Search results for: tsunami force reduction
6472 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe
Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim
Abstract:
Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.Keywords: UWS (Urea-Water-Solution), selective catalytic reduction (SCR), evaporation, thermolysis, injection
Procedia PDF Downloads 3976471 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method
Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko
Abstract:
The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion
Procedia PDF Downloads 2926470 Development of Hydrodynamic Drag Calculation and Cavity Shape Generation for Supercavitating Torpedoes
Authors: Sertac Arslan, Sezer Kefeli
Abstract:
In this paper, firstly supercavitating phenomenon and supercavity shape design parameters are explained and then drag force calculation methods of high speed supercavitating torpedoes are investigated with numerical techniques and verified with empirical studies. In order to reach huge speeds such as 200, 300 knots for underwater vehicles, hydrodynamic hull drag force which is proportional to density of water (ρ) and square of speed should be reduced. Conventional heavy weight torpedoes could reach up to ~50 knots by classic underwater hydrodynamic techniques. However, to exceed 50 knots and reach about 200 knots speeds, hydrodynamic viscous forces must be reduced or eliminated completely. This requirement revives supercavitation phenomena that could be implemented to conventional torpedoes. Supercavitation is the use of cavitation effects to create a gas bubble, allowing the torpedo to move at huge speed through the water by being fully developed cavitation bubble. When the torpedo moves in a cavitation envelope due to cavitator in nose section and solid fuel rocket engine in rear section, this kind of torpedoes could be entitled as Supercavitating Torpedoes. There are two types of cavitation; first one is natural cavitation, and second one is ventilated cavitation. In this study, disk cavitator is modeled with natural cavitation and supercavitation phenomenon parameters are studied. Moreover, drag force calculation is performed for disk shape cavitator with numerical techniques and compared via empirical studies. Drag forces are calculated with computational fluid dynamics methods and different empirical methods. Numerical calculation method is developed by comparing with empirical results. In verification study cavitation number (σ), drag coefficient (CD) and drag force (D), cavity wall velocity (UKeywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavity flows
Procedia PDF Downloads 1886469 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.Keywords: alkaline fuel cell, graphene, metal-free catalyst, paraphenylen diamine
Procedia PDF Downloads 4796468 Impact of Social Media in Shaping Perceptions on Filipino Muslim Identity
Authors: Anna Rhodora A. Solar, Jan Emil N. Langomez
Abstract:
Social Media plays a crucial role in influencing Philippine public opinion with regard to a variety of socio-political issues. This became evident in the massacre of 44 members of the Special Action Force (SAF 44) tasked by the Philippine government to capture one of the US Federal Bureau of Investigation’s most wanted terrorists. The incident was said to be perpetrated by members of the Moro Islamic Liberation Front and the Bangsamoro Islamic Freedom Fighters. Part of the online discourse within Philippine cyberspace sparked intense debates on Filipino Muslim identity, with several Facebook viral posts linking Islam as a factor to the tragic event. Facebook is considered to be the most popular social media platform in the Philippines. As such, this begs the question of the extent to which social media, specifically Facebook, shape the perceptions of Filipinos on Filipino Muslims. This study utilizes Habermas’ theory of communicative action as it offers an explanation on how public sphere such as social media could be a network for communicating information and points of view through free and open dialogue among equal citizens to come to an understanding or common perception. However, the paper argues that communicative action which is aimed at reaching understanding free from force, and strategic action which is aimed at convincing someone through argumentation may not necessarily be mutually exclusive since reaching an understanding can also be considered as a result of convincing someone through argumentation. Moreover, actors may clash one another in their ideas before reaching common understanding, hence the presence of force. Utilizing content analysis on the Facebook posts with Islamic component that went viral after the massacre of the SAF 44, this paper argues that framing the image of Filipino Muslims through Facebook reflects both communicative and strategic actions. Moreover, comment threads on viral posts manifest force albeit implicit.Keywords: communication, Muslim, Philippines, social media
Procedia PDF Downloads 4046467 Numerical Modelling of Prestressed Geogrid Reinforced Soil System
Authors: Soukat Kumar Das
Abstract:
Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil.Keywords: bearing, geogrid, prestressed, reinforced
Procedia PDF Downloads 4036466 Aerodynamics of Nature Inspired Turbine Blade Using Computational Simulation
Authors: Seung Ki Lee, Richard Kyung
Abstract:
In the airfoil analysis, as the camber is greater, the minimal angle of attack causing the stall and maximum lift force increases. The shape of the turbine blades is similar to the shape of the wings of planes. After major wars, many remarkable blade shapes are made through researches about optimal blade shape. The blade shapes developed by National Advisory Committee for Aeronautics, NACA, is well known. In this paper, using computational and numerical analysis, the NACA airfoils are analyzed. This research shows that the blades vary with their thickness, which thinner blades are expected to be better. There is no significant difference of coefficient of lift due to the difference in thickness, but the coefficient of drag increases as the thickness increases.Keywords: blades, drag force, national advisory committee for aeronautics airfoils, turbine
Procedia PDF Downloads 2266465 Importance of Health and Social Capital to Employment Status of Indigenous Peoples in Canada
Authors: Belayet Hossain, Laura Lamb
Abstract:
The study investigates the importance of health and social capital in determining the labour force status of Canada’s Indigenous population using data from 2006 Aboriginal Peoples Survey. An instrumental variable ordered probit model has been specified and estimated. The study finds that health status and social capital are important in determining Indigenous peoples’ employment status along with other factors. The results of the study imply that human resource development initiatives of Indigenous Peoples need to be broadened by including health status and social capital. Poor health and low degree of inclusion of the Indigenous Peoples need to be addressed in order to improve employment status of Canada’s Indigenous Peoples.Keywords: labour force, human capital, social capital, aboriginal people, Canada
Procedia PDF Downloads 3006464 Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System
Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim, In Jae Song
Abstract:
The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer.Keywords: pressure drop, selective catalytic reduction, static mixer, turbulent mixing, uniformity index
Procedia PDF Downloads 9376463 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation
Procedia PDF Downloads 3546462 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values
Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec
Abstract:
A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods
Procedia PDF Downloads 2976461 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture
Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić
Abstract:
Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration
Procedia PDF Downloads 4336460 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation
Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi
Abstract:
For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)
Procedia PDF Downloads 2626459 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip
Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar
Abstract:
Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation
Procedia PDF Downloads 1866458 Mitigating Climate Change: Cross-Country Variation in Policy Ambition
Authors: Mohammad Aynal Haque
Abstract:
Under the international cooperation — Paris Agreement — countries outline their self-determined policy ambition for emissions reduction in their Nationally Determined Contributions (NDCs) as a key to addressing climate change globally. Although practically all countries commit themselves to reach the Paris landmark (below 20 C) globally, some act as climate leaders, others behave as followers, and others turn out to be climate laggards. As a result, there is a substantial variation in ‘emissions reduction targets’ across countries. Thus, a question emerges: What explains this variation? Or why do some countries opt for higher while others opt for lower ‘emissions reduction targets toward global mitigation efforts? Conceptualizing the ‘emissions reduction targets by 2030’ outlined in NDCs by each country as the climate policy ambition (CPA), this paper explores how certain national political, economic, environmental, and external factors play vital roles in determining climate policy ambition. Based on the cross-country regression analysis among 168 countries, this study finds that democracy, vulnerability to climate change effects, and foreign direct investment have substantial effects on CPA. The paper also finds that resource capacity has a minimal negative effect on CPA across developed countries.Keywords: climate change, Paris agreement, international cooperation, political economy, environmental politics, NDCs
Procedia PDF Downloads 756457 Biodegradation Potential of Selected Micromycetes Against Dyeing Unit Effluents of Sapphire Industry, Raiwind Road Lahore
Authors: Samina Sarwar, Hajra Khalil
Abstract:
Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation
Procedia PDF Downloads 796456 Biodegradation Potential of Selected Micromycetes against Dyeing Unit Effluents of Sapphire Industry in Raiwind Road Lahore
Authors: Samina Sarwar, Hajra Khalil
Abstract:
Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation
Procedia PDF Downloads 956455 Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines
Authors: Reza Dezvareh
Abstract:
The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response.Keywords: offshore wind turbine, wind turbulence, structural vibration, aero-hydro dynamic
Procedia PDF Downloads 2116454 A Numerical Study of Seismic Effects on Slope Stability Using Node-Based Smooth Finite Element Method
Authors: H. C. Nguyen
Abstract:
This contribution considers seismic effects on the stability of slope and footing resting on a slope. The seismic force is simply treated as static inertial force through the values of acceleration factor. All domains are assumed to be plasticity deformations approximated using node-based smoothed finite element method (NS-FEM). The failure mechanism and safety factor were then explored using numerical procedure based on upper bound approach in which optimization problem was formed as second order cone programming (SOCP). The data obtained confirm that upper bound procedure using NS-FEM and SOCP can give stable and rapid convergence results of seismic stability factors.Keywords: upper bound analysis, safety factor, slope stability, footing resting on slope
Procedia PDF Downloads 1176453 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow
Authors: Ruquan You, Haiwang Li, Zhi Tao
Abstract:
A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution
Procedia PDF Downloads 1826452 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation
Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna
Abstract:
As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness
Procedia PDF Downloads 3596451 Dependence of Shaft Stiffness on the Crack Location
Authors: H. M. Mobarak, Helen Wu, Chunhui Yang
Abstract:
In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L.Keywords: cracked shaft, crack location, shaft stiffness, unbalanced force
Procedia PDF Downloads 3086450 Traditional Practices and Indigenous Knowledge for Sustainable Food Waste Reduction: A Lesson from Africa
Authors: Gabriel Sunday Ayayia
Abstract:
Food waste has reached alarming levels worldwide, contributing to food insecurity, resource depletion, and environmental degradation. While numerous strategies exist to mitigate this issue, the role of traditional practices and indigenous knowledge remains underexplored. There is a need to investigate how these age-old practices can contribute to sustainable food waste reduction, particularly in the African context. This study explores the potential of traditional practices and indigenous knowledge in Africa to address this challenge sustainably. The study examines traditional African food management practices and indigenous knowledge related to food preservation and utilization; assess the impact of traditional practices on reducing food waste and its broader implications for sustainable development, and identify key factors influencing the continued use and effectiveness of traditional practices in contemporary African societies. Thus, the study argues that traditional practices and indigenous knowledge in Africa offer valuable insights and strategies for sustainable food waste reduction that can be adapted and integrated into global initiatives This research will employ a mixed-methods approach, combining qualitative and quantitative research techniques. Data collection will involve in-depth interviews, surveys, and participant observations in selected African communities. Moreover, a comprehensive review of literature on traditional food management practices and their impact on food waste reduction will be conducted. The significance of this study lies in its potential to bridge the gap between traditional knowledge and modern sustainability efforts. By uncovering the value of traditional practices in reducing food waste, this research can inform policies, interventions, and awareness campaigns aimed at achieving sustainable food systems worldwide.Keywords: traditional practices, indigenous knowledge, food waste reduction, sustainability
Procedia PDF Downloads 786449 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling
Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky
Abstract:
Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.Keywords: nano-particles, formation damage, permeability, fines migration
Procedia PDF Downloads 6236448 Environmental Potentials within the Production of Asphalt Mixtures
Authors: Florian Gschösser, Walter Purrer
Abstract:
The paper shows examples for the (environmental) optimization of production processes for asphalt mixtures applied for typical road pavements in Austria and Switzerland. The conducted “from-cradle-to-gate” LCA firstly analyzes the production one cubic meter of asphalt and secondly all material production processes for exemplary highway pavements applied in Austria and Switzerland. It is shown that environmental impacts can be reduced by the application of reclaimed asphalt pavement (RAP) and by the optimization of specific production characteristics, e.g. the reduction of the initial moisture of the mineral aggregate and the reduction of the mixing temperature by the application of low-viscosity and foam bitumen. The results of the LCA study demonstrate reduction potentials per cubic meter asphalt of up to 57 % (Global Warming Potential–GWP) and 77 % (Ozone depletion–ODP). The analysis per square meter of asphalt pavement determined environmental potentials of up to 40 % (GWP) and 56 % (ODP).Keywords: asphalt mixtures, environmental potentials, life cycle assessment, material production
Procedia PDF Downloads 5326447 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 2906446 Cartography through Picasso’s Eyes
Authors: Desiree Di Marco
Abstract:
The aim of this work is to show through the lens of art first which kind of reality was the one represented through fascist maps, and second to study the impact of the fascist regime’s cartography (FRC) on observers eye’s. In this study, it is assumed that the FRC’s representation of reality was simplified, timeless, and even a-spatial because it underrates the concept of territoriality. Cubism and Picasso’s paintings will be used as counter-examples to mystify fascist cartography’s ideological assumptions. The difference between the gaze of an observer looking at the surface of a fascist map and the gaze of someone observing a Picasso painting is impressive. Because there is always something dark, hidden, behind and inside a map, the world of fascist maps was a world built starting from the observation of a “window” that distorted reality and trapped the eyes of the observers. Moving across the map, they seem as if they were hypnotized. Cartohypnosis is the state in which the observer finds himself enslaved by the attractive force of the map, which uses a sort of “magic” geography, a geography that, by means of symbolic language, never has as its primary objective the attempt to show us reality in its complexity, but that of performing for its audience. Magical geography and hypnotic cartography in fascism blended together, creating an almost mystical, magical relationship that demystified reality to reduce the world to a conquerable space. This reduction offered the observer the possibility of conceiving new dimensions: of the limit, of the boundary, elements with which the subject felt fully involved and in which the aesthetic force of the images demonstrated all its strength. But in the early 20th century, the combination of art and cartography gave rise to new possibilities. Cubism which, more than all the other artistic currents showed us how much the observation of reality from a single point of view falls within dangerous logic, is an example. Cubism was an artistic movement that brought about a profound transformation in pictorial culture. It was not only a revolution of pictorial space, but it was a revolution of our conception of pictorial space. Up until that time, men and women were more inclined to believe in the power of images and their representations. Cubist painters rebelled against this blindness by claiming that art must always offer an alternative. Indeed the contribution of this work is precisely to show how art can be able to provide alternatives to even the most horrible regimes and the most atrocious human misfortunes. It also enriches the field of cartography because it "reassures" it by showing how much good it can be for cartography if also for other disciplines come close. Only in this way researcher can increase the chances for the cartography of a greater diffusion at the academic level.Keywords: cartography, Picasso, fascism, culture
Procedia PDF Downloads 666445 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform
Authors: Xie Kefeng, Zhang He
Abstract:
For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform
Procedia PDF Downloads 3456444 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes
Authors: Mohamed E. Eleshaky
Abstract:
This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.Keywords: drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts
Procedia PDF Downloads 3286443 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model
Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu
Abstract:
Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis
Procedia PDF Downloads 370