Search results for: high concentration slurry disposal
17842 Rapid Separation of Biomolecules and Neutral Analytes with a Cationic Stationary Phase by Capillary Electrochromatography
Authors: A. Aslihan Gokaltun, Ali Tuncel
Abstract:
The unique properties of capillary electrochromatography (CEC) such as high performance, high selectivity, low consumption of both reagents and analytes ensure this technique an attractive one for the separation of biomolecules including nucleosides and nucleotides, peptides, proteins, carbohydrates. Monoliths have become a well-established separation media for CEC in the format that can be compared to a single large 'particle' that does not include interparticular voids. Convective flow through the pores of monolith significantly accelerates the rate of mass transfer and enables a substantial increase in the speed of the separation. In this work, we propose a new approach for the preparation of cationic monolithic stationary phase for capillary electrochromatography. Instead of utilizing a charge bearing monomer during polymerization, the desired charge-bearing group is generated on the capillary monolith after polymerization by using the reactive moiety of the monolithic support via one-pot, simple reaction. Optimized monolithic column compensates the disadvantages of frequently used reversed phases, which are difficult for separation of polar solutes. Rapid separation and high column efficiencies are achieved for the separation of neutral analytes, nucleic acid bases and nucleosides in reversed phase mode. Capillary monolith showed satisfactory hydrodynamic permeability and mechanical stability with relative standard deviation (RSD) values below 2 %. A new promising, reactive support that has a 'ligand selection flexibility' due to its reactive functionality represent a new family of separation media for CEC.Keywords: biomolecules, capillary electrochromatography, cationic monolith, neutral analytes
Procedia PDF Downloads 21217841 The Effect of the Hexagonal Ring Interior Angle on Energy Absorption Capability
Authors: Shada Bennbaia, Elsadig Mahdi
Abstract:
In this paper, the effect of changing the interior angle of a hexagonal passive energy absorber is investigated. Aluminum hexagonal structures have been tested under in-plane quasi-static compression tests. These hexagonal structures are designed to have varying interior angle values to study their crushing behavior and the relationship between the angle and the energy absorption capability. It was found that the structures with angles 40° and 45° showed an almost perfectly stable crushing mechanism with low initial peak force. Thus, hexagonal structures with these angels can be used in the vehicle's crumple zones to absorb energy during collisions. The larger angles required high initial peak force to start crushing, which indicates that these structures are best suited in applications where high load carrying capacity is needed.Keywords: energy absorption, crushing force efficiency, crushing mechanism, hexagonal angle, peak force
Procedia PDF Downloads 19417840 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience
Authors: Luay Alsalmi
Abstract:
Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm
Procedia PDF Downloads 8417839 Natural Radioactivity in Tunisian Bottled Mineral Waters
Authors: Salam Labidi, Sonia Machraoui, Souha Gharbi
Abstract:
Radium isotopes (226Ra, 228Ra) and uranium isotopes (234U, 238U) activity concentrations were determined in most popular Tunisian bottled mineral waters samples. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that of radium isotopes by gamma-ray spectrometry. The activity concentrations of 238U, 234U, 226Ra and 228Ra in water samples varied in range 3.3 - 22.5 mBq.L−1, 4.0 - 34.2 mBq L−1, 2.0 - 67.0 mBq L−1 and 2.0 - 30.2 mBq L−1, respectively. These values are comparable with those reported for many other countries in the world for different types of water. Based on the activity concentration results obtained in this study, the estimated annual ingestion dose rates for three different age groups (babies, children and adults) due to the ingestion of radium and uranium isotopes through drinking water are lower than the limit of intake prescribed by WHO. The annual doses exceed the recommended value of 0.1 mSv y-1 in one case for babies.Keywords: mineral water, natural radioactivity, radiation dose, radium, uranium
Procedia PDF Downloads 26717838 Phytoremediation Potential of Hibiscus Cannabinus L. Grown on Different Soil Cadmium Concentration
Authors: Sarra Arbaoui, Taoufik Bettaieb
Abstract:
Contaminated soils and problems related to them have increasingly become a matter of concern. The most common the contaminants generated by industrial urban emissions and agricultural practices are trace metals). Remediation of trace metals which pollute soils can be carried out using physico-chemical processes. Nevertheless, these techniques damage the soil’s biological activity and require expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains pollutants. The potential of kenaf for phytoremediation on Cd-contaminated soil was investigated. kenaf plants have been grown in pots containing different concentrations of cadmium. The observations made were for biomass production and cadmium content in different organs determinate by atomic emission spectrometry. Cadmium transfer from a contaminated soil to plants and into plant tissues are discussed in terms of the Bioconcentration Factor (BCF) and the Transfer Factor (TF). Results showed that Cd was found in kenaf plants at different levels. Tolerance and accumulation potential and biomass productivity indicated that kenaf could be used in phytoremediation.Keywords: kenaf, cadmium, phytoremediation, contaminated soil
Procedia PDF Downloads 52517837 Health Outcomes from Multidrug-Resistant Salmonella in High-Income Countries: A Systematic Review and Meta-Analysis
Authors: Andrea Parisi, Samantha Vilkins, Luis Furuya-Kanamori, John A. Crump, Benjamin P. Howden, Darren Gray, Kathryn Glass, Martyn Kirk
Abstract:
Objectives: Salmonella is a leading cause of foodborne enterocolitis worldwide. Nontyphoidal Salmonella (NTS) infections that are Multi-Drug Resistant (MDR) (non-susceptible to ≥1 agent in ≥3 antimicrobial categories) may result in more severe outcomes, although these effects have not been systematically examined. We conducted a systematic review and meta-analysis to examine impacts of MDR NTS on health in high-income settings. Methods: We systematically reviewed the literature from scientific databases, including PubMed, Scopus and grey literature sources, using PRISMA guidelines. We searched for data from case-control studies, cohorts, outbreaks, reports and theses, imposing no language restriction. We included only publications from January 1990 to September 2016 from high income countries as classified by World Bank. We extracted data from papers on duration of illness, hospitalisation rates, morbidity and mortality for MDR and non-MDR NTS strains. Results: After removing duplicates, the initial search revealed 4258 articles. After further screening, we identified 16 eligible studies for the systematic review, and 9 of these were included in meta-analysis. NTS serotypes differed among the reported studies but serotype Typhimurium, Enteritidis, Newport and Heidelberg were among the most often reported as MDR pathogens. Salmonella infections that were MDR were associated with excess bloodstream infections (OR 1.63; 95%CI 1.18-2.26), excess hospitalisations (OR 2.77; 95%CI 1.47-5.21) and higher mortality (OR 3.54; 95%CI 1.10-11.40). Conclusions: MDR NTS infections are a serious public health concern. With the emergence of MDR Salmonella strains in the high-income countries, it is crucial to restrict the use of antimicrobials both in animals and humans, and intervene to prevent foodborne infections.Keywords: Antimicrobial Resistance, Bloodstream Infection, Health Outcomes, Hospitalisation, Invasive Disease, Multi-Drug Resistance (MDR), Mortality, Nontyphoidal Salmonella
Procedia PDF Downloads 38017836 Acute Toxicity and the Effects of dichromate potassium (K2Cr2O7) in sobaity seabream (Sparidebtex hasta)
Authors: Elnaz Erfani, Elahe Erfni
Abstract:
In this study, 96h LC50 values of dichromate potassium (K2Cr2O7), a highly toxicant heavy metal on sobaity seabream, Sparidebtex hasta of average weight mean weight 3.24 g; mean length 5.35cm was determined. At first, for rang finding test, fish were exposed to K2Cr2O7 at several selected concentrations 5, 10, 20, 30, 40, 50 and 60 mg/L, then fish exposed to five concentrations control, 40, 45, 50 and 55 mg/L of K2Cr2O7 for LC50-96h. The experiment was carried out in triplicate, and 21 fish per each treatment, Physicochemical properties of water were measured continuously throughout the experiment. The temperature, pH, dissolved oxygen and salinity were 26 ◦c, 7.05, 8.84 mgO2 L-1 and 37.5 ppt, respectively. A number of mortality and behavioral responses of fish were recorded after 24, 48, 72 and 96 h. LC50 values were determined with probate analysis. The 96 hour LC50 value of K2Cr2O7 to the fish was found to be 48.82 ppm. In addition, behavioural changes increased with increased concentration. The results obtained in this study clearly revealed the fact that it is necessary to control the use of a heavy metal such as dichromate potassium.Keywords: marin fish- lc50, dicromat potassium, lc50, mortality
Procedia PDF Downloads 19317835 Physicochemical Characteristics and Evaluation of Main Volatile Compounds of Fresh and Dehydrated Mango
Authors: Maria Terezinha Santos Leite Neta, Mônica Silva de Jesus, Hannah Caroline Santos Araujo, Rafael Donizete Dutra Sandes, Raquel Anne Ribeiro Dos Santos, Narendra Narain
Abstract:
Mango is one of the most consumed and appreciated fruits in the world, mainly due to its peculiar and characteristic aroma. Since the fruit is perishable, it requires conservation methods to prolong its shelf life. Mango cubes were dehydrated at 40°C, 50°C and 60°C and by lyophilization, and the effect of these processes was investigated on the physicochemical characteristics (color and texture) of the products and monitoring of the main volatile compounds for the mango aroma. Volatile compounds were extracted by the SPME technique and analyzed in GC-MS system. Drying temperature at 60°C and lyophilization showed higher efficiency in retention of main volatile compounds, being 63.93% and 60.32% of the total concentration present in the fresh pulp, respectively. The freeze-drying process also presented features closer to the fresh mango in relation to color and texture, which contributes to greater acceptability.Keywords: mango, freeze drying, convection drying, aroma, GC-MS
Procedia PDF Downloads 6417834 Phytoremediation of Chromium Using Vigna mungo, Vigna radiata and Cicer arietinum
Authors: Swarna Shikha, Pammi Gauba
Abstract:
Heavy metal pollution in water bodies and soil is a major and ever increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. By using specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called as phytoremediation. The aim of this study was to find the effect of phytoextraction of Chromium in hydroponics culture by using Vigna mungo, Vigna radiata and Cicer arietinum. The plants were allowed to grow in static hydroponic culture at 0, 50, 250, 500 and 750 ppm concentrations of Chromium dichromate. The germination percentage was determined. It was found that the germination percentage of the seeds decreased with an increase in the concentration of the heavy metals. The maximum permissible limit of Cr for Vigna radiate and Cicer arietinum was 500 ppm and toxicity was observed whereas at even at 750 ppm no toxicity was observed in Vigna mungo. The main aim of our experiment was to study the impact of Chromium on all the three selected plants.Keywords: phytoremediation, phytoextraction metal-accumulation, heavy metals, pollutants
Procedia PDF Downloads 35417833 Comparison of Tribological Properties of TiO₂, ZrO₂ and TiO₂–ZrO₂ Composite Films Prepared by Sol–Gel Method
Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik
Abstract:
In this study, TiO₂, ZrO₂, and TiO₂–ZrO₂ composite films were coated on Cp-Ti substrates by sol-gel method. Structures of uncoated and coated samples were investigated by X-ray diffraction and SEM. XRD data identified anatase phase in TiO₂ coated samples and tetragonal zirconia phase in ZrO₂ coated samples while both of anatase and tetragonal zirconia phases in TiO₂–ZrO₂ composite films. The mechanical and wear properties of samples were investigated using micro hardness, pin-on-disk tribotester, and 3D profilometer. The best wear resistance was obtained from TiO₂–ZrO₂ composite films. This can be attributed to their high surface hardness, low surface roughness and high thickness of the film.Keywords: sol-gel, TiO₂, ZrO₂, TiO₂–ZrO₂, composite films, wear
Procedia PDF Downloads 26317832 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow
Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran
Abstract:
Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.Keywords: proteomics, reproduction, biomarker, immunity
Procedia PDF Downloads 41217831 Discouraged Borrowers: Evidence for Eurozone SMEs
Authors: Javier Sanchez Vidal, Ciarán Mac An Bhaird, Brian Lucey
Abstract:
This study examines the decision by firm owners not to apply for intermediated debt due to a perception that their application will be rejected. Based on a sample of SMEs in 9 European countries over the period 2009-2011, we examine potential explanatory factors for borrower discouragement, including firm, macroeconomic, regulatory and banking industry variables. Compared with firms that applied for bank loans, discouraged borrowers are smaller, younger, have declining turnover and an increasing debt/assets ratio. Perceived willingness of banks to lend rather than the company’s own credit history is more important to encourage applications. Perceptions of refusal are procyclical and may be self-perpetuating. Increased concentration in the banking sector reduces discouragement, indicating the importance of relationship banking. Transmission of macro effects through the banking system and economic environment may also lead to higher levels of discouragement. A good regulatory scheme is also advisable, either for the lenders or the borrowers (overall the good ones).Keywords: entrepreneurial finance, discouraged borrowers, banking, financial crisis, eurozone
Procedia PDF Downloads 40917830 Dissociation of Hydrophobic Interactions in Whey Protein Polymers: Molecular Characterization Using Dilute Solution Viscometry
Authors: Ahmed S. Eissa
Abstract:
Whey represents about 85-95% of the milk volume and about 55% of milk nutrients. Whey proteins are of special importance in formulated foods due to their rich nutritional and functional benefits. Whey proteins form large polymers upon heating to a temperature greater than the denaturation temperature. Hydrophobic interactions play an important role in building whey protein polymers. In this study, dissociation of hydrophobic interactions of whey protein polymers was done by adding Sodium Dodecyl Sulphonate (SDS). At low SDS concentrations, protein polymers were dissociated to smaller chains, as revealed by dilution solution viscometry (DSV). Interestingly, at higher SDS concentrations, polymer molecules got larger in size. Intrinsic viscosity was increased to many folds when raising the SDS concentration from 0.5% to 2%. Complex molecular arrangement leads to the formation of larger macromolecules, due to micelle formation. The study opens a venue for manipulating and enhancing whey protein functional properties by manipulating the hydrophobic interactions.Keywords: whey proteins, hydrophobic interactions, SDS
Procedia PDF Downloads 24817829 Women Entrepreneurship as an Inventive Approach to Ensure a Sustainable Development in Anambra State
Authors: S. Muogbo Uju, U. Akpunonu Evan
Abstract:
The prevailing harsh environment factors coupled with high poverty rate and unemployment propels a high rate of entrepreneurial activities in developing economies. Women entrepreneurs operate with gender bias among other constraints that can constitute a threats or create opportunity for women entrepreneurs. This empirical paper investigates and critically examines women entrepreneurship as an inventive approach to ensure a sustainable development in Anambra state. The study used descriptive statistics (frequencies, mean, and percentages) to answer the three research questions posed. Hypotheses testing were done with Pearson product moment correlation and multiple regression were employed in data analysis. Consequently, the finding of this study portrayed a significant impact between women entrepreneurship activity, job creation and wealth creation.Keywords: women entrepreneurs, skill acquisition, sustainability, wealth creation, job creation, economic development
Procedia PDF Downloads 44517828 Methadone Maintenance Treatment Patients' and Medical Students' Common Trait: Low Mindfulness Trait Associated with High Perceived Stress
Authors: Einat Peles, Anat Sason, Ariel Claman, Gabriel Barkay, Miriam Adelson
Abstract:
Individuals with opioid addiction are characterized as suffering from stress responses disturbance, including the hypothalamic-pituitary-adrenal (HPA) axis, and autonomic nervous system function. HPA axis is known to be stabilized during methadone maintenance treatment (MMT). Mindfulness (present-oriented, nonjudgmental awareness of cognitions, emotions, perceptions, and habitual behavioral reactions in daily life) counteracts stress. To our knowledge, the relation between perceived stress and mindfulness trait among MMT patients has never been studied. To measure indices of mindfulness and their relation to perceived stress among MMT patients, a cross-sectional random sample of current MMT patients was performed using questionnaires for perceived stress (PSS) and mindfulness trait (FFMQ- yields a total score and individual scores for five internally consistent mindfulness factors: Observing, Describing, Acting with awareness and consciousness, Non-judging the inner experience, Non-reactivity to the inner experience). Two additional groups were studied to serve as reference groups; Medical students that are known to suffer from stress, and Axis II psychiatric diagnosis patients that are known to characterized with poor mindfulness trait. Results: Groups included 41 MMT patients, 27 Axis II patients and 36 medical students. High perceived stressed (PSS≥18) defined among 61% of the MMT patients and 50% of the medical students. Highest mindfulness score observed among non-stressed MMT patients (153.5±17.2) followed by the groups of stressed MMT and non-stressed student (128.9±17.0 and 130.5±13.3 respectively), with the lowest score among stressed students (116.3±17.9) (multivariate analyses, corrected model p (F=14.3) < 0.0005, p (group) < 0.0005, p (stress) < 0.0005, p (interaction) =0.2). Linear inverse correlations were found between perceived stress score and mindfulness score among MMT patients (R=-0.65, p < 0.0005) and students (R=-0.51, p=0.002). Axis II patients had the lowest mindfulness score (103.4±25.3). Conclusion: High prevalence of high perceived stressed which characterized with poor mindfulness trait observed in both MMT patients and medical students, two different population groups. The effectiveness of mindfulness treatment in reducing stress and improve mindfulness trait should be evaluated to improve rehabilitation of MMT patients, and students success.Keywords: mindfulness, stress, methadone maintenance treatment, medical students
Procedia PDF Downloads 18317827 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool
Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung
Abstract:
High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.Keywords: machining parameters, machining stability, regression analysis, surface roughness
Procedia PDF Downloads 23117826 The Relationship between the Epithermal Mineralization, Thermalism, and Basement Faults in the Region of Guelma: NE of Algeria
Authors: B. Merdas
Abstract:
The Guelma region constitutes a vast geothermal field whose local geothermal gradient is very high. Indeed, various thermal and thermo sources emerging in the region, including some at relatively high temperatures. In the mio Pliocene Hammam N'bails, basin emerges a hot spring that leaves develop a thick series of thermal travertine linked to it. Near the thermal emergences has settled a very special mineralization antimony and zinc and lead. The results of analyses of the thermal waters of the source of Hammam N'bails and the associated travertine, show abnormal values in Pb, Sb, Zn, As, and other metals, demonstrating the genetic link between those waters and mineralization. Hammam N'bails mineralizations by their mineral assembling represented and their association with the hot springs, are very similar to epithermal deposits with precious metals (gold and silver) like Senator mine in Turkey or ‘Carlin-type’ in Nevada (USA).Keywords: hot springs, mineralization; basement faults, Guelma, NE Algeria
Procedia PDF Downloads 43017825 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin
Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin
Abstract:
The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.Keywords: climate change, climatic model, dry events, precipitation projections
Procedia PDF Downloads 14417824 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis
Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov
Abstract:
Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil
Procedia PDF Downloads 11417823 Teaching Non-Euclidean Geometries to Learn Euclidean One: An Experimental Study
Authors: Silvia Benvenuti, Alessandra Cardinali
Abstract:
In recent years, for instance, in relation to the Covid 19 pandemic and the evidence of climate change, it is becoming quite clear that the development of a young kid into an adult citizen requires a solid scientific background. Citizens are required to exert logical thinking and know the methods of science in order to adapt, understand, and develop as persons. Mathematics sits at the core of these required skills: learning the axiomatic method is fundamental to understand how hard sciences work and helps in consolidating logical thinking, which will be useful for the entire life of a student. At the same time, research shows that the axiomatic study of geometry is a problematic topic for students, even for those with interest in mathematics. With this in mind, the main goals of the research work we will describe are: (1) to show whether non-Euclidean geometries can be a tool to allow students to consolidate the knowledge of Euclidean geometries by developing it in a critical way; (2) to promote the understanding of the modern axiomatic method in geometry; (3) to give students a new perspective on mathematics so that they can see it as a creative activity and a widely discussed topic with a historical background. One of the main issues related to the state-of-the-art in this topic is the shortage of experimental studies with students. For this reason, our aim is to show further experimental evidence of the potential benefits of teaching non-Euclidean geometries at high school, based on data collected from a study started in 2005 in the frame of the Italian National Piano Lauree Scientifiche, continued by a teacher training organized in September 2018, perfected in a pilot study that involved 77 high school students during the school years 2018-2019 and 2019-2020. and finally implemented through an experimental study conducted in 2020-21 with 87 high school students. Our study shows that there is potential for further research to challenge current conceptions of the school mathematics curriculum and of the capabilities of high school mathematics students.Keywords: Non-Euclidean geometries, beliefs about mathematics, questionnaires, modern axiomatic method
Procedia PDF Downloads 7517822 Removal of Acetaminophen with Chitosan-Nano Activated Carbon Beads from Aqueous Sources
Authors: Parisa Amouzgar, Chan Eng Seng, Babak Salamatinia
Abstract:
Pharmaceutical products are being increasingly detected in the environment. However, conventional treatment systems do not provide an adequate treatment for pharmaceutical drug elimination and still there is not a regulated standard for their limitation in water. Since decades before, pharmaceuticals have been in the water but only recently, their levels in the environment have been recognized and quantified as potentially hazardous to ecosystems. In this study chitosan with a bio-based NAC (Ct-NAC) were made as beads with extrusion dripping method and investigated for acetaminophen removal from water. The effects of beading parameters such as flow rate in dripping, the distance from dipping tip to the solution surface, concentration of chitosan and percentage of NAC were analyzed to find the optimum condition. Based on the results, the overall adsorption rate and removal efficiency increased during the time till the equilibrium rate which was 80% removal of acetaminophen. The maximum adsorption belonged to the beads with 1.75% chitosan, 60% NAC, flow-rate of 1.5 ml/min while the distance of dripping was 22.5 cm.Keywords: pharmaceuticals, water treatment, chitosan nano activated carbon beads, Acetaminophen
Procedia PDF Downloads 35717821 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks
Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar
Abstract:
Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization
Procedia PDF Downloads 25817820 The Synthesis of AgInS₂/SnS₂/RGO Heterojunctions with Enhanced Photocatalytic Degradation of Norfloxacin
Authors: Mingmei Zhang, Xinyong Li
Abstract:
Novel AgInS2/SnS2/RGO (AISR) heterojunctions photocatalysts were synthesized by simple hydrothermal method. The morphology and composition of the fabricated AISR nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AISR photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, laser flash photolysis technique was conducted to test the lifetime of charge carriers of the fabricated nanocomposites. The interfacial charges transfer mechanism was also discussed.Keywords: AISR heterojunctions, electron-hole pairs, SPV spectra, charges transfer mechanism
Procedia PDF Downloads 18117819 Municipal Solid Waste Management in an Unplanned Hill Station in India
Authors: Moanaro Ao, Nzanthung Ngullie
Abstract:
Municipal solid waste management (MSWM) has unique challenges in hilly urban settlements. Efforts have been taken by municipalities, private players, non-governmental organizations, etc. for managing solid waste by preventing its generation, reusing, and recovering them into useful products to the extent possible, thereby minimizing its impact on the environment and human health. However, there are many constraints that lead to inadequate management of solid waste. Kohima is an unplanned hill station city in the North Eastern Region of India. The city is facing numerous issues due to the mismanagement of the MSW generated. Kohima Municipal Council (KMC) is the Urban Local Body (ULB) responsible for providing municipal services. The present MSWM system in Kohima comprises of collection, transportation, and disposal of waste without any treatment. Several efforts and experimental projects on waste management have been implemented without any success. Waste management in Kohima city is challenging due to its remote location, difficult topography, dispersed settlements within the city, sensitive ecosystem, etc. Furthermore, the narrow road network in Kohima with limited scope for expansion, inadequate infrastructure facilities, and financial constraints of the ULB add up to the problems faced in managing solid waste. This hill station also has a unique system of traditional local self-governance. Thus, shifting from a traditional system to a modern system in implementing systematic and scientific waste management is also a challenge in itself. This study aims to analyse the existing situation of waste generation, evaluate the effectiveness of the existing management system of MSW, and evolve a strategic approach to achieve a sustainable and resilient MSWM system. The results from the study show that a holistic approach, including social aspects, technical aspects, environmental aspects, and financial aspects, is needed to reform the MSWM system. Stringent adherence to source segregation is required by encouraging public participation through awareness programs. Active involvement of community-based organizations (CBOs) has brought a positive change in sensitizing the public. A waste management model was designed to be adopted at a micro-level such as composting household biodegradable waste and incinerator plants at the community level for non-biodegradable waste. Suitable locations for small waste stations were identified using geographical information system (GIS) tools for waste recovery and recycling. Inculcating the sense of responsibility in every waste generator towards waste management by implementing incentive-based strategies at the Ward level was explored. Initiatives based on the ‘polluters pay principle’ were also explored to make the solid waste management model “self-sustaining”.Keywords: municipal solid waste management, public participation, source segregation, sustainable
Procedia PDF Downloads 6817818 2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells
Authors: T. Bielewicz, S. Dogan, C. Klinke
Abstract:
Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets’ height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results.Keywords: physical sciences, chemistry, materials, chemistry, colloids, physics, condensed-matter physics, semiconductors, two-dimensional materials
Procedia PDF Downloads 30117817 Conjunctive Use of Shallow Groundwater for Irrigation Purpose: The Case of Wonji Shoa Sugar Estate, Ethiopia
Authors: Megersa Olumana Dinka, Kassahun Birhanu Tadesse
Abstract:
Irrigation suitability of shallow groundwater (SGW) was investigated by taking thirty groundwater samples from piezometers and hand-dug wells in Wonji Shoa Sugar Estate (WSSE) (Ethiopia). Many physicochemical parameters (Mg²⁺, Na⁺, Ca²⁺, K⁺, CO₃-, SO4²⁻, HCO₃⁻, Cl⁻, TH, EC, TDS and pH) were analyzed following standard procedures. Different irrigation indices (MAR, SSP, SAR, RSC, KR, and PI) were also used for SGW suitability assessment. If all SGW are blended and used for irrigation, the salinity problem would be slight to moderate, and 100% of potential sugarcane yield could be obtained. The infiltration and sodium ion toxicity problems of the blended water would be none to moderate, and slight to moderate, respectively. As sugarcane is semi-tolerant to sodium toxicity, no significant sodium toxicity problem would be expected from the use of blended water. Blending SGW would also reduce each chloride and boron ion toxicity to none. In general, the rating of SGW was good to excellent for irrigation in terms of average EC (salinity), and excellent in terms of average SAR (infiltration). The SGW of the WSSE was categorized under C3S1 (high salinity and low sodium hazard). In conclusion, the conjunctive use of groundwater for irrigation would help to reduce the potential effect of waterlogging and salinization and their associated problems on soil and sugarcane production and productivity. However, a high value of SSP and RSC indicate a high possibility of infiltration problem. Hence, it is advisable to use the SGW for irrigation after blending with surface water. In this case, the optimum blending ratio of the surface to SGW sources has to be determined for sustainable sugarcane productivity.Keywords: blending, infiltration, salinity, sodicity, sugarcane, toxicity
Procedia PDF Downloads 38217816 Teachers’ and Students’ Reactions to a Guided Reading Program Designed by a Teachers’ Professional Learning Community
Authors: Yea-Mei Leou, Shiu-Hsung Huang, T. C. Shen, Chin-Ya Fang
Abstract:
The purposes of this study were to explore how to establish a professional learning community for English teachers at a junior high school, and to explore how teachers and students think about the guided reading program. The participants were three experienced English teachers and their ESL seventh-grade students from three classes in a junior high school. Leveled picture books and worksheets were used in the program. Questionnaires and interviews were used for gathering information. The findings were as follows: First, most students enjoyed this guided reading program. Second, the teachers thought the guided reading program was helpful to students’ learning and the discussions in the professional learning community refreshed their ideas, but the preparation for the teaching was time-consuming. Suggestions based on the findings were provided.Keywords: ESL students, guided reading, leveled books, professional learning community
Procedia PDF Downloads 37717815 Assessment of Surface Water Quality near Landfill Sites Using a Water Pollution Index
Authors: Alejandro Cittadino, David Allende
Abstract:
Landfilling of municipal solid waste is a common waste management practice in Argentina as in many parts of the world. There is extensive scientific literature on the potential negative effects of landfill leachates on the environment, so it’s necessary to be rigorous with the control and monitoring systems. Due to the specific municipal solid waste composition in Argentina, local landfill leachates contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), as well as ammonia-nitrogen, small trace of some heavy metals, and inorganic salts. In order to investigate the surface water quality in the Reconquista river adjacent to the Norte III landfill, water samples both upstream and downstream the dumpsite are quarterly collected and analyzed for 43 parameters including organic matter, heavy metals, and inorganic salts, as required by the local standards. The objective of this study is to apply a water quality index that considers the leachate characteristics in order to determine the quality status of the watercourse through the landfill. The water pollution index method has been widely used in water quality assessments, particularly rivers, and it has played an increasingly important role in water resource management, since it provides a number simple enough for the public to understand, that states the overall water quality at a certain location and time. The chosen water quality index (ICA) is based on the values of six parameters: dissolved oxygen (in mg/l and percent saturation), temperature, biochemical oxygen demand (BOD5), ammonia-nitrogen and chloride (Cl-) concentration. The index 'ICA' was determined both upstream and downstream the Reconquista river, being the rating scale between 0 (very poor water quality) and 10 (excellent water quality). The monitoring results indicated that the water quality was unaffected by possible leachate runoff since the index scores upstream and downstream were ranked in the same category, although in general, most of the samples were classified as having poor water quality according to the index’s scale. The annual averaged ICA index scores (computed quarterly) were 4.9, 3.9, 4.4 and 5.0 upstream and 3.9, 5.0, 5.1 and 5.0 downstream the river during the study period between 2014 and 2017. Additionally, the water quality seemed to exhibit distinct seasonal variations, probably due to annual precipitation patterns in the study area. The ICA water quality index appears to be appropriate to evaluate landfill impacts since it accounts mainly for organic pollution and inorganic salts and the absence of heavy metals in the local leachate composition, however, the inclusion of other parameters could be more decisive in discerning the affected stream reaches from the landfill activities. A future work may consider adding to the index other parameters like total organic carbon (TOC) and total suspended solids (TSS) since they are present in the leachate in high concentrations.Keywords: landfill, leachate, surface water, water quality index
Procedia PDF Downloads 15117814 Impact of Collieries on Groundwater in Damodar River Basin
Authors: Rajkumar Ghosh
Abstract:
The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.Keywords: coal mining, groundwater, soil subsidence, water table, damodar river
Procedia PDF Downloads 8017813 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach
Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch
Abstract:
This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes
Procedia PDF Downloads 51