Search results for: Gagne’s learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22265

Search results for: Gagne’s learning model

16535 Articulating Competencies Confidently: Employability in the Curriculum

Authors: Chris Procter

Abstract:

There is a significant debate on the role of University education in developing or teaching employability skills. Should higher education attempt to do this? Is it the best place? Is it able to do so? Different views abound, but the question is wrongly posed – one of the reasons that previous employability initiatives foundered (e.g., in the UK). Our role is less to teach than to guide, less to develop and more to help articulate: “the mind is not a vessel to be filled, but a fire to be lit” (Plutarch). This paper then addresses how this can be achieved taking into account criticism of employability initiatives as well as relevant learning theory. It discusses the experience of a large module which involved students being assessed on all stages of application for a live job description together with reflection on their professional development. The assessment itself adopted a Patchwork Text approach as a vehicle for learning. Students were guided to evaluate their strengths and areas to be developed, articulate their competencies, and reflect upon their development, moving on to new Thresholds of Employability. The paper uses the student voices to express the progress they made. It concludes that employability can and should be an effective part of the higher education curriculum when designed to encourage students to confidently articulate their competencies and take charge of their own professional development.

Keywords: competencies, employability, patchwork assessment, threshold concepts

Procedia PDF Downloads 223
16534 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface

Authors: Kun Huang

Abstract:

This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.

Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility

Procedia PDF Downloads 272
16533 Spelling Errors in Persian Children with Developmental Dyslexia

Authors: Mohammad Haghighi, Amineh Akhondi, Leila Jahangard, Mohammad Ahmadpanah, Masoud Ansari

Abstract:

Background: According to the recent estimation, approximately 4%-12% percent of Iranians have difficulty in learning to read and spell possibly as a result of developmental dyslexia. The study was planned to investigate spelling error patterns among Persian children with developmental dyslexia and compare that with the errors exhibited by control groups Participants: 90 students participated in this study. 30 students from Grade level five, diagnosed as dyslexics by professionals, 30 normal 5th Grade readers and 30 younger normal readers. There were 15 boys and 15 girls in each of the groups. Qualitative and quantitative methods for analysis of errors were used. Results and conclusion: results of this study indicate similar spelling error profiles among dyslexics and the reading level matched groups, and these profiles were different from age-matched group. However, performances of dyslexic group and reading level matched group were different and inconsistent in some cases.

Keywords: spelling, error types, developmental dyslexia, Persian, writing system, learning disabilities, processing

Procedia PDF Downloads 431
16532 A Filtering Algorithm for a Nonlinear State-Space Model

Authors: Abdullah Eqal Al Mazrooei

Abstract:

Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.

Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model

Procedia PDF Downloads 380
16531 When Your Change The Business Model ~ You Change The World

Authors: H. E. Amb. Terry Earthwind Nichols

Abstract:

Over the years Ambassador Nichols observed that successful companies all have one thing in common - belief in people. His observations of people in many companies, industries, and countries have also concluded one thing - groups of achievers far exceed the expectations and timelines of their superiors. His experience with achieving this has brought forth a model for the 21st century that will not only exceed expectations of companies, but it will also set visions for the future of business globally. It is time for real discussion around the future of work and the business model that will set the example for the world. Methodologies: In-person observations over 40 years – Ambassador Nichols present during the observations. Audio-visual observations – TV, Cinema, social media (YouTube, etc.), various news outlet Reading the autobiography of some of successful leaders over the last 75 years that lead their companies from a distinct perspective your people are your commodity. Major findings: People who believe in the leader’s vision for the company so much so that they remain excited about the future of the company and want to do anything in their power to ethically achieve that vision. People who are achieving regularly in groups, division, companies, etcetera: Live more healthfully lowering both sick time off and on-the-job accidents. Cannot wait to physically get to work as much as they can to feed off the high energy present in these companies. They are fully respected and supported resulting in near zero attrition. Simply put – they do not “Burn Out”. Conclusion: To the author’s best knowledge, 20th century practices in business are no longer valid and people are not going to work in those environments any longer. The average worker in the post-covid world is better educated than 50 years ago and most importantly, they have real-time information about any subject and can stream injustices as they happen. The Consortium Model is just the model for the evolution of both humankind and business in the 21st century.

Keywords: business model, future of work, people, paradigm shift, business management

Procedia PDF Downloads 85
16530 Impact of Green Bonds Issuance on Stock Prices: An Event Study on Respective Indian Companies

Authors: S. L. Tulasi Devi, Shivam Azad

Abstract:

The primary objective of this study is to analyze the impact of green bond issuance on the stock prices of respective Indian companies. An event study methodology has been employed to study the effect of green bond issuance. For in-depth study and analysis, this paper used different window frames, including 15-15 days, 10-10 days, 7-7days, 6-6 days, and 5-5 days. Further, for better clarity, this paper also used an uneven window period of 7-5 days. The period of study covered all the companies which issued green bonds during the period of 2017-2022; Adani Green Energy, State Bank of India, Power Finance Corporation, Jain Irrigation, and Rural Electrification Corporation, except Indian Renewable Energy Development Agency and Indian Railway Finance Corporation, because of data unavailability. The paper used all three event study methods as discussed in earlier literature; 1) constant return model, 2) market-adjusted model, and 3) capital asset pricing model. For the fruitful comparison between results, the study considered cumulative average return (CAR) and buy and hold average return (BHAR) methodology. For checking the statistical significance, a two-tailed t-statistic has been used. All the statistical calculations have been performed in Microsoft Excel 2016. The study found that all other companies have shown positive returns on the event day except for the State Bank of India. The results demonstrated that constant return model outperformed compared to the market-adjusted model and CAPM. The p-value derived from all the methods has shown an almost insignificant impact of the issuance of green bonds on the stock prices of respective companies. The overall analysis states that there’s not much improvement in the market efficiency of the Indian Stock Markets.

Keywords: green bonds, event study methodology, constant return model, market-adjusted model, CAPM

Procedia PDF Downloads 101
16529 E-Commerce in Jordan: Conceptual Model

Authors: Muneer Abbad

Abstract:

This study comes with a comprehensive analysis of specific factors affecting the adoption of e-commerce in Jordan. From the theoretical perspective, this study will make a contribution to the e-commerce by providing insights on the factors that seem to affect e-commerce’s adoption. The current study will provide managers information about the planning and formulating appropriate strategies to ensure rapid adoption of e-commerce in Jordan. It will offer marketing implications, conclusions, and suggestions for future research.

Keywords: e-commerce, Jordan, adoption, conceptual model

Procedia PDF Downloads 458
16528 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model

Authors: F. J. Ma, A. K. H. Kwan

Abstract:

Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.

Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect

Procedia PDF Downloads 422
16527 Impact of an Onboard Fire for the Evacuation of a Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study highlights the impact of an onboard fire for the evacuation of a rolling stock. Two fires models are achieved. The first one is a zone model realized with the CFAST software. Then, this fire is imported in a building EXODUS model in order to determine the evacuation time with effects of fire effluents (temperature, smoke opacity, smoke toxicity) on passengers. The second fire is achieved with Fire Dynamics Simulator software. The fire defined is directly imported in the FDS+Evac model which will permit to determine the evacuation time and effects of fire effluents on passengers. These effects will be compared with tenability criteria defined in some standards in order to see if the situation is acceptable. Different power of fire will be underlined to see from what power source the hazard become unacceptable.

Keywords: fire safety engineering, numerical tools, rolling stock, evacuation

Procedia PDF Downloads 204
16526 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis

Authors: S. K. Ashiquer Rahman

Abstract:

the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.

Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model

Procedia PDF Downloads 87
16525 Social Enterprise Concept in Sustaining Agro-Industry Development in Indonesia: Case Study of Yourgood Social Business

Authors: Koko Iwan Agus Kurniawan, Dwi Purnomo, Anas Bunyamin, Arif Rahman Jaya

Abstract:

Fruters model is a concept of technopreneurship-based on empowerment, in which technology research results were designed to create high value-added products and implemented as a locomotive of collaborative empowerment; thereby, the impact was widely spread. This model still needs to be inventoried and validated concerning the influenced variables in the business growth process. Model validation accompanied by mapping was required to be applicable to Small Medium Enterprises (SMEs) agro-industry based on sustainable social business and existing real cases. This research explained the empowerment model of Yourgood, an SME, which emphasized on empowering the farmers/ breeders in farmers in rural areas, Cipageran, Cimahi, to housewives in urban areas, Bandung, West Java, Indonesia. This research reviewed some works of literature discussing the agro-industrial development associated with the empowerment and social business process and gained a unique business model picture with the social business platform as well. Through the mapped business model, there were several advantages such as technology acquisition, independence, capital generation, good investment growth, strengthening of collaboration, and improvement of social impacts that can be replicated on other businesses. This research used analytical-descriptive research method consisting of qualitative analysis with design thinking approach and that of quantitative with the AHP (Analytical Hierarchy Process). Based on the results, the development of the enterprise’s process was highly affected by supplying farmers with the score of 0.248 out of 1, being the most valuable for the existence of the enterprise. It was followed by university (0.178), supplying farmers (0.153), business actors (0.128), government (0.100), distributor (0.092), techno-preneurship laboratory (0.069), banking (0.033), and Non-Government Organization (NGO) (0.031).

Keywords: agro-industry, small medium enterprises, empowerment, design thinking, AHP, business model canvas, social business

Procedia PDF Downloads 173
16524 Endocardial Ultrasound Segmentation using Level Set method

Authors: Daoudi Abdelaziz, Mahmoudi Saïd, Chikh Mohamed Amine

Abstract:

This paper presents a fully automatic segmentation method of the left ventricle at End Systolic (ES) and End Diastolic (ED) in the ultrasound images by means of an implicit deformable model (level set) based on Geodesic Active Contour model. A pre-processing Gaussian smoothing stage is applied to the image, which is essential for a good segmentation. Before the segmentation phase, we locate automatically the area of the left ventricle by using a detection approach based on the Hough Transform method. Consequently, the result obtained is used to automate the initialization of the level set model. This initial curve (zero level set) deforms to search the Endocardial border in the image. On the other hand, quantitative evaluation was performed on a data set composed of 15 subjects with a comparison to ground truth (manual segmentation).

Keywords: level set method, transform Hough, Gaussian smoothing, left ventricle, ultrasound images.

Procedia PDF Downloads 468
16523 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil

Authors: William Fuentes, Melany Gil

Abstract:

Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.

Keywords: offshore wind turbine, monopile, ISA, hypoplasticity

Procedia PDF Downloads 251
16522 Teacher’s Perception of Dalcroze Method Course as Teacher’s Enhancement Course: A Case Study in Hong Kong

Authors: Ka Lei Au

Abstract:

The Dalcroze method has been emerging in music classrooms, and music teachers are encouraged to integrate music and movement in their teaching. Music programs in colleges in Hong Kong have been introducing method courses such as Orff and Dalcroze method in music teaching as teacher’s education program. Since the targeted students of the course are music teachers who are making the decision of what approach to use in their classroom, their perception is significantly valued to identify how this approach is applicable in their teaching in regards to the teaching and learning culture and environment. This qualitative study aims to explore how the Dalcroze method as a teacher’s education course is perceived by music teachers from three aspects: 1) application in music teaching, 2) self-enhancement, 3) expectation. Through the lens of music teachers, data were collected from 30 music teachers who are taking the Dalcroze method course in music teaching in Hong Kong by the survey. The findings reveal the value and their intention of the Dalcroze method in Hong Kong. It also provides a significant reference for better development of such courses in the future in adaption to the culture, teaching and learning environment and teacher’s, student’s and parent’s perception of this approach.

Keywords: Dalcroze method, music teaching, perception, self-enhancement, teacher’s education

Procedia PDF Downloads 410
16521 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies

Authors: Abeer S. Elsherbiny, Ali H. Gemeay

Abstract:

In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.

Keywords: adsorption, graphene oxide, kinetics, malachite green

Procedia PDF Downloads 418
16520 Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction

Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan

Abstract:

The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.

Keywords: cognitive load theory, instructional design, physical product interactions, usability design

Procedia PDF Downloads 540
16519 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 385
16518 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 363
16517 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 254
16516 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach

Authors: Ravi Patel, Krishna K. Krishnan

Abstract:

In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.

Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS

Procedia PDF Downloads 176
16515 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 313
16514 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements

Authors: K. Sandjak, B. Tiliouine

Abstract:

This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.

Keywords: 3-D numerical investigation, asphalt pavements, dual and wide base tires, Infinite elements

Procedia PDF Downloads 217
16513 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective

Authors: Hoa Pham

Abstract:

The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.

Keywords: codeswitching, L1 use, L2 teaching, learners’ perception

Procedia PDF Downloads 330
16512 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 136
16511 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm

Procedia PDF Downloads 339
16510 Stress Evaluation at Lower Extremity during Walking with Unstable Shoe

Authors: Sangbaek Park, Seungju Lee, Soo-Won Chae

Abstract:

Unstable shoes are known to strengthen lower extremity muscles and improve gait ability and to change the user’s gait pattern. The change in gait pattern affects human body enormously because the walking is repetitive and steady locomotion in daily life. It is possible to estimate the joint motion including joint moment, force and inertia effect using kinematic and kinetic analysis. However, the change of internal stress at the articular cartilage has not been possible to estimate. The purpose of this research is to evaluate the internal stress of human body during gait with unstable shoes. In this study, FE analysis was combined with motion capture experiment to obtain the boundary condition and loading condition during walking. Motion capture experiments were performed with a participant during walking with normal shoes and with unstable shoes. Inverse kinematics and inverse kinetic analysis was performed with OpenSim. The joint angle and muscle forces were estimated as results of inverse kinematics and kinetics analysis. A detailed finite element (FE) lower extremity model was constructed. The joint coordinate system was added to the FE model and the joint coordinate system was coincided with OpenSim model’s coordinate system. Finally, the joint angles at each phase of gait were used to transform the FE model’s posture according to actual posture from motion capture. The FE model was transformed into the postures of three major phases (1st peak of ground reaction force, mid stance and 2nd peak of ground reaction force). The direction and magnitude of muscle force were estimated by OpenSim and were applied to the FE model’s attachment point of each muscle. Then FE analysis was performed to compare the stress at knee cartilage during gait with normal shoes and unstable shoes.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 327
16509 A Methodological Approach to Development of Mental Script for Mental Practice of Micro Suturing

Authors: Vaikunthan Rajaratnam

Abstract:

Intro: Motor imagery (MI) and mental practice (MP) can be an alternative to acquire mastery of surgical skills. One component of using this technique is the use of a mental script. The aim of this study was to design and develop a mental script for basic micro suturing training for skill acquisition using a low-fidelity rubber glove model and to describe the detailed methodology for this process. Methods: This study was based on a design and development research framework. The mental script was developed with 5 expert surgeons performing a cognitive walkthrough of the repair of a vertical opening in a rubber glove model using 8/0 nylon. This was followed by a hierarchal task analysis. A draft script was created, and face and content validity assessed with a checking-back process. The final script was validated with the recruitment of 28 participants, assessed using the Mental Imagery Questionnaire (MIQ). Results: The creation of the mental script is detailed in the full text. After assessment by the expert panel, the mental script had good face and content validity. The average overall MIQ score was 5.2 ± 1.1, demonstrating the validity of generating mental imagery from the mental script developed in this study for micro suturing in the rubber glove model. Conclusion: The methodological approach described in this study is based on an instructional design framework to teach surgical skills. This MP model is inexpensive and easily accessible, addressing the challenge of reduced opportunities to practice surgical skills. However, while motor skills are important, other non-technical expertise required by the surgeon is not addressed with this model. Thus, this model should act a surgical training augment, but not replace it.

Keywords: mental script, motor imagery, cognitive walkthrough, verbal protocol analysis, hierarchical task analysis

Procedia PDF Downloads 107
16508 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework

Authors: Robert Pocklington

Abstract:

Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.

Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language

Procedia PDF Downloads 111
16507 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 77
16506 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 113