Search results for: reinforced soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4096

Search results for: reinforced soil

3556 Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria

Authors: Omasan Urhie Urhie, Adenipekun C. O, Eke W., Ogwu K., Erinle K. O

Abstract:

Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria.

Keywords: polychlorintated biphenyls, persistent organic pollutants, soil, transformer

Procedia PDF Downloads 112
3555 Experimental Investigation on Utility and Suitability of Lateritic Soil as a Pavement Material

Authors: J. Hemanth, B. G. Shivaprakash, S. V. Dinesh

Abstract:

The locally available Lateritic soil in Dakshina Kanadda and Udupi districts are traditionally being used as building blocks for construction purpose but they do not meet the conventional requirements (L L ≤ 25% & P I ≤6%) and desired four days soaked CBR value to be used as a sub-base course material in pavements. In order to improve its properties to satisfy the Atterberg’s Limits, the soil is blended with sand, cement and quarry dust at various percentages and also to meet the CBR strength requirements, individual and combined gradation of various sized aggregates along with Laterite soil and other filler materials has been done for coarse graded granular sub-base materials (Grading II and Grading III). The effect of additives blended with lateritic soil and aggregates are studied in terms of Atterberg’s limits, compaction, California Bearing Ratio (CBR), and permeability. It has been observed that the addition of sand, cement and quarry dust are found to be effective in improving Atterberg’s limits, CBR values, and permeability values. The obtained CBR and permeability values of Grading III, and Grading II materials found to be sufficient to be used as sub-base course for low volume roads and high volume roads respectively.

Keywords: lateritic soil, sand, quarry dust, gradation, sub-base course, permeability

Procedia PDF Downloads 298
3554 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits

Authors: Ratchasak Suvannatsiri

Abstract:

The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.

Keywords: lateritic soil, excavation pits, engineering properties, impact on community members

Procedia PDF Downloads 425
3553 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil

Authors: Tanios Saliba, Jad Wakim, Elie Awwad

Abstract:

Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.

Keywords: bottom ash, Clayey soil, mechanical properties, tests

Procedia PDF Downloads 154
3552 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson

Authors: R. O. Anyasi, H. I. Atagana

Abstract:

In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.

Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor

Procedia PDF Downloads 359
3551 Examination of the Socioeconomic Impact of Soil Diversity in Semi-Arid Regions on Agriculture: A Case Study in the Tissemsilt Province 

Authors: Ouabel Habib, Taleb Mohamed Lamine, Ben Zohra Mohamed Nadjib

Abstract:

The Tissemsilt Province occupies a natural transitional zone and is dedicated to cereal production, dry forage, and livestock farming. It encompasses an agricultural domain covering an area of 181,097 hectares, of which 143,451 hectares are considered arable land. A field study was conducted along a west-to-east transect, covering six zones within the province, including Maacem, Ammari, Tissemsilt, Khemisti, Laayoune, Theniet el Had, and Taza. Random soil samples were collected from each region for laboratory analyses to assess soil types and quality, ultimately aiming to identify soil diversity within the Tissemsilt Province. Within the agricultural zones, approximately 40 soil samples were collected, revealing that the province contains moderately high-quality clayey soils, semi-rich in organic matter. However, as one moves southward, this richness diminishes. This leads us to predict that the agricultural zone is an ideal region for cereal cultivation. Nonetheless, this situation is challenged by the decreasing precipitation, which affects overall yields.

Keywords: soil, biodiversity, semi-arid, agriculture

Procedia PDF Downloads 46
3550 A New Prediction Model for Soil Compression Index

Authors: D. Mohammadzadeh S., J. Bolouri Bazaz

Abstract:

This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.

Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP

Procedia PDF Downloads 346
3549 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia

Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri

Abstract:

Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.

Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model

Procedia PDF Downloads 293
3548 Flexural Behavior of Eco-Friendly Prefabricated Low Cost Bamboo Reinforced Wall Panels

Authors: Vishal Puri, Pradipta Chakrabortty, Swapan Majumdar

Abstract:

Precast concrete construction is the most commonly used technique for a rapid construction. This technique is very frequently used in the developed countries. Different guidelines required to utilize the potential of prefabricated construction are still not available in the developing countries. This causes over dependence on in-situ construction procedure which further affects the quality, scheduling, and duration of construction. Also with the ever increasing costs of building materials and their negative impact on the environment it has become imperative to look out for alternate construction materials which are cheap and sustainable. Bamboo and fly ash are alternate construction materials having great potential in the construction industry. Thus there is a great need to develop prefabricated components by utilizing the potential of these materials. Bamboo reinforced beams, bamboo reinforced columns and bamboo arches as researched previously have shown great prospects for prefabricated construction industry. But, many other prefabricated components still need to be studied and widely tested before their utilization in the prefabricated construction industry. In the present study, authors have showcased prefabricated bamboo reinforced wall panel for the prefabricated construction industry. It presents a detailed methodology for the development of such prefabricated panels. It also presents the flexural behavior of such panels as tested under flexural loads following ASTM guidelines. It was observed that these wall panels are much flexible and do not show brittle failure as observed in traditional brick walls. It was observed that prefabricated walls are about 42% cheaper as compared to conventional brick walls. It was also observed that prefabricated walls are considerably lighter in weight and are environment friendly. It was thus concluded that this type of wall panels are an excellent alternative for partition brick walls.

Keywords: bamboo, prefabricated walls, reinforced structure, sustainable infrastructure

Procedia PDF Downloads 281
3547 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu

Abstract:

In this study, an artificial intelligence-based (ANN based) analytical method has been developed for analyzing earthquake performances of the reinforced concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code- 2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Keywords: artificial intelligence, earthquake, performance, reinforced concrete

Procedia PDF Downloads 443
3546 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 127
3545 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 275
3544 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation

Procedia PDF Downloads 244
3543 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 46
3542 Seismic Performance of Isolated Bridge Configurations with Soil Structure Interaction

Authors: Davide Forcellini

Abstract:

The most recent development of earthquake engineering is based on concept of design consisting in prescribed performance rather than the more traditional prescriptive approaches. The paper aims to assess the effects of isolation devices and soil structure interaction on a benchmark bridge adopting a Performance-Based Earthquake Engineering methodology. Several isolated configurations of abutments and pier connections are compared performing the most representative isolation devices. Isolation systems suitability depends on many factors, mainly connected with ground effects. In this regard, the second purpose of this paper is to assess the effects of soil-structure interaction (SSI) on the studied bridge configurations. Contributions of isolation technique and soil structure interaction are assessed evaluating the resistance effects applied to Peak Ground Acceleration (PGA) levels in terms of cost and time repair quantities.

Keywords: base isolation, bridge, earthquake engineering, non linearity, PBEE methodology, seismic assessment, soil structure interaction

Procedia PDF Downloads 399
3541 Soil Enzyme Activity as Influenced by Post-emergence Herbicides Applied in Soybean [Glycine max (L.) Merrill]

Authors: Uditi Dhakad, Baldev Ram, Chaman K. Jadon, R. K. Yadav, D. L. Yadav, Pratap Singh, Shalini Meena

Abstract:

A field experiment was conducted during Kharif 2021 at Agricultural Research Station, Kota, to evaluate the effect of different post-emergence herbicides applied to soybean [Glycine max (L.) Merrill] on soil enzymes activity viz. dehydrogenase, phosphatase, and urease. The soil of the experimental site was clay loam (vertisols) in texture and slightly alkaline in reaction with 7.7 pH. The soil was low in organic carbon (0.49%), medium in available nitrogen (210 kg/ha), phosphorus (23.5 P2O5 kg/ha), and high in potassium (400 K2O kg/ha) status. The results elucidated that no significant adverse effect on soil dehydrogenase, urease, and phosphatase activity was determined with the application of post-emergence herbicides over the untreated control. Two hands weeding at 20 and 40 DAS registered maximum dehydrogenase enzyme activity (0.329 μgTPF/g soil/d) closely followed by herbicides mixtures and sole herbicide while pre-emergence application of pendimethalin + imazethapyr 960 g a.i./ha and pendimethalin 1.0 kg a.i./ha significantly reduced dehydrogenase enzyme activity compared to control. Urease enzyme activity was not much affected under different weed control treatments and weedy checks. The treatments were found statistically non-significant, and values ranged between 1.16-1.25 μgNH4N/g soil/d. Phosphatase enzyme activity was also not influenced significantly due to various weed control treatments. Though maximum phosphatase enzyme activity (30.17 μgpnp/g soil/hr) was observed under two-hand weeding, followed by fomesafen + fluazifop-p-butyl 220 g a.i./ha. Herbicidal weed control measures did not influence the total bacteria, fungi, and actinomycetes population.

Keywords: dehydrogenase, phosphatase, post-emergence, soil enzymes, urease.

Procedia PDF Downloads 83
3540 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests

Authors: Monalisha Nayak, T. G. Sitharam

Abstract:

Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.

Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)

Procedia PDF Downloads 213
3539 Evaluating the Topsoil and Subsoil Physical Quality Using Relative Bulk Density in Urmia Plain

Authors: Hossein Asgarzadeh, Ayoub Osmani, Farrokh Asadzadeh, Mohammad Reza Mosaddeghi

Abstract:

This study was conducted to evaluate the topsoil and subsoil physical quality using relative bulk density (RBD) in Urmia plain in Iran. Undisturbed samples were collected from two layers (topsoil and subsoil) of thirty agricultural soils. Categories of 0.72 ≥ RBD (low degree of compactness), 0.82 > RBD > 0.72 (moderate/optimum degree of compactness), and RBD ≥ 0.82 (high degree of compactness) were used to evaluate soil physical quality (SPQ). Two topsoils had a low degree of compactness, fourteen topsoils had an optimum degree of compactness, and the rest (i.e., fourteen topsoils) had a high degree of compactness. Only one subsoil had an optimum degree of compactness, and twenty-eight subsoils (i.e., 93%) had a high degree of compactness, indicating poor SPQ of the subsoil layer in the studied region. It seems that conventional tillage in the past decades destroyed the pore system in the majority of studied subsoils. The high degree of compactness would reduce soil aeration and increase soil penetration resistance which could restrict root and plant growth. Conversely, a low degree of soil compactness is expected to reduce the root-soil contact.

Keywords: compactness, relative bulk density, soil physical quality

Procedia PDF Downloads 93
3538 Assessing the Seismic Performance of Threaded Rebar Coupler System

Authors: Do-Kyu Hwang, Ho-Young Kim, Ho-Hyeoung Choi, Gi-Beom Park, Jae-Hoon Lee

Abstract:

Currently there are many use of threaded reinforcing bars in construction fields because those do not need additional screw processing when connecting reinforcing bar by threaded coupler. In this study, reinforced concrete bridge piers using threaded rebar coupler system at the plastic hinge area were tested to evaluate seismic performance. The test results showed that threads of the threaded rebar coupler system could be loosened while under tension-compression cyclic loading because tolerance and rib face angle of a threaded rebar coupler system are greater than that of a conventional ribbed rebar coupler system. As a result, cracks were concentrated just outside of the mechanical coupler and stiffness of reinforced concrete bridge pier decreased. Therefore, it is recommended that connection ratio of mechanical couplers in one section shall be below 50% in order that cracks are not concentrated just outside of the mechanical coupler. Also, reduced stiffness of the specimen should be considered when using the threaded rebar coupler system.

Keywords: reinforced concrete column, seismic performance, threaded rebar coupler, threaded reinforcing bar

Procedia PDF Downloads 347
3537 Experimental Study on Strengthening Systems of Reinforced Concrete Cantilever Slabs

Authors: Aymen H. Khalil, Ashraf M. Heniegal, Bassam A. Abdelsalam

Abstract:

There are many problems related to cantilever slabs such as the time-dependent deformation, corrosion problems of steel reinforcement, and lack of experimental studies on the strength of strengthened cantilever slabs. This paper presents an investigation to evaluate the behavior of reinforced concrete cantilever slabs after strengthening with different techniques. Six medium scale specimens, divided into three groups, were tested along with a control slab. The first group consists of two specimens which were repaired and strengthened using reinforced concrete jacket above with and without shear connector bars, whereas the second group contained two slabs which were strengthened using two strips of two layers of glass fiber reinforced polymer (GFRP) covering 60% and 90% from the cantilever length. The last group involves two specimens strengthened with two steel plates. In one specimen, the steel plates were glued to the surface using epoxy resin. The second specimen, the steel plates were affixed to the concrete surface using expansion bolts. The loading was conducted in two phases. Firstly, the samples were subjected to 40% of the ultimate load of the control slab. Secondly, the specimens reloaded after being strengthened up to failure. The load-deflection, steel strain, concrete strain, failure mode, toughness, and ductility index are discussed in this paper.

Keywords: repair, strengthened, GFRP layers, reloaded, jacketing, cantilever slabs

Procedia PDF Downloads 183
3536 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.

Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering

Procedia PDF Downloads 481
3535 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation

Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino

Abstract:

This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.

Keywords: corn stalk, natural geotextile, retting, soil erosion

Procedia PDF Downloads 273
3534 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: bioremediation, Green Remediation, phytoremediation, remediation technologies, soil

Procedia PDF Downloads 208
3533 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 171
3532 Effects of the Slope Embankment Variation on Influence Areas That Causes the Differential Settlement around of Embankment

Authors: Safitri W. Nur, Prathisto Panuntun L. Unggul, M. Ivan Adi Perdana, R. Dary Wira Mahadika

Abstract:

On soft soil areas, high embankment as a preloading needed to improve the bearing capacity of the soil. For sustainable development, the construction of embankment must not disturb the area around of them. So, the influence area must be known before the contractor applied their embankment design. For several cases in Indonesia, the area around of embankment construction is housing resident and other building. So that, the influence area must be identified to avoid the differential settlement occurs on the buildings around of them. Differential settlement causes the building crack. Each building has a limited tolerance for the differential settlement. For concrete buildings, the tolerance is 0,002 – 0,003 m and for steel buildings, the tolerance is 0,006 – 0,008 m. If the differential settlement stands on the range of that value, building crack can be avoided. In fact, the settlement around of embankment is assumed as zero. Because of that, so many problems happen when high embankment applied on soft soil area. This research used the superposition method combined with plaxis analysis to know the influences area around of embankment in some location with the differential characteristic of the soft soil. The undisturbed soil samples take on 55 locations with undisturbed soil samples at some soft soils location in Indonesia. Based on this research, it was concluded that the effects of embankment variation are if more gentle the slope, the influence area will be greater and vice versa. The largest of the influence area with h initial embankment equal to 2 - 6 m with slopes 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 is 32 m from the edge of the embankment.

Keywords: differential settlement, embankment, influence area, slope, soft soil

Procedia PDF Downloads 385
3531 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls

Authors: Ali Kezmane, Said Boukais, Mohand Hamizi

Abstract:

This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.

Keywords: shear strength, reinforced concrete walls, rectangular walls, shear walls, models

Procedia PDF Downloads 318
3530 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement

Authors: M. Naji, A. R. Khalim, M. Naji

Abstract:

Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.

Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction

Procedia PDF Downloads 270
3529 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 289
3528 Phytoremediation Potential of Hibiscus Cannabinus L. Grown on Different Soil Cadmium Concentration

Authors: Sarra Arbaoui, Taoufik Bettaieb

Abstract:

Contaminated soils and problems related to them have increasingly become a matter of concern. The most common the contaminants generated by industrial urban emissions and agricultural practices are trace metals). Remediation of trace metals which pollute soils can be carried out using physico-chemical processes. Nevertheless, these techniques damage the soil’s biological activity and require expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains pollutants. The potential of kenaf for phytoremediation on Cd-contaminated soil was investigated. kenaf plants have been grown in pots containing different concentrations of cadmium. The observations made were for biomass production and cadmium content in different organs determinate by atomic emission spectrometry. Cadmium transfer from a contaminated soil to plants and into plant tissues are discussed in terms of the Bioconcentration Factor (BCF) and the Transfer Factor (TF). Results showed that Cd was found in kenaf plants at different levels. Tolerance and accumulation potential and biomass productivity indicated that kenaf could be used in phytoremediation.

Keywords: kenaf, cadmium, phytoremediation, contaminated soil

Procedia PDF Downloads 497
3527 An Investigation into the Interaction of Concrete Frames and Infilled Masonry Walls with Emphasis on the Connections

Authors: Hamid Fazlollahi, Behzad Rafezy, Hassan Afshin

Abstract:

There masonry infill increases the stiffness of reinforced concrete frames, thus increasing the force of the earthquake also the interaction between the frame and infill, which can have devastating effects on structures. In contrast presence of infill to increase the structural strength and stability. What is seen in the construction and design of structures has largely ignored the effects of infill and regardless infill structure and its positive and negative effects analyzes and designs, that it is not economically justified and the positive effects of positive infill to be increased and almost all of the useful capacity of moment frames used for infill. In this paper, by using ABAQUS software, reinforced concrete frame with masonry infill will be modeled, then add a mechanical rubber element to modify the interaction between the frame and infill and thus reduce the losses caused by the presence of infill explains. Finally, by comparing the analytical curves, benefits of this approach we will study and to present the results of the interaction between the frame and infill masonry needs modification and methods it will provide.

Keywords: masonry infill, mechanical rubber, reinforced concrete frame, interaction, ductility

Procedia PDF Downloads 429