Search results for: train accident
457 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 95456 Perceived Role of Business School in Developing Leadership in Students
Authors: Ranala Nirmala, Rajanala Krishna Gopal
Abstract:
Business schools train management graduates to join the industry in managerial positions. Most of the managerial positions require leadership competency and while some of the business schools have leadership development as a course, many assume leadership development among students through their curriculum. While literature supports the need for leadership development among students, there are few studies which explored the role of department and leadership skills in business management students. This paper is based on an empirical study of students of a university based business school and explored the relationship between the perceived role of department, including the faculty, infrastructure, etc on the leadership skills and potential of the students. Students have been administered an instrument that captured different leadership aspects of the students and the data was reduced into fourteen dimensions including leadership skills perceived by student, role of department in developing leadership skills, leadership potential of students, etc. Anova and regression analysis are the primary statistical tools were used (using SPSS 17.0) and the results revealed that there is a significant relationship between the student perceptions of their leadership potential and the role of department, the faculty, the curriculum, etc. This study supports introducing focused courses in management curriculum to promote leadership among students.Keywords: students, management education, leadership, role of institution
Procedia PDF Downloads 487455 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 120454 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 228453 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 470452 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription
Authors: Michael Fundator
Abstract:
Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription
Procedia PDF Downloads 406451 Social Media as a Source of Radicalization; A Case Study of Pakistan
Authors: Manam Hanfi
Abstract:
Pakistan is a victim of terrorism since 9/11 attacks. Since then it is a home for violence and extremism. One of the major reasons behind rising violence and extremism in Pakistan is radicalization. Pakistan has seen and suffered from the modification of terrorism from old to new. In new terrorism, the terrorist organizations incorporated internet to disseminate propaganda, to recruit and train people. The study focuses on the relationship between Pakistan and new terrorism and examines how the internet is being used by terrorist organizations. The study investigates radicalization through social media by terrorist organizations in Pakistan with the help of case studies. The study suggests five ways to counter radicalization, including, counter narrative on social media, content analysis of the data on the internet, curriculum and madrassa reforms, teaching peace education in the educational institutions and use of technical software such as eGLYPH to quickly remove violent data from social media. Lastly, the research attempted to contribute in counter-radicalization by combining the media dependency model and ideas for counter-radicalization. The dependency model elaborates the impact of mass media content on the audience. If media dependency is high, it will cause cognitive, affective and behavioral changes. In order to counter radicalization through social media, it is important to make cognitive, affective and behavioral changes with the help of counter-radicalization suggestions.Keywords: counter radicalization, extremism, social media, terrorism
Procedia PDF Downloads 155450 Acoustics Barrier Design to Reduce Railway Noise by Using Maekawa's Method
Authors: Malinda Sabrina, Khoerul Anwar
Abstract:
Railway noise generated by pass-by train has been described as a form of environmental pollutants especially for the residential area near the railway. Many studies have shown, that environmental noise particularly transportation noise has negative effects on people which resulting in annoyance and specific health problems such as cardiovascular disease, cognitive impairment and sleep disturbance. Therefore, various attempts are made to reduce the noise. One method of reducing such noise to acceptable noise levels is to build acoustically barrier walls. The objective of this study was to review the method of reducing railway noise and obtain the preliminary design of the acoustics barrier on the edge of railway tracks close to the residential area. The design of this barrier is using the Maekawa's method. Measurements have been performed in residential areas around the railroads in the Karawang - Indonesia with the absence of an acoustical barrier. From the observation, it was found that the railway was passed by five trains within thirty minutes. With the limited distance between the railway tracks and the location of the residential area as well as the street of residents, then it was obtained that a reduction in sound pressure level is 25 dBA. Maximum sound pressure level obtained is 86.9 dBA then by setting the barrier as high as 4 m at a distance, 2.5 m from the railway, the noise level received by residents in the settlement around the railway line becomes 61.9 dBA.Keywords: acoustics barrier, Maekawa's method, noise attenuation, railway noise
Procedia PDF Downloads 200449 Ipsilateral Heterotopic Ossification in the Knee and Shoulder Post Long COVID-19
Authors: Raheel Shakoor Siddiqui, Calvin Mathias, Manikandar Srinivas Cheruvu, Bobin Varghese
Abstract:
A 58 year old gentleman presented to accident and emergency at the district general hospital with worsening shortness of breath and a non-productive cough over a period of five days. He was initially admitted under the medical team for suspicion of SARS-CoV-2 (COVID-19) pneumonitis. Subsequently, upon deterioration of observations and a positive COVID-19 PCR, he was taken to intensive care for invasive mechanical ventilation. He required frequent proning, inotropic support and was intubated for thirty-three days. After successful extubation, he developed myopathy with a limited range of motion to his right knee and right shoulder. Plain film imaging of these limbs demonstrated an unusual formation of heterotopic ossification without any precipitating trauma or surgery. Current literature demonstrates limited case series portraying heterotopic ossification post-COVID-19. There has been negligible evidence of heterotopic ossification in the ipsilateral knee and shoulder post-prolonged immobility secondary to a critical illness. Physiotherapy and rehabilitation are post-intensive care can be prolonged due to the formation of heterotopic ossification around joints. Prolonged hospital stays may lead to a higher risk of developing infections of the chest, urine and pressure sores. This raises the question of whether a severe systemic inflammatory immune response from the SARS-CoV-2 virus results in histopathological processes leading to the formation of heterotopic ossification not previously seen, requiring prolonged physiotherapy.Keywords: orthopaedics, rehabilitation, physiotherapy, heterotopic ossification, COVID-19
Procedia PDF Downloads 71448 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage
Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li
Abstract:
The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.Keywords: ignition time, mass loss rate, heat blockage, fire characteristic
Procedia PDF Downloads 282447 Exploring the Need to Study the Efficacy of VR Training Compared to Traditional Cybersecurity Training
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity training is of the utmost importance, given the plethora of attacks that continue to increase in complexity and ubiquity. VR cybersecurity training remains a starkly understudied discipline. Studies that evaluated the effectiveness of VR cybersecurity training over traditional methods are required. An engaging and interactive platform can support knowledge retention of the training material. Consequently, an effective form of cybersecurity training is required to support a culture of cybersecurity awareness. Measurements of effectiveness varied throughout the studies, with surveys and observations being the two most utilized forms of evaluating effectiveness. Further research is needed to evaluate the effectiveness of VR cybersecurity training and traditional training. Additionally, research for evaluating if VR cybersecurity training is more effective than traditional methods is vital. This paper proposes a methodology to compare the two cybersecurity training methods and their effectiveness. The proposed framework includes developing both VR and traditional cybersecurity training methods and delivering them to at least 100 users. A quiz along with a survey will be administered and statistically analyzed to determine if there is a difference in knowledge retention and user satisfaction. The aim of this paper is to bring attention to the need to study VR cybersecurity training and its effectiveness compared to traditional training methods. This paper hopes to contribute to the cybersecurity training field by providing an effective way to train users for security awareness. If VR training is deemed more effective, this could create a new direction for cybersecurity training practices.Keywords: virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training
Procedia PDF Downloads 215446 Application Reliability Method for Concrete Dams
Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar
Abstract:
Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor
Procedia PDF Downloads 324445 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 389444 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study
Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu
Abstract:
A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective
Procedia PDF Downloads 144443 Prevalence and Factors Associated to Work Accidents in the Construction Sector in Benin: Cases of CFIR – Consulting
Authors: Antoine Vikkey Hinson, Menonli Adjobimey, Gemayel Ahmed Biokou, Rose Mikponhoue
Abstract:
Introduction: Construction industry is a critical concern with regard to Health and Safety Service worldwide. World health Organization revealed that work-related disease and trauma were held responsible for the death of one million nine hundred thousand people in 2016. The aim of this study it was to determine the prevalence and factors associated with the occurrence of work accidents in a construction industry in Benin. Method: It was a descriptive cross-sectional and analytical study. Data analysis was performed with R software 4.1.1. In multivariate analysis, we performed a binary logistic regression. OR adjusted (ORa) association measures and their 95% confidence interval [CI95%] were presented for the explanatory variables used in the final model. The significance threshold for all tests selected was 5% (p < 0.05) Result: In this study, 472 workers were included, and, of these, 452 (95.7%) were men corresponding to a sex ratio of 22.6. The average age of the workers was 33 years ± 8.8 years. Workers were mostly laborers (84.7%), and had declared having inadequate personal protective equipment (50.6%, n=239). The prevalence of work accidents is 50.8%. Collision with a rolling stock (25.8%), cut (16.2%), and stumbling (16.2%) were the main types of work accidents on the construction site. Four factors were associated with contributing to work accidents. Fatigue or exhaustion (ORa : 1.53[1.03 ; 2.28]); The use of dangerous tools (ORa : 1.81 [1.22 ; 2.71]); The various laborers’ jobs (ORa : 4.78 [2.62 ; 9.21]); and seniority in the company ≥ 4 years (ORa : 2.00 [1.35 ; 2.96]). Conclusion: This study allowed us to identify the associated factors. It is imperative to implement a rigorous policy of occupational health and security mostly the continuing training for workers safe, the supply of appropriate work tools and protectiveKeywords: prevalence, work accident, associated factors, construction, benin
Procedia PDF Downloads 56442 Direct Cost of Anesthesia in Traumatic Patients with Massive Bleeding: A Prospective Micro-Costing Study
Authors: Asamaporn Puetpaiboon, Sunisa Chatmongkolchart, Nalinee Kovitwanawong, Osaree Akaraborworn
Abstract:
Traumatic patients with massive bleeding require intensive resuscitation. The actual cost of anesthesia per case has never been clarified, so our study aimed to quantify the direct cost, and cost-to-charge ratio of anesthetic care in traumatic patients with intraoperative massive bleeding. This study was a prospective, observational, cost analysis study, conducted in Prince of Songkla University hospital, Thailand, with traumatic patients, of any mechanisms being recruited. Massive bleeding was defined as estimated blood loss of at least one blood volume in 24 hours, or a half of blood volume in 3 hours. The cost components were identified by the micro-costing method, and valued by the bottom-up approach. The direct cost was divided into 4 categories: the labor cost, the capital cost, the material cost and the cost of drugs. From September 2017 to August 2018, 10 patients with multiple injuries were included. Seven patients had motorcycle accidents, two patients fell from a height and another one was in a minibus accident. Two patients died on the operating table, and another two died within 48 hours. The median Sequential Organ Failure Assessment (SOFA) score was 8. The median intraoperative blood loss was 3,500 ml. The median direct cost, per case, was 250 United States Dollars (2017 exchange rate), and the cost-to-charge ratio was 0.53. In summary, the direct cost was nearly half of the hospital charge, for these traumatic patients with massive bleeding. However, our study did not analyze the indirect cost.Keywords: cost, cost-to-charge ratio, micro-costing, trauma
Procedia PDF Downloads 148441 Management of Fitness-For-Duty for Human Error Prevention in Nuclear Power Plants
Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee
Abstract:
For the past several decades, not a few researchers have warned that even a trivial human error may result in unexpected accidents, especially in Nuclear Power Plants. To prevent accidents in Nuclear Power Plants, it is quite indispensable to make any factors under the effective control that may raise the possibility of human errors for accident prevention. This study aimed to develop a risk management program, especially in the sense that guaranteeing Fitness-for-Duty (FFD) of human beings working in Nuclear Power Plants. Throughout a literal survey, it was found that work stress and fatigue are major psychophysical factors requiring sophisticated management. A set of major management factors related to work stress and fatigue was through repetitive literal surveys and classified into several categories. To maintain the fitness of human workers, a 4-level – individual worker, team, staff within plants, and external professional - approach was adopted for FFD management program. Moreover, the program was arranged to envelop the whole employment cycle from selection and screening of workers, job allocation, and job rotation. Also, a managerial care program was introduced for employee assistance based on the concept of Employee Assistance Program (EAP). The developed program was reviewed with repetition by ex-operators in nuclear power plants, and assessed in the affirmative. As a whole, responses implied additional treatment to guarantee high performance of human workers not only in normal operations but also in emergency situations. Consequently, the program is under administrative modification for practical application.Keywords: fitness-for-duty (FFD), human error, work stress, fatigue, Employee-Assistance-Program (EAP)
Procedia PDF Downloads 302440 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 179439 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach
Authors: Massimo Zucchetti
Abstract:
In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety
Procedia PDF Downloads 82438 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 136437 Using Data Mining in Automotive Safety
Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler
Abstract:
Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact
Procedia PDF Downloads 382436 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants
Authors: Bernabeo R. Alberto
Abstract:
Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle
Procedia PDF Downloads 21435 Maryland Restoration of Anterior Tooth Loss as a Minimal Invasive Dentistry: An Alternative Treatment
Authors: B. Oral, C. Bal, M. S. Kar, A. Akgürbüz
Abstract:
Loss of maxillary central incisors occurs in many patients, and the treatment of young adults with this problem is a challenge for both prosthodontists and orthodontists. Common treatment alternatives are distalization of adjacent teeth and fabrication of a conventional 3-unit fixed partial denture, a single implant supported crown restoration or a resin-bonded fixed partial denture. This case report describes the indication of a resin-bonded fixed partial denture, preparation of the abutment teeth and the prosthetic procedures. The technique described here represents a conservative, esthetically pleasing and rapid solution for the missing maxillary central incisor when implant placement and/or guided bone regeneration techniques are not feasible because of financial, social or time restrictions. In this case a 16 year-old female patient who lost her maxillary left central incisor six years ago in a bicycle accident applied to our clinic with a major complaint of her unaesthetic appearance associated with the loss of her maxillary left central incisor. Although there was an indication for orthodontic treatment because of the limited space at the traumatized area, the patient did not accept to receive any orthodontic procedure. That is why an implant supported restoration could not be an option for the narrow area. Therefore maryland bridge as a minimal invasive dental therapy was preferred as a retention appliance so the patient's aesthetic appearance was restored.Keywords: Maryland bridge, single tooth restoration, aesthetics, maxillary central incisors
Procedia PDF Downloads 360434 Co-Existence of Thai Muslim People and Other in an Ancient Community Located in the Heart of Bangkok: The Case Study of Petchaburi 7 Community
Authors: Saowapa Phaithayawat
Abstract:
The objectives of the study are the following: 1) To study the way of life in terms of one hundred years co-existence of the Muslim and local community in this area 2) To analyze factors affect to this community with happy co-existence. The study requires quantitative research to study a history together with the study of humanity. The result of this study showed that the area of Petchburi 7 community is an ancient area which has owned by the Muslim for almost 100 years. There is a sanctuary as the center of unity. Later Bangkok becomes more developed and provides more infrastructures like the motorway and other transportation: however, the owners of lands in this community still keep their lands and build many buildings to run the business. With this purpose, there are many non-Muslim people come to live here with co-existence. Not only do they convenient to work but also easy to transport by sky train. There are factors that make them live harmonious as following: 1) All Muslims in this area are strict to follow their rules and allocate their community for business. 2) All people, who come and live here, are middle-aged and working men and women. They rent rooms closed to their work. 3) There are Muslim food and desserts, especially Roti, the popular fried flour, and local Chachak, tea originated from the south of Thailand. All these food and deserts are famous for working men and women to home and join after work 4) All Muslim in this area are independent to lead their own lives although a society changes rapidly.Keywords: co-existence, Muslims, other group of people, the ancient community, social sciences
Procedia PDF Downloads 339433 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 137432 The Effect of Additive Acid on the Phytoremediation Efficiency
Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh
Abstract:
Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.Keywords: phytoremediation, heavy metal, wheat, soil
Procedia PDF Downloads 337431 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 123430 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method
Procedia PDF Downloads 119429 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 478428 Common Causes of Eye Removal Surgery in Turkish Patients: A Review of 226 Cases
Authors: Titap Yazicioglu
Abstract:
Purpose: To determine the etiological factors responsible for the eye removal surgery and to evaluate our surgical results. Material and Methods: Medical records of 226 patients, who underwent eye removal surgery, were analyzed retrospectively. Demographic information, clinical history, surgical procedure, and histopathological data were all collected. Evisceration surgery was performed under general anesthesia in all patients except tumor cases and one patient with rhino-orbital mucormycosis. The patients were followed for an average of 16.46±10.78 months and checked for the possible complications, cosmesis, and functional results.Results: 144 men, and 82 women,with a mean age of 41.78±22.6 years, were underwent enucleation (n=15) or evisceration (n=211) due to traumatic (n=169) and non-traumatic (n=57) causes. In the traumatic group, 79.8% of 169 patients were injured by penetrating and 14.2% by blunt trauma.3.6% of the patients were injured in a traffic accident, and 2.4% of them were injured by explosives. In the non-traumatic group, 40% of 25 patients had post-traumatic endophthalmitis, 32% had endophthalmitis due to corneal ulceration and melting, and 24% had endophthalmitis after cataract surgery. One patient had panophthalmitis due to rhino-orbital mucormycosis. Another cause in the non-traumatic group was glaucoma, of which 92.3% had neovascular glaucoma, and 8.7% had congenital glaucoma. Of the 14 patients who were enucleated for tumor, 35.7% had retinoblastoma, 14.3% had medulloepithelioma, 42.9% had uveal melanoma, and 7.1% had metastatic tumor from paranasal sinuses.The most common complaint in the follow-up period was discharging, seen in all prosthesis-wearing patients. 13.3% of the patients had itching due to ocular prosthesis. 4.4% of the patients were complaining about deep superior sulcus. 4.4% had pyogenic granuloma, and 17.8% had implant exposure. Conclusion: Etiological factors should be carefully evaluated, and precautions should be taken in order to reduce the devastating effect of the physical loss of the eye.Keywords: enucleation, evisceration, ocular injury, etiology, frequency
Procedia PDF Downloads 111