on Control Techniques for Adaptive Impact Mitigation

Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty

Abstract:

Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.

Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber

Procedia PDF Downloads 75
1039 The Case for Reparations: Systemic Injustice and Human Rights in the United States

Authors: Journey Whitfield

Abstract:

This study investigates the United States' ongoing violation of Black Americans' fundamental human rights, as evidenced by mass incarceration, social injustice, and economic deprivation. It argues that the U.S. contravenes Article 9 of the International Covenant on Civil and Political Rights through policies that uphold systemic racism. The analysis dissects current practices within the criminal justice system, social welfare programs, and economic policy, uncovering the racially disparate impacts of seemingly race-neutral policies. This study establishes a clear lineage between past systems of oppression – slavery and Jim Crow – and present-day racial disparities, demonstrating their inextricable link. The thesis proposes that only a comprehensive reparations program for Black Americans can begin to redress these systemic injustices. This program must transcend mere financial compensation, demanding structural reforms within U.S. institutions to dismantle systemic racism and promote transformative justice. This study explores potential forms of reparations, drawing upon historical precedents, comparative case studies from other nations, and contemporary debates within political philosophy and legal studies. The research employs both qualitative and quantitative methods. Qualitative methods include historical analysis of legal frameworks and policy documents, as well as discourse analysis of political rhetoric. Quantitative methods involve statistical analysis of socioeconomic data and criminal justice outcomes to expose racial disparities. This study makes a significant contribution to the existing literature on reparations, human rights, and racial injustice in the United States. It offers a rigorous analysis of the enduring consequences of historical oppression and advocates for bold, justice-centered solutions.

Keywords: Black Americans, reparations, mass incarceration, racial injustice, human rights, united states

Procedia PDF Downloads 41
1038 Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces

Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek

Abstract:

Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.

Keywords: moisture, mold growth, testing, wood

Procedia PDF Downloads 111
1037 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process

Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams

Abstract:

In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.

Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy

Procedia PDF Downloads 113
1036 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 111
1035 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC

Procedia PDF Downloads 112
1034 The Hierarchical Model of Fitness Services Quality Perception in Serbia

Authors: Mirjana Ilic, Dragan Zivotic, Aleksandra Perovic, Predrag Gavrilovic

Abstract:

The service quality perception depends on many factors, such as the area in which the services are provided, socioeconomic status, educational status, experience, age and gender of consumers, as well as many others. For this reason, it is not possible to apply instrument for establishing the service quality perception that is developed in other areas and in other populations. The aim of the research was to form an instrument for assessing the quality perception in the field of fitness in Serbia. After analyzing the available literature and conducting a pilot research, there were 15 isolated areas in which it was possible to observe the service quality perception. The areas included: material and technical basis, secondary facilities, coaches, programs, reliability, credibility, security, rapid response, compassion, communication, prices, satisfaction, loyalty, quality outcomes and motives. These areas were covered by a questionnaire consisted of 100 items where the number of items varied from area to area from 3 up to 11. The questionnaire was administered to 350 subjects of both genders (174 men and 176 women) aged from 18 to 68 years, being beneficiaries of fitness services for at least 1 year. In each of the areas was conducted a factor analysis in its exploratory form by principal components method. The number of significant factors has been determined in accordance with the Kaiser Guttman criterion. The initial factor solutions were simplified using the Varimax rotation. Analyses per areas have produced from 1 to 4 factors. Afterward, the factor analysis of factor scores on the first principal component of each of the respondents in each of the analyzed area was performed, and the factor structure was obtained with four latent dimensions interpreted as offer, the relationship with the coaches, the experience of quality and the initial impression. This factor structure was analysed by hierarchical analysis of Oblique factors, which in the second order space produced single factor interpreted as a general factor of the service quality perception. The resulting questionnaire represents an instrument which can serve managers in the field of fitness to optimize the centers development, raising the quality of services in line with consumers needs and expectations.

Keywords: fitness, hierarchical model, quality perception, factor analysis

Procedia PDF Downloads 294
1033 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts

Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova

Abstract:

Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.

Keywords: diagnostic reagent, metal parts, polimer films, through defects

Procedia PDF Downloads 135
1032 International Education Mobility Programs: Inclusive by Definition, Exclusive in Practice

Authors: Mateusz Jeżowski, Jadwiga Fila, Paweł Poszytek

Abstract:

This abstract summarizes the combined findings of several analyses carried out by the authors on the barriers to accessing international education mobility programs by people with fewer opportunities, especially those with a low level of cultural and social capital. Two flagship educational mobility initiatives of the European Union – the Erasmus+ Program and the European Solidarity Corps are aimed at equipping young people and participants of all ages with the qualifications and skills needed for their meaningful participation in a democratic society intercultural understanding and successful transition in the labour market. The heart of these programs is to come closer to people with fewer opportunities, including people with disabilities, migrants, as well as those facing socio-economic difficulties and displaying a low level of social and cultural capital. Still, people who participate in such initiatives usually demonstrate higher than average cultural and social capital, as understood by Pierre Bourdieu. First of all, the educational attainment of their parents is higher than the average. Secondly, they mostly live in large agglomerations, with good access to education and culture, which affects their foreign language skills as well as social and cultural competencies. Finally, participation in Erasmus+ Program or European Solidarity Corps is not their first educational mobility experience. It is therefore justified to state that their social and cultural capital, already high before taking part in Erasmus+ and European Solidarity Corps, becomes even higher once their international mobility activities have been over, at the expense of those people with fewer opportunities, who, in theory, could participate in those initiatives, nonetheless did not, for the following reasons: lack of sufficient information on such programs, financial obstacles or unappreciation of the value of international mobility. In their work, the authors will discuss what are, in the light of Bourdieu’s perception of social and cultural capital, the main obstacles for young people to participate in international mobility programs of the European Union and will offer comprehensive solutions rooted in their vast experience in management and implementation of Erasmus+ Program and European Solidarity Corps.

Keywords: cultural capital, educational mobility, Erasmus+, European solidarity corps, inclusion, social capital

Procedia PDF Downloads 103
1031 Women Entrepreneurship in Poland and Its Impact on the Country’s Economic Development

Authors: Sabina Klimek

Abstract:

In general, entrepreneurs are viewed as agents of change whose goal is to ensure that resources are efficiently utilized. They are very important in the global economy; they create wealth and provide jobs. At the same time, many policymakers say that women entrepreneurs are a ‘special group’ worthy of their own research and policies. The status of Polish women has been changing as well, even though, to a large extent, it is still defined by the double role that women are expected to fill according to the dominant stereotypical model of family life. However, in the past decade, Polish women’s economic activities have experienced rapid growth and today are at a high level. In the article, the author presents the results of a survey conducted among women entrepreneurs in Poland concerning the functioning of their enterprises, motivation in setting up a company, and barriers that hinder them in business. The questionnaire (300 questionnaires were provided) and case studies carried out by the author have proven that female entrepreneurs in Poland are characterized by commonalities. Mostly they run small or micro-enterprises, operate in larger cities, are well-educated, and run service companies. Their main motivation to run their own business is mostly indicated by their need for independence. However, one of their biggest barriers and hesitations is the apprehension of non-payment. Entrepreneurs want to develop their companies, go to foreign markets and implement new solutions. They are not afraid of the future; they are only trying to create it. Detailed hypothesis, which reads as follows. The author additionally conducted a macroeconomic analysis calculating what part of GDP in Poland is produced by female entrepreneurs. The results of the study presented in this article prove that female entrepreneurship in Poland has a stable impact on the economy of the country, and women entrepreneurs produce over 13% of the national GDP. After years of growth in the number of female entrepreneurs in Poland, there has been a period of stabilization. However, there has also been a reduction in the number of self-employed people as well as the number of women in total employment. In the article, the author analyses the reasons for decreasing number of self-employed women and the total employment of women in Poland and provides suggestions for steps and incentives that should be made in order to encourage female entrepreneurship to grow in the country.

Keywords: women entrepreneurship, women in business, women entrepreneurship in Poland, Poland, GDP of Poland

Procedia PDF Downloads 67
1030 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 340
1029 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 51
1028 The Study of Cost Accounting in S Company Based on TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost. Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost. The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: third-party logistics enterprises, TDABC, cost management, S company

Procedia PDF Downloads 341
1027 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 85
1026 Impact of Import Restriction on Rice Production in Nigeria

Authors: C. O. Igberi, M. U. Amadi

Abstract:

This research paper on the impact of import restriction on rice production in Nigeria is aimed at finding/proffering valid solutions to the age long problem of rice self-sufficiency, through a better understanding of policy measures used in the past, in this case, the effectiveness of rice import restriction of the early 90’s. It tries to answer the questions of; import restriction boosting domestic rice production and the macroeconomic determining factors of Gross Domestic Rice Product (GDRP). The research probe is investigated through literature and analytical frameworks, such that time series data on the GDRP, Gross Fixed Capital Formation (GFCF), average foreign rice producers’ prices(PPF), domestic producers’ prices (PPN) and the labour force (LABF) are collated for analysis (with an import restriction dummy variable, POL1). The research objectives/hypothesis are analysed using; Cointegration, Vector Error Correction Model (VECM), Impulse Response Function (IRF) and Granger Causality Test(GCT) methodologies. Results show that in the short-run error correction specification for GDRP, a percentage (1%) deviation away from the long-run equilibrium in a current quarter is only corrected by 0.14% in the subsequent quarter. Also, the rice import restriction policy had no significant effect on the GDRP at this time. Other findings show that the policy period has, in fact, had effects on the PPN and LABF. The choice variables used are valid macroeconomic factors that explain the GDRP of Nigeria, as adduced from the IRF and GCT, and in the long-run. Policy recommendations suggest that the import restriction is not disqualified as a veritable tool for improving domestic rice production, rather better enforcement procedures and strict adherence to the policy dictates is needed. Furthermore, accompanying policies which drive public and private capital investment and accumulation must be introduced. Also, employment rate and labour substitution in the agricultural sector should not be drastically changed, rather its welfare and efficiency be improved.

Keywords: import restriction, gross domestic rice production, cointegration, VECM, Granger causality, impulse response function

Procedia PDF Downloads 184
1025 Thermal Behaviour of a Low-Cost Passive Solar House in Somerset East, South Africa

Authors: Ochuko K. Overen, Golden Makaka, Edson L. Meyer, Sampson Mamphweli

Abstract:

Low-cost housing provided for people with small incomes in South Africa are characterized by poor thermal performance. This is due to inferior craftsmanship with no regard to energy efficient design during the building process. On average, South African households spend 14% of their total monthly income on energy needs, in particular space heating; which is higher than the international benchmark of 10% for energy poverty. Adopting energy efficient passive solar design strategies and superior thermal building materials can create a stable thermal comfort environment indoors. Thereby, reducing energy consumption for space heating. The aim of this study is to analyse the thermal behaviour of a low-cost house integrated with passive solar design features. A low-cost passive solar house with superstructure fly ash brick walls was designed and constructed in Somerset East, South Africa. Indoor and outdoor meteorological parameters of the house were monitored for a period of one year. The ASTM E741-11 Standard was adopted to perform ventilation test in the house. In summer, the house was found to be thermally comfortable for 66% of the period monitored, while for winter it was about 79%. The ventilation heat flow rate of the windows and doors were found to be 140 J/s and 68 J/s, respectively. Air leakage through cracks and openings in the building envelope was 0.16 m3/m2h with a corresponding ventilation heat flow rate of 24 J/s. The indoor carbon dioxide concentration monitored overnight was found to be 0.248%, which is less than the maximum range limit of 0.500%. The prediction percentage dissatisfaction of the house shows that 86% of the occupants will express the thermal satisfaction of the indoor environment. With a good operation of the house, it can create a well-ventilated, thermal comfortable and nature luminous indoor environment for the occupants. Incorporating passive solar design in low-cost housing can be one of the long and immediate solutions to the energy crisis facing South Africa.

Keywords: energy efficiency, low-cost housing, passive solar design, rural development, thermal comfort

Procedia PDF Downloads 242
1024 Improvising Grid Interconnection Capabilities through Implementation of Power Electronics

Authors: Ashhar Ahmed Shaikh, Ayush Tandon

Abstract:

The swift reduction of fossil fuels from nature has crucial need for alternative energy sources to cater vital demand. It is essential to boost alternative energy sources to cover the continuously increasing demand for energy while minimizing the negative environmental impacts. Solar energy is one of the reliable sources that can generate energy. Solar energy is freely available in nature and is completely eco-friendly, and they are considered as the most promising power generating sources due to their easy availability and other advantages for the local power generation. This paper is to review the implementation of power electronic devices through Solar Energy Grid Integration System (SEGIS) to increase the efficiency. This paper will also concentrate on the future grid infrastructure and various other applications in order to make the grid smart. Development and implementation of a power electronic devices such as PV inverters and power controllers play an important role in power supply in the modern energy economy. Solar Energy Grid Integration System (SEGIS) opens pathways for promising solutions for new electronic and electrical components such as advanced innovative inverter/controller topologies and their functions, economical energy management systems, innovative energy storage systems with equipped advanced control algorithms, advanced maximum-power-point tracking (MPPT) suited for all PV technologies, protocols and the associated communications. In addition to advanced grid interconnection capabilities and features, the new hardware design results in small size, less maintenance, and higher reliability. The SEGIS systems will make the 'advanced integrated system' and 'smart grid' evolutionary processes to run in a better way. Since the last few years, there was a major development in the field of power electronics which led to more efficient systems and reduction of the cost per Kilo-watt. The inverters became more efficient and had reached efficiencies in excess of 98%, and commercial solar modules have reached almost 21% efficiency.

Keywords: solar energy grid integration systems, smart grid, advanced integrated system, power electronics

Procedia PDF Downloads 167
1023 The Influence of Characteristics of Waste Water on Properties of Sewage Sludge

Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu, Catalina Topa

Abstract:

In the field of environmental protection in the EU and also in Romania, strict and clear rules are imposed that are respected. Among those, mandatory municipal wastewater treatment is included. Our study involved Municipal Wastewater Treatment Plant (MWWTP) of Galati. MWWTP began its activity by the end of 2011 and technology is one of the most modern used in the EU. Moreover, to our knowledge, it is the first technology of this kind used in the region. Until commissioning, municipal wastewater was discharged directly into the Danube without any treatment. Besides the benefits of depollution, a new problem has arisen: the accumulation of increasingly large sewage sludge. Therefore, it is extremely important to find economically feasible and environmentally friendly solutions. One of the most feasible methods of disposing of sewage sludge is their use on agricultural land. Sewage sludge can be used in agriculture if monitored in terms of physicochemical properties (pH, nutrients, heavy metals, etc.), in order not to contribute to pollution in soils and not to affect chemical and biological balances, which are relatively fragile. In this paper, 16 physico-chemical parameters were monitored. Experimental testings were realised on waste water samples, sewage sludge results and treated water samples. Testing was conducted with electrochemichal methods (pH, conductivity, TDS); parameters N-total (mg/L), P-total (mg/L), N-NH4 (mg/L), N-NO2 (mg/L), N-NO3 (mg/L), Fe-total (mg/L), Cr-total (mg/L), Cu (mg/L), Zn (mg/L), Cd (mg/L), Pb (mg/L), Ni (mg/L) were determined by spectrophotometric methods using a spectrophotometer NOVA 60 and specific kits. Analyzing the results, we concluded that Sewage sludges, although containing heavy metals, are in small quantities and will not affect the land on which they will be deposited. Also, the amount of nutrients contained are appreciable. These features indicate that the sludge can be safely used in agriculture, with the advantage that they represent a cheap fertilizer. Acknowledgement: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation – UEFISCDI, PNCDI III project, 79BG/2017, Efficiency of the technological process for obtaining of sewage sludge usable in agriculture, Efficient.

Keywords: municipal wastewater, physico-chemical properties, sewage sludge, technology

Procedia PDF Downloads 187
1022 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems

Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani

Abstract:

The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.

Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems

Procedia PDF Downloads 118
1021 Best Practical Technique to Drain Recoverable Oil from Unconventional Deep Libyan Oil Reservoir

Authors: Tarek Duzan, Walid Esayed

Abstract:

Fluid flow in porous media is attributed fundamentally to parameters that are controlled by depositional and post-depositional environments. After deposition, digenetic events can act negatively on the reservoir and reduce the effective porosity, thereby making the rock less permeable. Therefore, exploiting hydrocarbons from such resources requires partially altering the rock properties to improve the long-term production rate and enhance the recovery efficiency. In this study, we try to address, firstly, the phenomena of permeability reduction in tight sandstone reservoirs and illustrate the implemented procedures to investigate the problem roots; finally, benchmark the candidate solutions at the field scale and recommend the mitigation strategy for the field development plan. During the study, two investigations have been considered: subsurface analysis using ( PLT ) and Laboratory tests for four candidate wells of the interested reservoir. Based on the above investigations, it was obvious that the Production logging tool (PLT) has shown areas of contribution in the reservoir, which is considered very limited, considering the total reservoir thickness. Also, Alcohol treatment was the first choice to go with for the AA9 well. The well productivity has been relatively restored but not to its initial productivity. Furthermore, Alcohol treatment in the lab was effective and restored permeability in some plugs by 98%, but operationally, the challenge would be the ability to distribute enough alcohol in a wellbore to attain the sweep Efficiency obtained within a laboratory core plug. However, the Second solution, which is based on fracking wells, has shown excellent results, especially for those wells that suffered a high drop in oil production. It is suggested to frac and pack the wells that are already damaged in the Waha field to mitigate the damage and restore productivity back as much as possible. In addition, Critical fluid velocity and its effect on fine sand migration in the reservoir have to be well studied on core samples, and therefore, suitable pressure drawdown will be applied in the reservoir to limit fine sand migration.

Keywords: alcohol treatment, post-depositional environments, permeability, tight sandstone

Procedia PDF Downloads 49