Search results for: thermal image
409 Criteria to Access Justice in Remote Criminal Trial Implementation
Authors: Inga Žukovaitė
Abstract:
This work aims to present postdoc research on remote criminal proceedings in court in order to streamline the proceedings and, at the same time, ensure the effective participation of the parties in criminal proceedings and the court's obligation to administer substantive and procedural justice. This study tests the hypothesis that remote criminal proceedings do not in themselves violate the fundamental principles of criminal procedure; however, their implementation must ensure the right of the parties to effective legal remedies and a fair trial and, only then, must address the issues of procedural economy, speed and flexibility/functionality of the application of technologies. In order to ensure that changes in the regulation of criminal proceedings are in line with fair trial standards, this research will provide answers to the questions of what conditions -first of all, legal and only then organisational- are required for remote criminal proceedings to ensure respect for the parties and enable their effective participation in public proceedings, to create conditions for quality legal defence and its accessibility, to give a correct impression to the party that they are heard and that the court is impartial and fair. It also seeks to present the results of empirical research in the courts of Lithuania that was made by using the interview method. The research will serve as a basis for developing a theoretical model for remote criminal proceedings in the EU to ensure a balance between the intention to have innovative, cost-effective, and flexible criminal proceedings and the positive obligation of the State to ensure the rights of participants in proceedings to just and fair criminal proceedings. Moreover, developments in criminal proceedings also keep changing the image of the court itself; therefore, in the paper will create preconditions for future research on the impact of remote criminal proceedings on the trust in courts. The study aims at laying down the fundamentals for theoretical models of a remote hearing in criminal proceedings and at making recommendations for the safeguarding of human rights, in particular the rights of the accused, in such proceedings. The following criteria are relevant for the remote form of criminal proceedings: the purpose of judicial instance, the legal position of participants in proceedings, their vulnerability, and the nature of required legal protection. The content of the study consists of: 1. Identification of the factual and legal prerequisites for a decision to organise the entire criminal proceedings by remote means or to carry out one or several procedural actions by remote means 2. After analysing the legal regulation and practice concerning the application of the elements of remote criminal proceedings, distinguish the main legal safeguards for protection of the rights of the accused to ensure: (a) the right of effective participation in a court hearing; (b) the right of confidential consultation with the defence counsel; (c) the right of participation in the examination of evidence, in particular material evidence, as well as the right to question witnesses; and (d) the right to a public trial.Keywords: remote criminal proceedings, fair trial, right to defence, technology progress
Procedia PDF Downloads 71408 Nanofluidic Cell for Resolution Improvement of Liquid Transmission Electron Microscopy
Authors: Deybith Venegas-Rojas, Sercan Keskin, Svenja Riekeberg, Sana Azim, Stephanie Manz, R. J. Dwayne Miller, Hoc Khiem Trieu
Abstract:
Liquid Transmission Electron Microscopy (TEM) is a growing area with a broad range of applications from physics and chemistry to material engineering and biology, in which it is possible to image in-situ unseen phenomena. For this, a nanofluidic device is used to insert the nanoflow with the sample inside the microscope in order to keep the liquid encapsulated because of the high vacuum. In the last years, Si3N4 windows have been widely used because of its mechanical stability and low imaging contrast. Nevertheless, the pressure difference between the inside fluid and the outside vacuum in the TEM generates bulging in the windows. This increases the imaged fluid volume, which decreases the signal to noise ratio (SNR), limiting the achievable spatial resolution. With the proposed device, the membrane is fortified with a microstructure capable of stand higher pressure differences, and almost removing completely the bulging. A theoretical study is presented with Finite Element Method (FEM) simulations which provide a deep understanding of the membrane mechanical conditions and proves the effectiveness of this novel concept. Bulging and von Mises Stress were studied for different membrane dimensions, geometries, materials, and thicknesses. The microfabrication of the device was made with a thin wafer coated with thin layers of SiO2 and Si3N4. After the lithography process, these layers were etched (reactive ion etching and buffered oxide etch (BOE) respectively). After that, the microstructure was etched (deep reactive ion etching). Then the back side SiO2 was etched (BOE) and the array of free-standing micro-windows was obtained. Additionally, a Pyrex wafer was patterned with windows, and inlets/outlets, and bonded (anodic bonding) to the Si side to facilitate the thin wafer handling. Later, a thin spacer is sputtered and patterned with microchannels and trenches to guide the nanoflow with the samples. This approach reduces considerably the common bulging problem of the window, improving the SNR, contrast and spatial resolution, increasing substantially the mechanical stability of the windows, allowing a larger viewing area. These developments lead to a wider range of applications of liquid TEM, expanding the spectrum of possible experiments in the field.Keywords: liquid cell, liquid transmission electron microscopy, nanofluidics, nanofluidic cell, thin films
Procedia PDF Downloads 254407 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester
Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski
Abstract:
Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex
Procedia PDF Downloads 447406 Risk and Emotion: Measuring the Effect of Emotion and Other Visceral Factors on Decision Making under Risk
Authors: Michael Mihalicz, Aziz Guergachi
Abstract:
Background: The science of modelling choice preferences has evolved over centuries into an interdisciplinary field contributing to several branches of Microeconomics and Mathematical Psychology. Early theories in Decision Science rested on the logic of rationality, but as it and related fields matured, descriptive theories emerged capable of explaining systematic violations of rationality through cognitive mechanisms underlying the thought processes that guide human behaviour. Cognitive limitations are not, however, solely responsible for systematic deviations from rationality and many are now exploring the effect of visceral factors as the more dominant drivers. The current study builds on the existing literature by exploring sleep deprivation, thermal comfort, stress, hunger, fear, anger and sadness as moderators to three distinct elements that define individual risk preference under Cumulative Prospect Theory. Methodology: This study is designed to compare the risk preference of participants experiencing an elevated affective or visceral state to those in a neutral state using nonparametric elicitation methods across three domains. Two experiments will be conducted simultaneously using different methodologies. The first will determine visceral states and risk preferences randomly over a two-week period by prompting participants to complete an online survey remotely. In each round of questions, participants will be asked to self-assess their current state using Visual Analogue Scales before answering a series of lottery-style elicitation questions. The second experiment will be conducted in a laboratory setting using psychological primes to induce a desired state. In this experiment, emotional states will be recorded using emotion analytics and used a basis for comparison between the two methods. Significance: The expected results include a series of measurable and systematic effects on the subjective interpretations of gamble attributes and evidence supporting the proposition that a portion of the variability in human choice preferences unaccounted for by cognitive limitations can be explained by interacting visceral states. Significant results will promote awareness about the subconscious effect that emotions and other drive states have on the way people process and interpret information, and can guide more effective decision making by informing decision-makers of the sources and consequences of irrational behaviour.Keywords: decision making, emotions, prospect theory, visceral factors
Procedia PDF Downloads 148405 Khiaban (the Street) as an Ancient Percept of the Iranian Urban Landscape: An Aesthetic Reading of Lalehzar Street, the First Modern Khiaban in Iran
Authors: Mohammad Atashinbar
Abstract:
Lalehzar was one of the main streets in central Tehran in late Qajar and 1st Pahlavi (1880-1940) and a center of attention for the government. It was a natural walk during the last decade of the reign of Nasser al-Din Shah (1880-1895). However, this street lost its prosperity status under the 2nd Pahlavi and evolved from a modern cultural street to a commercial corridor. Lalehzar's decline was the result of the immigration of the upper class from the inner city to the northern part and the consequent transfer of amenities and luxury goods with them. It seems that during Lalehzar's six decades of prosperity, this khiâbân has received an aesthetic look, which has made it enjoyable and appreciated by Tehran’s people. Various post-revolutionary urban management measures have been taken to revive Lalehzar and improve the quality of its urban life. Since the beginning of the Safavid era, the khiâbân was accompanied by the concept of urban space, and its characteristics are explained by referring to the main axis of the Persian Garden with rows of trees, streams, and a line of flowers on both sides. The construction of a street inside the city as an urban space benefits from a mental concept as a spiritual and exciting space, especially in common forms in the Persian Garden. Before that, the khiâbân was a religious and mythical concept, and we can even say that the mastery of this concept led to its appearance in the garden. In Tehran, Lalehzar Street is a gateway to modernity. The aesthetic changes in Lalehzar Street, inspired by Nasser al-Din Shah's journey to Europe around 1870, coinciding with the changes in architectural and urban landscape movements around the world between 1880 and 1940. The Shah is impressed by the modernist urbanism and, in particular, the Champs-Élysées in Paris. A tree-lined promenade with the hallmarks of the Persian Garden is familiar to Nasser al-Din Shah's mental image of beauty. In its state of mind, the main axis of the Persian Garden has the characteristics of a promenade. Therefore, the origins of the aesthetic of Lalehzar Street come from the aesthetics of the khiâbân. Admitting that the Champs-Élysées served as a model for Lalehzar, it seems that the Shah wanted to associate the Champs-Élysées with Lalehzar and highlight its landscape aspects by building this street. Depending on whether the percepts have their own aesthetic, this proposal seeks to analyze the aesthetic evolutions of the khiâbân as a percept towards the street as a component of the urban landscape in Lalehzar. The research attempts to review the aesthetic aspects of Lalehzar between 1880-1940 by using iconographic analysis, based on the available historical data, to find the leading aesthetics principles of this street. The aesthetic view to Lalehzar as an artwork is one of the main achievements of this study.Keywords: Lalehzar, aesthetics, percept, Tehran, street
Procedia PDF Downloads 149404 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map
Procedia PDF Downloads 103403 Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle
Authors: Aloke Bapli, Debabrata Seth
Abstract:
Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles.Keywords: photophysics, reverse micelle, rotational relaxation, solvent relaxation
Procedia PDF Downloads 155402 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 120401 Assessing the Spatial Distribution of Urban Parks Using Remote Sensing and Geographic Information Systems Techniques
Authors: Hira Jabbar, Tanzeel-Ur Rehman
Abstract:
Urban parks and open spaces play a significant role in improving physical and mental health of the citizens, strengthen the societies and make the cities more attractive places to live and work. As the world’s cities continue to grow, continuing to value green space in cities is vital but is also a challenge, particularly in developing countries where there is pressure for space, resources, and development. Offering equal opportunity of accessibility to parks is one of the important issues of park distribution. The distribution of parks should allow all inhabitants to have close proximity to their residence. Remote sensing and Geographic information systems (GIS) can provide decision makers with enormous opportunities to improve the planning and management of Park facilities. This study exhibits the capability of GIS and RS techniques to provide baseline knowledge about the distribution of parks, level of accessibility and to help in identification of potential areas for such facilities. For this purpose Landsat OLI imagery for year 2016 was acquired from USGS Earth Explorer. Preprocessing models were applied using Erdas Imagine 2014v for the atmospheric correction and NDVI model was developed and applied to quantify the land use/land cover classes including built up, barren land, water, and vegetation. The parks amongst total public green spaces were selected based on their signature in remote sensing image and distribution. Percentages of total green and parks green were calculated for each town of Lahore City and results were then synchronized with the recommended standards. ANGSt model was applied to calculate the accessibility from parks. Service area analysis was performed using Network Analyst tool. Serviceability of these parks has been evaluated by employing statistical indices like service area, service population and park area per capita. Findings of the study may contribute in helping the town planners for understanding the distribution of parks, demands for new parks and potential areas which are deprived of parks. The purpose of present study is to provide necessary information to planners, policy makers and scientific researchers in the process of decision making for the management and improvement of urban parks.Keywords: accessible natural green space standards (ANGSt), geographic information systems (GIS), remote sensing (RS), United States geological survey (USGS)
Procedia PDF Downloads 337400 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya
Authors: Faraj M. Elkhatri
Abstract:
The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss
Procedia PDF Downloads 151399 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal
Authors: Sudikshya Bhandari, Jonathan K. London
Abstract:
Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.Keywords: earthquake, environment, reconstruction, sustainability
Procedia PDF Downloads 114398 Integrating Qualitative and Behavioural Insights to Increase the Take-Up of an Education Savings Program for Low Income Canadians
Authors: Mathieu Audet, Monica Soliman, Emilie Eve Gravel, Rebecca Friesdorf
Abstract:
Access to higher education is critical for reducing social inequalities. The Canada Learning Bond (CLB) is a government savings incentive aimed at increasing higher education access for children of low income families by providing money toward a Registered Education Savings Plan. To better understand the educational and financial decision-making of low income families, Employment Social Development Canada conducted qualitative fieldwork with eligible parents and children, teachers, and community organizations promoting the Bond. Insights from this fieldwork were then used to develop letters to better target the needs and experiences of eligible families. In the present study, we conducted a randomized controlled trial with children ages 12 to 13, the oldest cohort of eligible children, to test the effectiveness of the new letters. Parents or caregivers of 150,088 eligible children were assigned to one of five letter conditions promoting the Bond or to a control condition that did not receive a letter. The letter conditions were: (a) the standard letter from past outreach, (b) a letter presenting the exact amount the child was eligible to receive, enhancing the salience of benefits, (c) a letter with a social norm, (d) a letter with an image emphasizing the feasibility of higher education by presenting the diversity of options (i.e., college, trade schools, apprenticeships) – many participants interviewed viewed that university was unfeasible, and (e) a letter minimizing references to 'saving' (i.e., not framing the Bond explicitly as a savings incentive) – a concept that did not resonate with low income families who felt they could not afford to save. The exact amount was also presented in letters (c) through (e). The letter minimizing references to 'saving' and presenting the exact amount had the highest net take-up rate at 6.6%, compared to 3.5% for the standard letter group. Furthermore, this trial’s BI-informed letters showed the largest impact on take-up so far, with a net take-up of 5.7% compared to 3.0% and 3.9% in the first two trials. This research highlights the value of mixed-method approaches combining qualitative and behavioural insights methods for developing context-sensitive interventions for social programs. By gaining a deeper understanding of the needs and experiences of program users through qualitative fieldwork, and then integrating these insights into behaviourally informed communications, we were able to increase take-up of an education savings program, which may ultimately improve access to higher education in children of low income families.Keywords: access to higher education, behavioral insights, government, innovation, mixed-methods, social programs
Procedia PDF Downloads 122397 The Feasibility of Ratification of the United Nation Convention on Contracts for International Sale of Goods by Islamic Countries, Saudi Arabia as a Case
Authors: Ibrahim M. Alwehaibi
Abstract:
Recently the windows of globalization weirdly open, which increase the trade between the Western countries and Muslim nations. Sales of goods contracts are one of the most common business transaction in the world. This commercial exchange has faced many obstacles. One of the most concerned obstacles is the conflicts between laws. Thus, United Nation created a Convention on Contracts for the International Sale of Goods (CISG). Some of Islamic countries have ratified the CISG, while other Islamic countries have concerns about the feasibility of ratification of the CISG, and many businessmen have a concern of application of the convention. The concerns related to the conflict between CISG and Sharia, and the long debate about the success, ambiguity, and stability of the CISG. Therefore, this research will examine the feasibility of Muslim countries and Muslim businessmen to adopt the CISG by following steps: First, this research will introduce sharia Law (Islamic contracts law) and CISG and provide backgrounds of both laws. Second, this research will compare the provisions of CISG and Sharia and figuring out the conflicts and provide possible solutions for the conflicts. Third, this study will examine the advantages and disadvantages of adopting the CISG and examining the success of the CISG. Fourth, this study will explore the current situation in Islamic countries by taking Saudi Arabia as a case and explore how the application of Sharia law works and the possibility to enforce the CISG and explore the current practice of foreign Sales in Saudi Arabia. The research finds that there are some conflicts between CISG and Sharia Law. The most notable conflicts are interest and uncertainty in considerations. Also, this research finds that it seems that ratification of CISG is not beneficial for Muslim countries because the convention has not reached its goal which is uniformity of laws. Moreover, the CISG has been excluded and ignored by businessmen and some courts. Additionally, this research finds that it could be possible to enforce CISG in Saudi Arabia, provided that no conflict between the enforced provision and Sharia Law. This study is following the competitive and analysis methodologies to reach its findings. The researcher analyzes the provision of CISG and compares them with Sharia rules and finds the conflicts and compatibilities. In fact, CISG has 101 articles, so a comprehensive comparison of all articles in CISG with Sharia is difficult. Thus, in order to deeply analyze all aspects of this issue, this study will exclude some areas of contract which have been discussed by other researchers such as deliver of goods, conformity, and mirror image rules. The comparative section of this study will focus on the most concerned articles that conflict or doubtful of conflict with Sharia, which are interest, uncertainty, statute of limitation, specific performance, and pass of risk.Keywords: Sharia, CISG, Contracts for International Sale of Goods, contracts, sale of goods, Saudi Arabia
Procedia PDF Downloads 149396 Well-Defined Polypeptides: Synthesis and Selective Attachment of Poly(ethylene glycol) Functionalities
Authors: Cristina Lavilla, Andreas Heise
Abstract:
The synthesis of sequence-controlled polymers has received increasing attention in the last years. Well-defined polyacrylates, polyacrylamides and styrene-maleimide copolymers have been synthesized by sequential or kinetic addition of comonomers. However this approach has not yet been introduced to the synthesis of polypeptides, which are in fact polymers developed by nature in a sequence-controlled way. Polypeptides are natural materials that possess the ability to self-assemble into complex and highly ordered structures. Their folding and properties arise from precisely controlled sequences and compositions in their constituent amino acid monomers. So far, solid-phase peptide synthesis is the only technique that allows preparing short peptide sequences with excellent sequence control, but also requires extensive protection/deprotection steps and it is a difficult technique to scale-up. A new strategy towards sequence control in the synthesis of polypeptides is introduced, based on the sequential addition of α-amino acid-N-carboxyanhydrides (NCAs). The living ring-opening process is conducted to full conversion and no purification or deprotection is needed before addition of a new amino acid. The length of every block is predefined by the NCA:initiator ratio in every step. This method yields polypeptides with a specific sequence and controlled molecular weights. A series of polypeptides with varying block sequences have been synthesized with the aim to identify structure-property relationships. All of them are able to adopt secondary structures similar to natural polypeptides, and display properties in the solid state and in solution that are characteristic of the primary structure. By design the prepared polypeptides allow selective modification of individual block sequences, which has been exploited to introduce functionalities in defined positions along the polypeptide chain. Poly(ethylene glycol)(PEG) was the functionality chosen, as it is known to favor hydrophilicity and also yield thermoresponsive materials. After PEGylation, hydrophilicity of the polypeptides is enhanced, and their thermal response in H2O has been studied. Noteworthy differences in the behavior of the polypeptides having different sequences have been found. Circular dichroism measurements confirmed that the α-helical conformation is stable over the examined temperature range (5-90 °C). It is concluded that PEG units are the main responsible of the changes in H-bonding interactions with H2O upon variation of temperature, and the position of these functional units along the backbone is a factor of utmost importance in the resulting properties of the α-helical polypeptides.Keywords: α-amino acid N-carboxyanhydrides, multiblock copolymers, poly(ethylene glycol), polypeptides, ring-opening polymerization, sequence control
Procedia PDF Downloads 199395 Cultures, Differences, and Education in EU: Right to Have Rights against Reality
Authors: Ana Campina, José Caramelo Gomes, Maria Emília Teixeira, Cristina Costa-Lobo
Abstract:
In the pursuit of educational equity within Human Rights and European Fundamental Laws, the reality presents serious problems based on the psychologic, social understanding. Take into account the miscellaneous cultures in the global context and the nowadays numbers of Human mobilities, there are serious problems affecting the societies. This justifies the diagnosed need of a renew pedagogical and social education strategy to achieve the integration positive context preventing violence and discrimination, especially in Education systems. Consequently, it is important to have in mind the respect, acceptance, and integration of special needs students in all study degrees, as it is law but a complex reality. Despite the UN and International Human Rights, European Fundamental Chart, and all EU Treats, as the 28th EU State Member’s fundamental laws forecast the right of Education, the respect, the action and promotion of different cultures and the Education for ‘Difference’ integration – cultures; ideologies, Special Needs Students/Citizens – there are different and severe problems. Firstly, there are questions/contexts/problems not denounced by the lack of investments, political, social or ‘powers’ pressures, so, consequently, the authorities don’t have the action as laws demand and the transgressors haven´t any juridical or judicial punishment. Secondly, and our most important point: Governments, authorities and even victims hide these violations/violence/problems what disable the effective protection and law enforcement. Finally, the official and non-official strategies to get around the duties, break away the laws, failing the victims protection and consequently enable the problems increase dramatically. With this research, we observed that there are international Organizations/regions and States acting without respect to the Education right despite their democratic ideology and the generated external ‘image’ of law-abiding and Human Rights defenders. Nevertheless, it is urgent to develop a consistent Human Rights Education program aiming to protect, promote and implement the Right to be different and be respected by the law, the governments, institutions official and non-official, adapted to the needs in each society. The background of this research is the International and European laws, in accordance with the state’s legal systems. The approaches and the differences of the Education for Human and Fundamental Rights execution in the different EU countries, studying the pedagogy and social inclusion programs/strategies, with particular analysis of the Special Needs students. The results aim to construct a European Education profiling, with the governments and EU interventions need, as well as the panorama of the Special Needs Students effective integration achieving a renewed strategy to promote the respect of the Differences and an Inclusive School life.Keywords: international human rights, culture, differences, European education profiling
Procedia PDF Downloads 189394 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France
Authors: Aiman Mazhar Qureshi, Ahmed Rachid
Abstract:
Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation
Procedia PDF Downloads 147393 Study of the Impact of Synthesis Method and Chemical Composition on Photocatalytic Properties of Cobalt Ferrite Catalysts
Authors: Katerina Zaharieva, Vicente Rives, Martin Tsvetkov, Raquel Trujillano, Boris Kunev, Ivan Mitov, Maria Milanova, Zara Cherkezova-Zheleva
Abstract:
The nanostructured cobalt ferrite-type materials Sample A - Co0.25Fe2.75O4, Sample B - Co0.5Fe2.5O4, and Sample C - CoFe2O4 were prepared by co-precipitation in our previous investigations. The co-precipitated Sample B and Sample C were mechanochemically activated in order to produce Sample D - Co0.5Fe2.5O4 and Sample E- CoFe2O4. The PXRD, Moessbauer and FTIR spectroscopies, specific surface area determination by the BET method, thermal analysis, element chemical analysis and temperature-programmed reduction were used to investigate the prepared nano-sized samples. The changes of the Malachite green dye concentration during reaction of the photocatalytic decolorization using nanostructured cobalt ferrite-type catalysts with different chemical composition are included. The photocatalytic results show that the increase in the degree of incorporation of cobalt ions in the magnetite host structure for co-precipitated cobalt ferrite-type samples results in an increase of the photocatalytic activity: Sample A (4 х10-3 min-1) < Sample B (5 х10-3 min-1) < Sample C (7 х10-3 min-1). Mechanochemically activated photocatalysts showed a higher activity than the co-precipitated ferrite materials: Sample D (16 х10-3 min-1) > Sample E (14 х10-3 min-1) > Sample C (7 х10-3 min-1) > Sample B (5 х10-3 min-1) > Sample A (4 х10-3 min-1). On decreasing the degree of substitution of iron ions by cobalt ones a higher sorption ability of the dye after the dark period for the co-precipitated cobalt ferrite materials was observed: Sample C (72 %) < Sample B (78 %) < Sample A (80 %). Mechanochemically treated ferrite catalysts and co-precipitated Sample B possess similar sorption capacities, Sample D (78 %) ~ Sample E (78 %) ~ Sample B (78 %). The prepared nano-sized cobalt ferrite-type materials demonstrate good photocatalytic and sorption properties. Mechanochemically activated Sample D - Co0.5Fe2.5O4 (16х10-3 min-1) and Sample E-CoFe2O4 (14х10-3 min-1) possess higher photocatalytic activity than that of the most common used UV-light catalyst Degussa P25 (12х10-3 min-1). The dependence of the photo-catalytic activity and sorption properties on the preparation method and different degree of substitution of iron ions by cobalt ions in synthesized cobalt ferrite samples is established. The mechanochemical activation leads to formation of nano-structured cobalt ferrite-type catalysts (Sample D and Sample E) with higher rate constants than those of the ferrite materials (Sample A, Sample B, and Sample C) prepared by the co-precipitation procedure. The increase in the degree of substitution of iron ions by cobalt ones leads to improved photocatalytic properties and lower sorption capacities of the co-precipitated ferrite samples. The good sorption properties between 72 and 80% of the prepared ferrite-type materials show that they could be used as potential cheap absorbents for purification of polluted waters.Keywords: nanodimensional cobalt ferrites, photocatalyst, synthesis, mechanochemical activation
Procedia PDF Downloads 263392 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5
Abstract:
Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil
Procedia PDF Downloads 178391 My Perfect Partner: Creative Methods in Relationship Education
Authors: Janette Porter, Kay Standing
Abstract:
The paper presents our experiences of working in both mainstream and Special Education Needs and Disabilities (SEND) schools in England from 2012-2019, using creative methodologies to deliver and evaluate healthy relationship education. It aims to explore to explore how young people's perceptions of relationships and their "perfect partner" are mediated by factors such as gender, body image, and social media. It will be an interactive session, inviting participants to reflect on their own experiences of relationship education, and to take part in an example of a classroom activity of 'a perfect partner'. Young people aged 16-25 are most at risk of relationship abuse and intimate partner violence. This can be enacted both on the body, through physical and sexual violence, but also emotional and psychological abuse. In England and Wales relationship education became compulsory in schools in September 2020. There is increasing recognition for the need for whole school approaches to prevent gender-based violence, in particular domestic abuse, from happening in the first place and for equipping schools to feel more confident supporting young people affected by gender-based violence. The project used creative methods, including arts, drama, music, poetry, song, and creative writing, to engage participants in sensitive topics related to relationship education. Interactive workshops with pupils aged 11-19 enabled young people to express themselves freely, pupils then used drama to share their knowledge with their peer group. We co-produced material with young people, including an accessible resource pack for use in SEND schools, particularly for children with visual and sensory impairments. The project was evaluated by questionnaires and interviews with pupils. The paper also reflects on the ethical issues involved in the research. After the project, young people had a better understanding of healthy and unhealthy relationships, improved knowledge of the early warning signs of abuse and knew where to go to for help and advice. It found that creative methods are an effective way to engage young people in relationship education and sensitive topics. We argue that age and ability appropriate relationship education should be compulsory across the curriculum and that implementing creative and art-based approaches to address sensitive topics can enhance the effectiveness of relationship education programs in promoting healthy relationships and preventing abuse. The paper provides academic and practitioner perspectives, providing a reflection on our research, looking at practical, methodological, and ethical issues involved in research on Gender Based Violence with young people in a school setting.Keywords: relationship education, healthy relationships, creative methods, young people
Procedia PDF Downloads 56390 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter
Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer
Abstract:
This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised. The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.Keywords: electrostatic precipitators, air quality, particulates emissions, electron microscopy, image j
Procedia PDF Downloads 252389 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis
Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han
Abstract:
Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.Keywords: nanoparticles, catalysis, multicomponent, quinoline
Procedia PDF Downloads 126388 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong
Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong
Abstract:
Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island
Procedia PDF Downloads 72387 Structural Equation Modeling Approach: Modeling the Impact of Social Marketing Programs on Combating Female Genital Mutilation in the Sudanese Society
Authors: Nada Abdelsadig Moahamed Saied
Abstract:
Female Genital Mutilation (FGM) and other similar traditional cultural practices pose a significant problem for Sudanese society. Such actions are severe and seriously detrimental to people's health since they are based on false social perceptions. To address these problems, numerous institutions and organizations were compelled to act rapidly. Female circumcision, or FGM, is one of the riskiest practices. It is referred to as the excision of the genitalia. Any surgeries involving the total or partial removal of the external female genitalia for non-medical reasons fall under this category. The results of FGM can vary depending on the kind and degree of the operation. These can be categorized as short-term, mid-term, or long-term issues. Infections, including the Human, blood, discomfort, and difficulty urinating are the immediate effects. FGM is defined by the World Health Organization (WHO) as practices that purposefully damage or modify female genital organs for non-medical purposes. It often takes place between the ages of one and fifteen. The girl's right to decide on important choices affecting her sexual and reproductive health is violated because the act is usually performed without her consent and frequently against her will. UNICEF, the United Nations International Children's Emergency Fund, aggressively combats the issue of FGM in Sudan. Numerous programs were started by NGOs to stop the practice. To our knowledge, no scientific study has been conducted to evaluate the effects of such social marketing techniques on simulating and comprehending society’s feelings surrounding FGM. This study proposes the development of a structural equation model aiming to determine the impact of awareness programs on people’s intentions to adopt the behavior of abandoning FGM based on theoretical models of behavior change. The model incorporates all the relevant factors that contribute to FGM and possible strategic actions to tackle this problem. The theoretical backdrop for FGM is presented in the next section, which also explains the practice's history, justifications, and potential treatments. The methodology section that follows describes the structural equation model. The proposed model, which compiles all the pertinent elements into a single image, is presented in the fourth part. Finally, conclusions are reached, and suggestions for further research are made.Keywords: social marketing, policy-making, behavioral change, female genital mutilation, culture
Procedia PDF Downloads 73386 Carbon Capture and Storage Using Porous-Based Aerogel Materials
Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar
Abstract:
The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.Keywords: CCS, porous, carbon capture, oil and gas, sustainability
Procedia PDF Downloads 38385 The Threats of Deforestation, Forest Fire and CO2 Emission toward Giam Siak Kecil Bukit Batu Biosphere Reserve in Riau, Indonesia
Authors: Siti Badriyah Rushayati, Resti Meilani, Rachmad Hermawan
Abstract:
A biosphere reserve is developed to create harmony amongst economic development, community development, and environmental protection, through partnership between human and nature. Giam Siak Kecil Bukit Batu Biosphere Reserve (GSKBB BR) in Riau Province, Indonesia, is unique in that it has peat soil dominating the area, many springs essential for human livelihood, high biodiversity. Furthermore, it is the only biosphere reserve covering privately managed production forest areas. The annual occurrences of deforestation and forest fire pose a threat toward such unique biosphere reserve. Forest fire produced smokes that along with mass airflow reached neighboring countries, particularly Singapore and Malaysia. In this research, we aimed at analyzing the threat of deforestation and forest fire, and the potential of CO2 emission at GSKBB BR. We used Landsat image, arcView software, and ERDAS IMAGINE 8.5 Software to conduct spatial analysis of land cover and land use changes, calculated CO2 emission based on emission potential from each land cover and land use type, and exercised simple linear regression to demonstrate the relation between CO2 emission potential and deforestation. The result showed that, beside in the buffer zone and transition area, deforestation also occurred in the core area. Spatial analysis of land cover and land use changes from years 2010, 2012, and 2014 revealed that there were changes of land cover and land use from natural forest and industrial plantation forest to other land use types, such as garden, mixed garden, settlement, paddy fields, burnt areas, and dry agricultural land. Deforestation in core area, particularly at the Giam Siak Kecil Wildlife Reserve and Bukit Batu Wildlife Reserve, occurred in the form of changes from natural forest in to garden, mixed garden, shrubs, swamp shrubs, dry agricultural land, open area, and burnt area. In the buffer zone and transition area, changes also happened, what once swamp forest changed into garden, mixed garden, open area, shrubs, swamp shrubs, and dry agricultural land. Spatial analysis on land cover and land use changes indicated that deforestation rate in the biosphere reserve from 2010 to 2014 had reached 16 119 ha/year. Beside deforestation, threat toward the biosphere reserve area also came from forest fire. The occurrence of forest fire in 2014 had burned 101 723 ha of the area, in which 9 355 ha of core area, and 92 368 ha of buffer zone and transition area. Deforestation and forest fire had increased CO2 emission as much as 24 903 855 ton/year.Keywords: biosphere reserve, CO2 emission, deforestation, forest fire
Procedia PDF Downloads 486384 Knowledge Transfer through Entrepreneurship: From Research at the University to the Consolidation of a Spin-off Company
Authors: Milica Lilic, Marina Rosales Martínez
Abstract:
Academic research cannot be oblivious to social problems and needs, so projects that have the capacity for transformation and impact should have the opportunity to go beyond the University circles and bring benefit to society. Apart from patents and R&D research contracts, this opportunity can be achieved through entrepreneurship as one of the most direct tools to turn knowledge into a tangible product. Thus, as an example of good practices, it is intended to analyze the case of an institutional entrepreneurship program carried out at the University of Seville, aimed at researchers interested in assessing the business opportunity of their research and expanding their knowledge on procedures for the commercialization of technologies used at academic projects. The program is based on three pillars: training, teamwork sessions and networking. The training includes aspects such as product-client fit, technical-scientific and economic-financial feasibility of a spin-off, institutional organization and decision making, public and private fundraising, and making the spin-off visible in the business world (social networks, key contacts, corporate image and ethical principles). On the other hand, the teamwork sessions are guided by a mentor and aimed at identifying research results with potential, clarifying financial needs and procedures to obtain the necessary resources for the consolidation of the spin-off. This part of the program is considered to be crucial in order for the participants to convert their academic findings into a business model. Finally, the networking part is oriented to workshops about the digital transformation of a project, the accurate communication of the product or service a spin-off offers to society and the development of transferable skills necessary for managing a business. This blended program results in the final stage where each team, through an elevator pitch format, presents their research turned into a business model to an experienced jury. The awarded teams get a starting capital for their enterprise and enjoy the opportunity of formally consolidating their spin-off company at the University. Studying the results of the program, it has been shown that many researchers have basic or no knowledge of entrepreneurship skills and different ways to turn their research results into a business model with a direct impact on society. Therefore, the described program has been used as an example to highlight the importance of knowledge transfer at the University and the role that this institution should have in providing the tools to promote entrepreneurship within it. Keeping in mind that the University is defined by three main activities (teaching, research and knowledge transfer), it is safe to conclude that the latter, and the entrepreneurship as an expression of it, is crucial in order for the other two to comply with their purpose.Keywords: good practice, knowledge transfer, a spin-off company, university
Procedia PDF Downloads 145383 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test
Procedia PDF Downloads 215382 Strategies for Arctic Greenhouse Farming: An Energy and Technology Survey of Greenhouse Farming in the North of Sweden
Authors: William Sigvardsson, Christoffer Alenius, Jenny Lindblom, Andreas Johansson, Marcus Sandberg
Abstract:
This article covers a study focusing on a subarctic greenhouse located in Nikkala, Sweden. Through a visit and the creation of a CFD model, the study investigates the differences in energy demand with high pressure sodium (HPS) lights and light emitting diode (LED) lights in combination with an air-carried and water-carried heating system accordingly. Through an IDA ICE model, the impact of insulating the parts of the greenhouse without active cultivation was also investigated. This, with the purpose of comparing the current system in the greenhouse to state-of-the-art alternatives and evaluating if an investment in either a water-carried heating system in combination with LED lights and insulating the non-cultivating parts of the greenhouse could be considered profitable. Operating a greenhouse in the harsh subarctic climate found in the northern parts of Sweden is not an easy task and especially if the operation is year-round. With an average temperature of under -5 °C from November through January, efficient growing techniques are a must to ensure a profitable business. Today the most crucial parts of a greenhouse are the heating system, lighting system, dehumidifying measures, as well as thermal screen, and the impact of a poorly designed system in a sub-arctic could be devastating as the margins are slim. The greenhouse studied uses a pellet burner to power their air- carried heating system which is used. The simulations found the resulting savings amounted to just under 14 800 SEK monthly or 18 % of the total cost of energy by implementing the water-carrying heating system in combination with the LED lamps. Given this, a payback period of 3-9 years could be expected given different scenarios, including specific time periods, financial aids, and the resale price of the current system. The insulation of the non-cultivating parts of the greenhouse was found to have possible savings of 25 300 SEK annually or 46 % of the current heat demand resulting in a payback period of just over 1-2 years. Given the possible energy savings, a reduction in emitted CO2 equivalents of almost 1,9 tonnes could be achieved annually. It was concluded that relatively inexpensive investments in modern greenhouse equipment could make a significant contribution to reducing the energy consumption of the greenhouse resulting in a more competitive business environment for sub-arctic greenhouse owners. New parts of the greenhouse should be built with the water-carried heating system in combination with state-of-the-art LED lights, and all parts which are not housing active cultivation should be insulated. If the greenhouse in Nikkala is eligible for financial aid or finds a resale value in the current system, an investment should be made in a new water-carried heating system in combination with LED lights.Keywords: energy efficiency, sub-arctic greenhouses, energy measures, greenhouse climate control, greenhouse technology, CFD
Procedia PDF Downloads 74381 Customized Temperature Sensors for Sustainable Home Appliances
Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy
Abstract:
Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency
Procedia PDF Downloads 71380 Extrudable Foamed Concrete: General Benefits in Prefabrication and Comparison in Terms of Fresh Properties and Compressive Strength with Classic Foamed Concrete
Authors: D. Falliano, G. Ricciardi, E. Gugliandolo
Abstract:
Foamed concrete belongs to the category of lightweight concrete. It is characterized by a density which is generally ranging from 200 to 2000 kg/m³ and typically comprises cement, water, preformed foam, fine sand and eventually fine particles such as fly ash or silica fume. The foam component mixed with the cement paste give rise to the development of a system of air-voids in the cementitious matrix. The peculiar characteristics of foamed concrete elements are summarized in the following aspects: 1) lightness which allows reducing the dimensions of the resisting frame structure and is advantageous in the scope of refurbishment or seismic retrofitting in seismically vulnerable areas; 2) thermal insulating properties, especially in the case of low densities; 3) the good resistance against fire as compared to ordinary concrete; 4) the improved workability; 5) cost-effectiveness due to the usage of rather simple constituting elements that are easily available locally. Classic foamed concrete cannot be extruded, as the dimensional stability is not permitted in the green state and this severely limits the possibility of industrializing them through a simple and cost-effective process, characterized by flexibility and high production capacity. In fact, viscosity enhancing agents (VEA) used to extrude traditional concrete, in the case of foamed concrete cause the collapsing of air bubbles, so that it is impossible to extrude a lightweight product. These requirements have suggested the study of a particular additive that modifies the rheology of foamed concrete fresh paste by increasing cohesion and viscosity and, at the same time, stabilizes the bubbles into the cementitious matrix, in order to allow the dimensional stability in the green state and, consequently, the extrusion of a lightweight product. There are plans to submit the additive’s formulation to patent. In addition to the general benefits of using the extrusion process, extrudable foamed concrete allow other limits to be exceeded: elimination of formworks, expanded application spectrum, due to the possibility of extrusion in a range varying between 200 and 2000 kg/m³, which allows the prefabrication of both structural and non-structural constructive elements. Besides, this contribution aims to present the significant differences regarding extrudable and classic foamed concrete fresh properties in terms of slump. Plastic air content, plastic density, hardened density and compressive strength have been also evaluated. The outcomes show that there are no substantial differences between extrudable and classic foamed concrete compression resistances.Keywords: compressive strength, extrusion, foamed concrete, fresh properties, plastic air content, slump.
Procedia PDF Downloads 173