Search results for: marking vector
658 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 399657 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model
Authors: T. Thein, S. Kalyar Myo
Abstract:
Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)
Procedia PDF Downloads 286656 Analysis of Fixed Beamforming Algorithms for Smart Antenna Systems
Authors: Muhammad Umair Shahid, Abdul Rehman, Mudassir Mukhtar, Muhammad Nauman
Abstract:
The smart antenna is the prominent technology that has become known in recent years to meet the growing demands of wireless communications. In an overcrowded atmosphere, its application is growing gradually. A methodical evaluation of the performance of Fixed Beamforming algorithms for smart antennas such as Multiple Sidelobe Canceller (MSC), Maximum Signal-to-interference ratio (MSIR) and minimum variance (MVDR) has been comprehensively presented in this paper. Simulation results show that beamforming is helpful in providing optimized response towards desired directions. MVDR beamformer provides the most optimal solution.Keywords: fixed weight beamforming, array pattern, signal to interference ratio, power efficiency, element spacing, array elements, optimum weight vector
Procedia PDF Downloads 183655 One Dimensional Magneto-Plasmonic Structure Based On Metallic Nano-Grating
Authors: S. M. Hamidi, M. Zamani
Abstract:
Magneto-plasmonic (MP) structures have turned into essential tools for the amplification of magneto-optical (MO) responses via the combination of MO activity and surface Plasmon resonance (SPR). Both the plasmonic and the MO properties of the resulting MP structure become interrelated because the SPR of the metallic medium. This interconnection can be modified the wave vector of surface plasmon polariton (SPP) in MP multilayer [1] or enhanced the MO activity [2- 3] and also modified the sensor responses [4]. There are several types of MP structures which are studied to enhance MO response in miniaturized configuration. In this paper, we propose a new MP structure based on the nano-metal grating and we investigate the MO and optical properties of this new structure. Our new MP structure fabricate by DC magnetron sputtering method and our home made MO experimental setup use for characterization of the structure.Keywords: Magneto-plasmonic structures, magneto-optical effect, nano-garting
Procedia PDF Downloads 563654 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier
Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš
Abstract:
Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.Keywords: hydrogen, ammonia, catalysis, modelling, kinetics
Procedia PDF Downloads 69653 A Study Regarding Nanotechnologies as a Vector of New European Business Model
Authors: Adriana Radan Ungureanu
Abstract:
The industrial landscape is changing due to the financial crises, poor availability of raw materials, new discoveries and interdisciplinary collaborations. New ideas shape the change through technologies and bring responses for a better life. The process of change is leaded by big players like states and companies, but they cannot keep their places on the market without the help of the small ones. The main tool of change is technology and the entire developed world dedicated efforts for decades in this direction. Even the expectations are not yet met, the research for finding adequate solutions is far from to be stopped. A relevant example is nanotechnology where most of discoveries still remain into laboratory and could not succeed to find the right way to the market. In front of this situation the right question could be: ”Is it worth investing in nanotechnology in the name of an uncertain future but with very little impact on present?” This paper tries to find a positive answer from a three-dimensional approach using a descriptive analyse based on available database supplied by the European case studies, reports, and literature.Keywords: Europe, KET’s, nanotechnology, technology
Procedia PDF Downloads 417652 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 322651 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: classification, data mining, evaluation measures, groundwater
Procedia PDF Downloads 279650 Texture-Based Image Forensics from Video Frame
Authors: Li Zhou, Yanmei Fang
Abstract:
With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.Keywords: multimedia forensics, video frame, LBP, MTP, SVM
Procedia PDF Downloads 427649 Biometric Recognition Techniques: A Survey
Authors: Shabir Ahmad Sofi, Shubham Aggarwal, Sanyam Singhal, Roohie Naaz
Abstract:
Biometric recognition refers to an automatic recognition of individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or determine the identity of an individual. These features are used to provide an authentication for computer based security systems. Applications of such a system include computer systems security, secure electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using biometrics a person could be identified based on 'who she/he is' rather than 'what she/he has' (card, token, key) or 'what she/he knows' (password, PIN). In this paper, a brief overview of biometric methods, both unimodal and multimodal and their advantages and disadvantages, will be presented.Keywords: biometric, DNA, fingerprint, ear, face, retina scan, gait, iris, voice recognition, unimodal biometric, multimodal biometric
Procedia PDF Downloads 755648 Spatial Heterogeneity of Urban Land Use in the Yangtze River Economic Belt Based on DMSP/OLS Data
Authors: Liang Zhou, Qinke Sun
Abstract:
Taking the Yangtze River Economic Belt as an example, using long-term nighttime lighting data from DMSP/OLS from 1992 to 2012, support vector machine classification (SVM) was used to quantitatively extract urban built-up areas of economic belts, and spatial analysis of expansion intensity index, standard deviation ellipse, etc. was introduced. The model conducts detailed and in-depth discussions on the strength, direction, and type of the expansion of the middle and lower reaches of the economic belt and the key node cities. The results show that: (1) From 1992 to 2012, the built-up areas of the major cities in the Yangtze River Valley showed a rapid expansion trend. The built-up area expanded by 60,392 km², and the average annual expansion rate was 31%, that is, from 9615 km² in 1992 to 70007 km² in 2012. The spatial gradient analysis of the watershed shows that the expansion of urban built-up areas in the middle and lower reaches of the river basin takes Shanghai as the leading force, and the 'bottom-up' model shows an expanding pattern of 'upstream-downstream-middle-range' declines. The average annual rate of expansion is 36% and 35%, respectively. 17% of which the midstream expansion rate is about 50% of the upstream and downstream. (2) The analysis of expansion intensity shows that the urban expansion intensity in the Yangtze River Basin has generally shown an upward trend, the downstream region has continued to rise, and the upper and middle reaches have experienced different amplitude fluctuations. To further analyze the strength of urban expansion at key nodes, Chengdu, Chongqing, and Wuhan in the upper and middle reaches maintain a high degree of consistency with the intensity of regional expansion. Node cities with Shanghai as the core downstream continue to maintain a high level of expansion. (3) The standard deviation ellipse analysis shows that the overall center of gravity of the Yangtze River basin city is located in Anqing City, Anhui Province, and it showed a phenomenon of reciprocating movement from 1992 to 2012. The nighttime standard deviation ellipse distribution range increased from 61.96 km² to 76.52 km². The growth of the major axis of the ellipse was significantly larger than that of the minor axis. It had obvious east-west axiality, in which the nighttime lights in the downstream area occupied in the entire luminosity scale urban system leading position.Keywords: urban space, support vector machine, spatial characteristics, night lights, Yangtze River Economic Belt
Procedia PDF Downloads 114647 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 529646 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 520645 Low Complexity Deblocking Algorithm
Authors: Jagroop Singh Sidhu, Buta Singh
Abstract:
A low computational deblocking filter including three frequency related modes (smooth mode, intermediate mode, and non-smooth mode for low-frequency, mid-frequency, and high frequency regions, respectively) is proposed. The suggested approach requires zero additions, zero subtractions, zero multiplications (for intermediate region), no divisions (for non-smooth region) and no comparison. The suggested method thus keeps the computation lower and thus suitable for image coding systems based on blocks. Comparison of average number of operations for smooth, non-smooth, intermediate (per pixel vector for each block) using filter suggested by Chen and the proposed method filter suggests that the proposed filter keeps the computation lower and is thus suitable for fast processing algorithms.Keywords: blocking artifacts, computational complexity, non-smooth, intermediate, smooth
Procedia PDF Downloads 462644 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 513643 Colonization Pattern and Growth of Reintroduced Tiger (Panthera tigris) Population at Central India
Authors: M. S. Sarkar, J. A. Johnson, S. Sen, G. K. Saha, K. Ramesh
Abstract:
There is growing recognition of several important roles played by tigers for maintaining sustainable biodiversity at diverse ecosystems in South and South-East Asia. Only <3200 individuals are left in the wild because of poaching and habitat loss. Thus, restoring wild population is an emerging as well as important conservation initiative, but such efforts still remain challenging due to their elusive and solitary behavior. After careful translocation of few individuals, how reintroduced individuals colonize into suitable habitat and achieve stable stage population through reproduction is vital information for forest managers and policy makers of its 13 distribution range countries. Four wild and two captive radio collared tigers were reintroduced at Panna Tiger Reserve, Madhya-pradesh, India during 2009-2014. We critically examined their settlement behavior and population growth over the period. Results from long term telemetry data showed that male explored larger areas rapidly in short time span, while females explored small area in long time period and with significant high rate of movement in both sexes during exploratory period. Significant difference in home range sizes of tigers were observed in exploratory and settlement period. Though all reintroduced tigers preferred densely vegetated undisturbed forest patches within the core area of tiger reserve, a niche based k select analysis showed that individual variation in habitat selection was prominent among reintroduced tigers. Total 18 litter of >42 known cubs were born with low mortality rate, high maternity rate, high observed growth rate and short generation time in both the sexes. The population achieved its carrying capacity in a very short time span, marking success of this current tiger conservation programme. Our study information could provide significant insights on the tiger biology of translocated tigers with implication for future conservation strategies that consider translocation based recovery in their range countries.Keywords: reintroduction, tiger, home range, demography
Procedia PDF Downloads 219642 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers
Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao
Abstract:
Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties
Procedia PDF Downloads 430641 Bio-Oil Compounds Sorption Enhanced Steam Reforming
Authors: Esther Acha, Jose Cambra, De Chen
Abstract:
Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.Keywords: CO2 sorbent, enhanced steam reforming, hydrogen
Procedia PDF Downloads 579640 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 154639 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks
Authors: L. Parisi
Abstract:
Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation
Procedia PDF Downloads 443638 A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity
Authors: Ladislav Écsi, Roland Jančo
Abstract:
Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed.Keywords: finite strain plasticity, continuum formulation, regularized Mooney-Rivlin material model, compatibility
Procedia PDF Downloads 123637 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.Keywords: rubber bumper, data acquisition, finite element analysis, support vector regression
Procedia PDF Downloads 471636 Efficiency Improvement of REV-Method for Calibration of Phased Array Antennas
Authors: Daniel Hristov
Abstract:
The paper describes the principle of operation, simulation and physical validation of method for simultaneous acquisition of gain and phase states of multiple antenna elements and the corresponding feed lines across a Phased Array Antenna (PAA). The derived values for gain and phase are used for PAA-calibration. The method utilizes the Rotating-Element Electric- Field Vector (REV) principle currently used for gain and phase state estimation of single antenna element across an active antenna aperture. A significant reduction of procedure execution time is achieved with simultaneous setting of different phase delays to multiple phase shifters, followed by a single power measurement. The initial gain and phase states are calculated using spectral and correlation analysis of the measured power series.Keywords: antenna, antenna arrays, calibration, phase measurement, power measurement
Procedia PDF Downloads 137635 Econometric Analysis of West African Countries’ Container Terminal Throughput and Gross Domestic Products
Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi
Abstract:
The west African ports have been experiencing large inflow and outflow of containerized cargo in the last decades, and this has created a quest amongst the countries to attain the status of hub port for the sub-region. This study analyzed the relationship between the container throughput and Gross Domestic Products (GDP) of nine west African countries, using Simple Linear Regression (SLR), Polynomial Regression Model (PRM) and Support Vector Machines (SVM) with a time series of 20 years. The results showed that there exists a high correlation between the GDP and container throughput. The model also predicted the container throughput in west Africa for the next 20 years. The findings and recommendations presented in this research will guide policy makers and help improve the management of container ports and terminals in west Africa, thereby boosting the economy.Keywords: container, ports, terminals, throughput
Procedia PDF Downloads 214634 An Optimal Control Model for the Dynamics of Visceral Leishmaniasis
Authors: Ibrahim M. Elmojtaba, Rayan M. Altayeb
Abstract:
Visceral leishmaniasis (VL) is a vector-borne disease caused by the protozoa parasite of the genus leishmania. The transmission of the parasite to humans and animals occurs via the bite of adult female sandflies previously infected by biting and sucking blood of an infectious humans or animals. In this paper we use a previously proposed model, and then applied two optimal controls, namely treatment and vaccination to that model to investigate optimal strategies for controlling the spread of the disease using treatment and vaccination as the system control variables. The possible impact of using combinations of the two controls, either one at a time or two at a time on the spread of the disease is also examined. Our results provide a framework for vaccination and treatment strategies to reduce susceptible and infection individuals of VL in five years.Keywords: visceral leishmaniasis, treatment, vaccination, optimal control, numerical simulation
Procedia PDF Downloads 404633 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing
Procedia PDF Downloads 320632 The Impact of Malicious Attacks on the Performance of Routing Protocols in Mobile Ad-Hoc Networks
Authors: Habib Gorine, Rabia Saleh
Abstract:
Mobile Ad-Hoc Networks are the special type of wireless networks which share common security requirements with other networks such as confidentiality, integrity, authentication, and availability, which need to be addressed in order to secure data transfer through the network. Their routing protocols are vulnerable to various malicious attacks which could have a devastating consequence on data security. In this paper, three types of attacks such as selfish, gray hole, and black hole attacks have been applied to the two most important routing protocols in MANET named dynamic source routing and ad-hoc on demand distance vector in order to analyse and compare the impact of these attacks on the Network performance in terms of throughput, average delay, packet loss, and consumption of energy using NS2 simulator.Keywords: MANET, wireless networks, routing protocols, malicious attacks, wireless networks simulation
Procedia PDF Downloads 320631 Modelling Export Dynamics in the CSEE Countries Using GVAR Model
Abstract:
The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spill-over effects in the context of globalization and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.Keywords: export, GFEVD, global VAR, international trade, weak exogeneity
Procedia PDF Downloads 301630 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 669629 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images
Authors: Moein Izadi, Ali Mohammadzadeh
Abstract:
Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.Keywords: SVM classifier, disaster management, road damage detection, quickBird images
Procedia PDF Downloads 623