Search results for: traffic measurement and modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7523

Search results for: traffic measurement and modeling

6983 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder

Authors: Joel Santhosh, N. Bhavani Shankar Rao

Abstract:

Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.

Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability

Procedia PDF Downloads 300
6982 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 113
6981 Comparative Assessment of Bus Rapid Transit System in India

Authors: Namrata Ghosh, Sapan Tiwari

Abstract:

Public transport service plays an important role in people's transportation needs in urban areas. Bus Rapid Transit System (BRTS) is a transport service that provides passengers with a quick and efficient mode of transport. It is developed by changing the existing infrastructure, vehicles, route, or by developing a new dedicated corridor for the bus route. This dedicated lanes transport passengers to their destination quickly and efficiently and flexible in meeting demand. However, with rapid urbanization and increasing population density in Indian cities, traffic congestion has become a significant issue. In a few Indian cities, the BRTS concept is implemented to address the issue of traffic congestion that eventually resulted in less road congestion. The research aims to provide a literature review on the overall outlook of the BRTS system and its practical implementation in mass urban transit. First, it reflects a literature review on the concept of the BRTS system in both developed and developing countries. Afterward, comparative analysis of BRTS, hindrances associated with the permanent integrated system, and the need for establishing the Bus Rapid Transit System in Indian cities is demonstrated. The research concludes with some recommendations that could help in improving the loopholes in the existing system.

Keywords: bus rapid transit system(BRTS), dedicated corridor, public transport, traffic congestion

Procedia PDF Downloads 287
6980 Improving Fused Deposition Modeling Efficiency: A Parameter Optimization Approach

Authors: Wadea Ameen

Abstract:

Rapid prototyping (RP) technology, such as fused deposition modeling (FDM), is gaining popularity because it can produce functioning components with intricate geometric patterns in a reasonable amount of time. A multitude of process variables influences the quality of manufactured parts. In this study, four important process parameters such as layer thickness, model interior fill style, support fill style and orientation are considered. Their influence on three responses, such as build time, model material, and support material, is studied. Experiments are conducted based on factorial design, and the results are presented.

Keywords: fused deposition modeling, factorial design, optimization, 3D printing

Procedia PDF Downloads 23
6979 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program

Authors: Munir Majdalawieh, Adam Marks

Abstract:

In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.

Keywords: academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment

Procedia PDF Downloads 238
6978 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors

Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth

Abstract:

In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.

Keywords: bioactivity, drug design, topoisomerase, molecular modeling

Procedia PDF Downloads 569
6977 Finite Element Modelling and Analysis of Human Knee Joint

Authors: R. Ranjith Kumar

Abstract:

Computer modeling and simulation of human movement is playing an important role in sports and rehabilitation. Accurate modeling and analysis of human knee join is more complex because of complicated structure whose geometry is not easily to represent by a solid model. As part of this project, from the number of CT scan images of human knee join surface reconstruction is carried out using 3D slicer software, an open source software. From this surface reconstruction model, using mesh lab (another open source software) triangular meshes are created on reconstructed surface. This final triangular mesh model is imported to Solid Works, 3D mechanical CAD modeling software. Finally this CAD model is imported to ABAQUS, finite element analysis software for analyzing the knee joints. The results obtained are encouraging and provides an accurate way of modeling and analysis of biological parts without human intervention.

Keywords: solid works, CATIA, Pro-e, CAD

Procedia PDF Downloads 125
6976 Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt

Authors: Sherif A. Abu El-Magd, Ahmed M. Sefelnasr, Ahmed M. Masoud

Abstract:

Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise.

Keywords: numerical modeling, archeological site, groundwater recharge, egypt

Procedia PDF Downloads 125
6975 Land Use Change Modeling Using Cellular Automata, Case Study: Karawang City, West Java Province, Indonesia

Authors: Bagus Indrawan Hardi

Abstract:

Cellular Automata are widely used in land use modeling, it has been proven powerful to simulate land use change for small scale in many large cities in the world. In this paper, we try to implement CA for land use modeling in unique city in Indonesia, Karawang. Instead the complex numerical implementation, CA are simple, and it is accurate and also highly dependable on the on the rules (rule based). The most important to do in CA is how we form and calculate the neighborhood effect. The neighborhood effect represents the environment and relationship situation between the occupied cell and others. We adopted 196 cells of circular neighborhood with 8 cells of radius. For the results, CA works well in this study, we exhibit several analyzed and proceed of zoomed part in Karawang region. The rule set can handle the complexity in land use modeling. However, we cannot strictly believe of the result, many non-technical parameters, such as politics, natural disaster activities, etc. may change the results dramatically.

Keywords: cellular automata (CA), land use change, spatial dynamics, urban sprawl

Procedia PDF Downloads 244
6974 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications

Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki

Abstract:

Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.

Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring

Procedia PDF Downloads 149
6973 Simultaneous Measurement of Wave Pressure and Wind Speed with the Specific Instrument and the Unit of Measurement Description

Authors: Branimir Jurun, Elza Jurun

Abstract:

The focus of this paper is the description of an instrument called 'Quattuor 45' and defining of wave pressure measurement. Special attention is given to measurement of wave pressure created by the wind speed increasing obtained with the instrument 'Quattuor 45' in the investigated area. The study begins with respect to theoretical attitudes and numerous up to date investigations related to the waves approaching the coast. The detailed schematic view of the instrument is enriched with pictures from ground plan and side view. Horizontal stability of the instrument is achieved by mooring which relies on two concrete blocks. Vertical wave peak monitoring is ensured by one float above the instrument. The synthesis of horizontal stability and vertical wave peak monitoring allows to create a representative database for wave pressure measuring. Instrument ‘Quattuor 45' is named according to the way the database is received. Namely, the electronic part of the instrument consists of the main chip ‘Arduino', its memory, four load cells with the appropriate modules and the wind speed sensor 'Anemometers'. The 'Arduino' chip is programmed to store two data from each load cell and two data from the anemometer on SD card each second. The next part of the research is dedicated to data processing. All measured results are stored automatically in the database and after that detailed processing is carried out in the MS Excel. The result of the wave pressure measurement is synthesized by the unit of measurement kN/m². This paper also suggests a graphical presentation of the results by multi-line graph. The wave pressure is presented on the left vertical axis, while the wind speed is shown on the right vertical axis. The time of measurement is displayed on the horizontal axis. The paper proposes an algorithm for wind speed measurements showing the results for two characteristic winds in the Adriatic Sea, called 'Bura' and 'Jugo'. The first of them is the northern wind that reaches high speeds, causing low and extremely steep waves, where the pressure of the wave is relatively weak. On the other hand, the southern wind 'Jugo' has a lower speed than the northern wind, but due to its constant duration and constant speed maintenance, it causes extremely long and high waves that cause extremely high wave pressure.

Keywords: instrument, measuring unit, waves pressure metering, wind seed measurement

Procedia PDF Downloads 198
6972 Modeling of Complex Structures: Shear Wall with Openings and Stiffened Shells

Authors: Temami Oussama, Bessais Lakhdar, Hamadi Djamal, Abderrahmani Sifeddine

Abstract:

The analysis of complex structures encourages the engineer to make simplifying assumptions, sometimes attempting the analysis of the whole structure as complex as it is, and it can be done using the finite element method (FEM). In the modeling of complex structures by finite elements, various elements can be used: beam element, membrane element, solid element, plates and shells elements. These elements formulated according to the classical formulation and do not generally share the same nodal degrees of freedom, which complicates the development of a compatible model. The compatibility of the elements with each other is often a difficult problem for modeling complicated structure. This compatibility is necessary to ensure the convergence. To overcome this problem, we have proposed finite elements with a rotational degree of freedom. The study used is based on the strain approach formulation with 2D and 3D formulation with different degrees of freedom at each node. For the comparison and confrontation of results; the finite elements available in ABAQUS/Standard are used.

Keywords: compatibility requirement, complex structures, finite elements, modeling, strain approach

Procedia PDF Downloads 443
6971 Experimental Verification of Similarity Criteria for Sound Absorption of Perforated Panels

Authors: Aleksandra Majchrzak, Katarzyna Baruch, Monika Sobolewska, Bartlomiej Chojnacki, Adam Pilch

Abstract:

Scaled modeling is very common in the areas of science such as aerodynamics or fluid mechanics, since defining characteristic numbers enables to determine relations between objects under test and their models. In acoustics, scaled modeling is aimed mainly at investigation of room acoustics, sound insulation and sound absorption phenomena. Despite such a range of application, there is no method developed that would enable scaling acoustical perforated panels freely, maintaining their sound absorption coefficient in a desired frequency range. However, conducted theoretical and numerical analyses have proven that it is not physically possible to obtain given sound absorption coefficient in a desired frequency range by directly scaling only all of the physical dimensions of a perforated panel, according to a defined characteristic number. This paper is a continuation of the research mentioned above and presents practical evaluation of theoretical and numerical analyses. The measurements of sound absorption coefficient of perforated panels were performed in order to verify previous analyses and as a result find the relations between full-scale perforated panels and their models which will enable to scale them properly. The measurements were conducted in a one-to-eight model of a reverberation chamber of Technical Acoustics Laboratory, AGH. Obtained results verify theses proposed after theoretical and numerical analyses. Finding the relations between full-scale and modeled perforated panels will allow to produce measurement samples equivalent to the original ones. As a consequence, it will make the process of designing acoustical perforated panels easier and will also lower the costs of prototypes production. Having this knowledge, it will be possible to emulate in a constructed model panels used, or to be used, in a full-scale room more precisely and as a result imitate or predict the acoustics of a modeled space more accurately.

Keywords: characteristic numbers, dimensional analysis, model study, scaled modeling, sound absorption coefficient

Procedia PDF Downloads 196
6970 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.

Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques

Procedia PDF Downloads 189
6969 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 411
6968 Maximizing Bidirectional Green Waves for Major Road Axes

Authors: Christian Liebchen

Abstract:

Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).

Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming

Procedia PDF Downloads 117
6967 Equivalent Circuit Modelling of Active Reflectarray Antenna

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.

Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal

Procedia PDF Downloads 287
6966 Training Can Increase Knowledge and Skill of Teacher's on Measurement and Assessment Nutritional Status Children

Authors: Herawati Tri Siswati, Nurhidayat Ana Sıdık Fatimah

Abstract:

The Indonesia Basic Health Research, 2013 showed that prevalence of stunting of 6–12 children years old was 35,6%, wasting was 12,2% and obesiy was 9,2%. The Indonesian Goverment have School Health Program, held in coordination, plans, directing and responsible, developing and implement health student. However, it's implementation still under expected, while Indonesian Ministry of Health has initiated the School Health Program acceleration. This aimed is to know the influencing of training to knowledge and skill of elementary school teacher about measurement and assesment nutrirional status children. The research is quasy experimental with pre-post design, in Sleman disctrict, Yogyakarta province, Indonesia, 2015. Subject was all of elementary school teacher’s who responsible in School Health Program in Gamping sub-district, Sleman, Yogyakarta, i.e. 32 persons. The independent variable is training, while the dependent variable are teacher’s klowledge and skill on measurement and assesment nutrirional status children. The data was analized by t-test. The result showed that the knowledge score before training is 31,6±9,7 and after 56,4±12,6, with an increase 24,8±15,7, and p=0.00. The skill score before training is 46,6±11,1 and after 61,7±13, with an increase 15,2±14,2, p = 0.00. Training can increase the teacher’s klowledge and skill on measurement and assesment nutrirional status.

Keywords: training, school health program, nutritional status, children.

Procedia PDF Downloads 393
6965 Analysis of Trends in Environmental Health Research Using Topic Modeling

Authors: Hayoung Cho, Gabi Cho

Abstract:

In response to the continuing increase of demands for living environment safety, the Korean government has established and implemented various environmental health policies and set a high priority to the related R&D. However, the level of related technologies such as environmental risk assessment are still relatively low, and there is a need for detailed investment strategies in the field of environmental health research. As scientific research papers can give valuable implications on the development of a certain field, this study analyzed the global research trends in the field of environmental health over the past 10 years (2005~2015). Research topics were extracted from abstracts of the collected SCI papers using topic modeling to study the changes in research trends and discover emerging technologies. The method of topic modeling can improve the traditional bibliometric approach and provide a more comprehensive review of the global research development. The results of this study are expected to help provide insights for effective policy making and R&D investment direction.

Keywords: environmental health, paper analysis, research trends, topic modeling

Procedia PDF Downloads 288
6964 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller

Authors: Latif Adnane, Benaatou Wafa, Pla Vicent

Abstract:

Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.

Keywords: handover, UMTS, mobility, simulation, OPNET modeler

Procedia PDF Downloads 322
6963 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point

Procedia PDF Downloads 333
6962 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: ultrasound, mechanical index, modeling, stem cell

Procedia PDF Downloads 334
6961 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit

Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu

Abstract:

This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.

Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon

Procedia PDF Downloads 599
6960 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine

Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot

Abstract:

Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.

Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns

Procedia PDF Downloads 152
6959 Development of a System for Measuring the Three-axis Pedal Force in Cycling and Its Applications

Authors: Joo-Hack Lee, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack

Abstract:

For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane.

Keywords: cycling, pedal force, index of effectiveness, measuring

Procedia PDF Downloads 661
6958 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 146
6957 Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System

Authors: Saleh Gareh, B. C. Kok, H. H. Goh

Abstract:

Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.

Keywords: piezoelectric energy harvesting, cymbal transducer, PZT (lead zirconate titanate), 2-DOF

Procedia PDF Downloads 355
6956 Dynamic Analysis of Double Deck Tunnel

Authors: C. W. Kwak, I. J. Park, D. I. Jang

Abstract:

The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.

Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint

Procedia PDF Downloads 382
6955 The Effectiveness of Video Modeling Procedures on Request an Item Behavior Children with Autism Spectrum Disorders

Authors: Melih Cattik

Abstract:

The present study investigate effectiveness of video modeling procedures on request an item behavior of children with ASD. Two male and a female children with ASD participated in the study. A multiple baseline across participant single-subject design was used to evaluate the effects of the video modeling procedures on request an item behavior. During baseline, no prompts were presented to participants. In the intervention phase, the teacher gave video model to the participant and than created opportunity for request an item to him/her. When the first participant reached to criterion, the second participant began intervention. This procedure continued till all participants completed intervention. Finally, all three participants learned to request an item behavior. Based upon findings of this study, it will make suggestions to future researches.

Keywords: autism spectrum disorders, video modeling procedures, request an item behavior, single subject design

Procedia PDF Downloads 410
6954 The Doctor-Patient Interaction Experience Hierarchy Using Rasch Measurement Model Analysis

Authors: Wan Nur'ashiqin Wan Mohamad, Zarina Othman, Mohd Azman Abas, Azizah Ya'acob, Rozmel Abdul Latiff

Abstract:

Effective doctor-patient interaction is vital to both doctor and patient relationship. It is the cornerstone of good practice and an integral quality of a healthcare institution. This paper presented the hierarchy of the communication elements in doctor-patient interaction during medical consultations in a medical centre in Malaysia. This study adapted The Picker Patient Experience Questionnaire (2002) to obtain the information from patients. The questionnaire survey was responded by 100 patients between the ages of 20 and 50. Data collected were analysed using Rasch Measurement Model to yield the hierarchy of the communication elements in doctor-patient interaction. The findings showed that the three highest ranking on the doctor-patient interaction were doctor’s treatment, important information delivery and patient satisfaction of doctor’s responses. The results are valuable in developing the framework for communication ethics of doctors.

Keywords: communication elements, doctor-patient interaction, hierarchy, Rasch measurement model

Procedia PDF Downloads 164