Search results for: safety helmet-wearing detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6646

Search results for: safety helmet-wearing detection

6106 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter

Authors: Lina Pan

Abstract:

In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.

Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood

Procedia PDF Downloads 465
6105 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 398
6104 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy

Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket

Abstract:

Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.

Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety

Procedia PDF Downloads 151
6103 Social Implementation of Information Sharing Road Safety Measure in South-East Asia

Authors: Hiroki Kikuchi, Atsushi Fukuda, Hirokazu Akahane, Satoru Kobayakawa, Tuenjai Fukuda, Takeru Miyokawa

Abstract:

According to WHO reports, fatalities by road traffic accidents in many countries of South-East Asia region especially Thailand and Malaysia are increasing year by year. In order to overcome these serious problems, both governments are focusing on road safety measures. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan and Japan International Cooperation Agency (JICA) have begun active support based on the experiences to reduce the number of fatalities in road accidents in Japan in the past. However, even if the successful road safety measures in Japan is adopted in South-East Asian countries, it is not sure whether it will work well or not. So, it is necessary to clarify the issues and systematize the process for the implementation of road safety measures in South-East Asia. On the basis of the above, this study examined the applicability of "information sharing traffic safety measure" which is one of the successful road safety measures in Japan to the social implementation of road safety measures in South-East Asian countries. The "Information sharing traffic safety measure" is carried out traffic safety measures by stakeholders such as residents, administration, and experts jointly. In this study, we extracted the issues of implementation of road safety measures under local context firstly. This is clarifying the particular issues with its implementation in South-East Asian cities. Secondly, we considered how to implement road safety measures for solving particular issues based on the method of "information sharing traffic safety measure". In the implementation method, the location of the occurrence of a dangerous event was extracted based on the “HIYARI-HATTO” data which were obtained from the residents. This is because it is considered that the implementation of the information sharing traffic safety measure focusing on the location where the dangerous event occurs leads to the reduction of traffic accidents. Also, the target locations for the implementation of measures differ for each city. In Penang, we targeted the intersections in the downtown, while in Suphan Buri, we targeted mainly traffic control on the intercity highway. Finally, we proposed a method for implementing traffic safety measures. For Penang, we proposed a measure to improve the signal phase and showed the effect of the measure on the micro traffic simulation. For Suphan Buri, we proposed the suitable measures for the danger points extracted by collecting the “HIYARI-HATTO” data of residents to the administration. In conclusion, in order to successfully implement the road safety measure based on the "information sharing traffic safety measure", the process for social implementation of the road safety measures should be consistent and carried out repeatedly. In particular, by clarifying specific issues based on local context in South-East Asian countries, the stakeholders, not only such as government sectors but also local citizens can share information regarding road safety and select appropriate countermeasures. Finally, we could propose this approach to the administration that had the authority.

Keywords: information sharing road safety measure, social implementation, South-East Asia, HIYARI-HATTO

Procedia PDF Downloads 150
6102 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 260
6101 Influence of Mooring Conditions on Side-By-Side Offloading System Safety Performance

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory, hydrodynamic response analysis is carried on the multi floating bodies system composed of FPSO moored with yoke and shuttle tanker. It considered hydrodynamic interaction between FPSO and shuttle tanker, interaction between the hull and yoke mooring systems, hawsers, fenders, and then focuses on hawsers of the side-by-side offloading system. The influence of hawsers parameters on system safety is studied in respects of hawser stiffness, length and arrangement. Through analysis in different environment conditions and two typical loading conditions, it can be found that a better safety performance can be achieved through these three ways including enlarging the number of hawsers as well as the stiffness of hawsers, changing the length and arrangement of hawsers.

Keywords: yoke mooring, side-by-side offloading, multi floating body, hawser, safety

Procedia PDF Downloads 431
6100 Vision Zero for the Caribbean Using the Systemic Approach for Road Safety: A Case Study Analyzing Jamaican Road Crash Data (Ongoing)

Authors: Rachelle McFarlane

Abstract:

The Second Decade of Action Road Safety has begun with increased focus on countries who are disproportionately affected by road fatalities. Researchers highlight the low effectiveness of road safety campaigns in Latin America and the Caribbean (LAC) still reporting approximately 130,000 deaths and six million injuries annually. The regional fatality rate 19.2 per 100,000 with heightened concern for persons 15 to 44 years. In 2021, 483 Jamaicans died in 435 crashes, with 33% of these fatalities occurring during Covid-19 curfew hours. The study objective is to conduct a systemic safety review of Jamaican road crashes and provide a framework for its use in complementing traditional methods. The methodology involves the use of the FHWA Systemic Safety Project Selection Tool for analysis. This tool reviews systemwide data in order to identify risk factors across the network associated with severe and fatal crashes, rather that only hotspots. A total of 10,379 crashes with 745 fatalities and serious injuries were reviewed. Of the focus crash types listed, 50% of ‘Pedestrian Accidents’ resulted in fatalities and serious injuries, followed by 32% ‘Bicycle’, 24% ‘Single’ and 12% of ‘Head-on’. This study seeks to understand the associated risk factors with these priority crash types across the network and recommend cost-effective countermeasures across common sites. As we press towards Vision Zero, the inclusion of the systemic safety review method, complementing traditional methods, may create a wider impact in reducing road fatalities and serious injury by targeting issues across network with similarities; focus crash types and contributing factors.

Keywords: systemic safety review, risk factors, road crashes, crash types

Procedia PDF Downloads 91
6099 Development of Sulfite Biosensor Based on Sulfite Oxidase Immobilized on 3-Aminoproplytriethoxysilane Modified Indium Tin Oxide Electrode

Authors: Pawasuth Saengdee, Chamras Promptmas, Ting Zeng, Silke Leimkühler, Ulla Wollenberger

Abstract:

Sulfite has been used as a versatile preservative to limit the microbial growth and to control the taste in some food and beverage. However, it has been reported to cause a wide spectrum of severe adverse reactions. Therefore, it is important to determine the amount of sulfite in food and beverage to ensure consumer safety. An efficient electrocatalytic biosensor for sulfite detection was developed by immobilizing of human sulfite oxidase (hSO) on 3-aminoproplytriethoxysilane (APTES) modified indium tin oxide (ITO) electrode. Cyclic voltammetry was employed to investigate the electrochemical characteristics of the hSO modified ITO electrode for various pretreatment and binding conditions. Amperometry was also utilized to demonstrate the current responses of the sulfite sensor toward sodium sulfite in an aqueous solution at a potential of 0 V (vs. Ag/AgCl 1 M KCl). The proposed sulfite sensor has a linear range between 0.5 to 2 mM with a correlation coefficient 0.972. Then, the additional polymer layer of PVA was introduced to extend the linear range of sulfite sensor and protect the enzyme. The linear range of sulfite sensor with 5% coverage increases from 2.8 to 20 mM at a correlation coefficient of 0.983. In addition, the stability of sulfite sensor with 5% PVA coverage increases until 14 days when kept in 0.5 mM Tris-buffer, pH 7.0 at 4 8C. Therefore, this sensor could be applied for the detection of sulfite in the real sample, especially in food and beverage.

Keywords: sulfite oxidase, bioelectrocatalytsis, indium tin oxide, direct electrochemistry, sulfite sensor

Procedia PDF Downloads 231
6098 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 114
6097 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures ‎in the Iranian Roads Network

Authors: M. Mokhber, J. Hedayati

Abstract:

From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, ‎‏9‏‎ roads with the overall ‎length of about ‎‎‏1000‏‎ Km of high-risk corridors are considered as preferences of ‎safety measures‎.

Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures

Procedia PDF Downloads 178
6096 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)

Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil

Abstract:

Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.

Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles

Procedia PDF Downloads 231
6095 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 169
6094 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 276
6093 Association of Extremity Injuries with Safety Gear and Clothing of Hospitalized Motorcycle Riders: A Prospective Study

Authors: Sanjaya N. Munasinghe, R. Gnanasekeram, Dimuthu Tennakoon

Abstract:

During the last few years there has been a dramatic increase in the number of motorcyclists in Sri Lankan roads and thus an increase of motorcycle accidents (MCAs) with a heavy death and casualty toll. Extremity injuries due to MCAs cause a heavy burden on government hospitals. However, data on MCA injuries are limited. This study tries to determine the relationship between extremity injuries with protective gears and clothing motorcycle riders were wearing at the time of the accident. Data were collected from 410 motorcycle riders and passengers involved with MCAs and admitted to orthopedic and emergency observation wards in Teaching Hospital Kurunegala with extremity injuries between 1st February 2015 and 31st July 2015 using an interviewer administered questioner. Data were analyzed using SPSS version 17.0. Distal radial fracture is the most common upper extremity injury (12%), and Tibial fracture is the most common and severe lower extremity injury (23%). Very few participants were wearing safety gloves (2%) and jackets (10%). Most of the participants were wearing slippers (66%), short sleeved upper clothing (96%) and light cloth trousers (49%). According to Chi-square test associations were found between footwear and foot injuries (p-value - 0.001, Cramer's v-value - 0.203) and safety jacket and upper extremity injuries (p-value - 0.002, Cramer's v-value - 0.177). The results indicate that using safety gear can minimize the number of injuries in MCA victims. Thus it is necessary to ensure that motorcycle riders and pillion riders use proper safety gear.

Keywords: extremity injuries, fractures, motorcycle accidents, safety gear

Procedia PDF Downloads 294
6092 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble

Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi

Abstract:

Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.

Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble

Procedia PDF Downloads 222
6091 Ultra-Sensitive and Real Time Detection of ZnO NW Using QCM

Authors: Juneseok You, Kuewhan Jang, Chanho Park, Jaeyeong Choi, Hyunjun Park, Sehyun Shin, Changsoo Han, Sungsoo Na

Abstract:

Nanomaterials occur toxic effects to human being or ecological systems. Some sensors have been developed to detect toxic materials and the standard for toxic materials has been established. Zinc oxide nanowire (ZnO NW) is known for toxic material. By ionizing in cell body, ionized Zn ions are overexposed to cell components, which cause critical damage or death. In this paper, we detected ZnO NW in water using QCM (Quartz Crystal Microbalance) and ssDNA (single strand DNA). We achieved 30 minutes of response time for real time detection and 100 pg/mL of limit of detection (LOD).

Keywords: zinc oxide nanowire, QCM, ssDNA, toxic material, biosensor

Procedia PDF Downloads 429
6090 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 164
6089 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 374
6088 The Development Status of Terahertz Wave and Its Prospect in Wireless Communication

Authors: Yiquan Liao, Quanhong Jiang

Abstract:

Since terahertz was observed by German scientists, we have obtained terahertz through different generation technologies of broadband and narrowband. Then, with the development of semiconductor and other technologies, the imaging technology of terahertz has become increasingly perfect. From the earliest application of nondestructive testing in aviation to the present application of information transmission and human safety detection, the role of terahertz will shine in various fields. The weapons produced by terahertz were epoch-making, which is a crushing deterrent against technologically backward countries. At the same time, terahertz technology in the fields of imaging, medical and livelihood, communication and communication are for the well-being of the country and the people.

Keywords: terahertz, imaging, communication, medical treatment

Procedia PDF Downloads 100
6087 A Finite Memory Residual Generation Filter for Fault Detection

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults.

Keywords: residual generation filter, finite memory structure, kalman filter, fast detection

Procedia PDF Downloads 699
6086 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.

Keywords: space-based detection, aerial targets, detectability analysis, scene environment

Procedia PDF Downloads 144
6085 Evaluation of European Surveys in the Area of Health and Safety at Work and Identification of New Risks in the Labor Environment

Authors: Alena Dadova, Katarina Holla, Anna Cidlinova, Linda Makovicka Osvaldova, Jiri Vala, Samuel Kockar

Abstract:

Occupational health and safety (ASH) is an area in which procedures and applications are constantly evolving and changing through legislation and new directives and guidelines. In this way, the relevant organizations strive to ensure continuous progress and the advantage of up-to-date information to ensure safety and prevent occupational accidents. Three ESENER surveys have been carried out in the European Union, led by the Agency for Safety and Health at Work (EU-OSHA). On the basis of surveys, it was determined how European workplaces manage risks and how they manage the field of safety and health protection at work. Thousands of companies and organizations in the European Union were involved in the surveys. Organizations and businesses were presented with a questionnaire that focused on the following topics: the impact of general risks on the field of OSH and the possibility of their management, psychosocial risks and other factors such as stress, harassment and bullying, and employee participation in OSH procedures. The article is dedicated to the fundamental conclusions from these surveys and their subsequent connection with the strategic intent of the Strategic Framework of European Union for the years 2021 - 2027. In the conclusion, emerging risks are identified and EU will soon have to deal with them.

Keywords: ESENER, emerging risks, strategic framework in OSH, EU

Procedia PDF Downloads 114
6084 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections

Authors: Liu Lin Xin

Abstract:

With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.

Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs

Procedia PDF Downloads 36
6083 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 320
6082 Preliminary Study on the Factors Affecting Safety Parameters of (Th, U)O₂ Fuel Cycle: The Basis for Choosing Three Fissile Enrichment Zones

Authors: E. H. Uguru, S. F. A. Sani, M. U. Khandaker, M. H. Rabir

Abstract:

The beginning of cycle transient safety parameters is paramount for smooth reactor operation. The enhanced operational safety of UO₂ fuelled AP1000 reactor being the first using three fissile enrichment zones motivated this research for (Th, U)O₂ fuel. This study evaluated the impact of fissile enrichment, soluble boron, and gadolinia on the transient safety parameters to determine the basis for choosing the three fissile enrichment zones. Fuel assembly and core model of Westinghouse small modular reactor were investigated using different fuel and reactivity control arrangements. The Monte Carlo N-Particle eXtended (MCNPX) integrated with CINDER90 burn-up code was used for the calculations. The results show that the moderator temperature coefficient of reactivity (MTC) and the fuel temperature coefficient of reactivity (FTC) were respectively negative and decreased with increasing fissile enrichment. Soluble boron significantly decreased the MTC but slightly increased FTC while gadolinia followed the same trend with a minor impact. However, the MTC and FTC respectively decreased significantly with increasing change in temperature. These results provide a guide on the considerable factors in choosing the three fissile enrichment zones for (Th, U)O₂ fuel in anticipation of their impact on safety parameters. Therefore, this study provides foundational results on the factors that must be considered in choosing three fissile arrangement zones for (Th, U)O₂ fuel.

Keywords: reactivity, safety parameters, small modular reactor, soluble boron, thorium fuel cycle

Procedia PDF Downloads 132
6081 Detecting Anomalous Matches: An Empirical Study from National Basketball Association

Authors: Jacky Liu, Dulani Jayasuriya, Ryan Elmore

Abstract:

Match fixing and anomalous sports events have increasingly threatened the integrity of professional sports, prompting concerns about existing detection methods. This study addresses prior research limitations in match fixing detection, improving the identification of potential fraudulent matches by incorporating advanced anomaly detection techniques. We develop a novel method to identify anomalous matches and player performances by examining series of matches, such as playoffs. Additionally, we investigate bettors' potential profits when avoiding anomaly matches and explore factors behind unusual player performances. Our literature review covers match fixing detection, match outcome forecasting models, and anomaly detection methods, underscoring current limitations and proposing a new sports anomaly detection method. Our findings reveal anomalous series in the 2022 NBA playoffs, with the Phoenix Suns vs Dallas Mavericks series having the lowest natural occurrence probability. We identify abnormal player performances and bettors' profits significantly decrease when post-season matches are included. This study contributes by developing a new approach to detect anomalous matches and player performances, and assisting investigators in identifying responsible parties. While we cannot conclusively establish reasons behind unusual player performances, our findings suggest factors such as team financial difficulties, executive mismanagement, and individual player contract issues.

Keywords: anomaly match detection, match fixing, match outcome forecasting, problematic players identification

Procedia PDF Downloads 80
6080 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun

Abstract:

A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 461
6079 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 280
6078 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: pantograph models, phase plots, structural health monitoring, damage detection

Procedia PDF Downloads 363
6077 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 154