Search results for: machine and plant engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9028

Search results for: machine and plant engineering

8488 Metabolic Profiling of Populus trichocarpa Family 1 UDP-Glycosyltransferases

Authors: Patricia M. B. Saint-Vincent, Anna Furches, Stephanie Galanie, Erica Teixeira Prates, Piet Jones, Nancy Engle, David Kainer, Wellington Muchero, Daniel Jacobson, Timothy J. Tschaplinski

Abstract:

Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that catalyze sugar transfer to a variety of plant metabolites. UGT substrates, which include plant secondary metabolites involved in lignification, demonstrate new activities and incorporation when glycosylated. Knowledge of UGT function, substrate specificity, and enzyme products is important for plant engineering efforts, especially related to increasing plant biomass through lignification. UGTs in Populus trichocarpa, a biofuel feedstock, and model woody plant, were selected from a pool of gene candidates using rapid prioritization strategies. A functional genomics workflow, consisting of a metabolite genome-wide association study (mGWAS), expression of synthetic codon-optimized genes, and high-throughput biochemical assays with mass spectrometry-based analysis, was developed for determining the substrates and products of previously-uncharacterized enzymes. A total of 40 UGTs from P. trichocarpa were profiled, and the biochemical assay results were compared to predicted mGWAS connections. Assay results confirmed seven of 11 leaf mGWAS associations and demonstrated varying levels of substrate specificity among candidate UGTs. P. trichocarpa UGT substrate processing confirms the role of these newly-characterized enzymes in lignan, flavonoid, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress responses.

Keywords: Populus, metabolite-gene associations, GWAS, bio feedstocks, glycosyltransferase

Procedia PDF Downloads 114
8487 Top-Down and Bottom-up Effects in Rhizosphere-Plant-Aphid Interactions

Authors: Anas Cherqui, Audrey Pecourt, Manuella Catterou, Candice Mazoyon, Hervé Demailly, Vivien Sarazin, Frédéric Dubois, Jérôme Duclercq

Abstract:

Aphids are pests that can cause severe yield losses in field crops. Chemical control is currently widely used to control aphids, but this method is increasingly controversial. The pea is able to recruit bacteria that are beneficial to its development, growth and health. However, the effects of this microbial recruitment on plant-insect interactions have generally been underestimated. This study investigated the interactions between Pisum sativum, key bacteria of pea rhizosphere (Rhizobium and Sphingomonas species) and the pea aphid, Acyrthosiphon pisum. We assessed the bottom-up effects of single and combined bacterial inoculations on pea plant health and subsequent aphid performance, as well as the top-down effects of aphid infestation on soil functionality. The presence of S. sediminicola or S. daechungensis limited the fecundity of the pea aphid without strongly affecting its feeding behaviour. Nevertheless, these bacteria limited the effect of A. pisum on the plant phenotype. In addition, the aphid infestation decreased the soil functionality, suggesting a potential strategy to hinder the recruitment of beneficial microorganisms.

Keywords: Acyrthosiphon pisum, Pisum sativum, Sphingomonas, rhizobium, EPG, productivity

Procedia PDF Downloads 21
8486 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 107
8485 A Systematic Review of the Antimicrobial Effects of Different Plant Extracts (Quercus infectoria) as Possible Candidates in the Treatment of Infectious Diseases

Authors: Sajjad Jafari

Abstract:

Background and Aim: The use of herbal medicines has a long history. Today, due to the resistance of microorganisms to antibiotics and antimicrobial substances, herbal medicines have attracted attention due to their significant antimicrobial effects and low toxicity. This study aims to systematically review the antimicrobial effects of different plant extracts (Quercus infectoria) as possible candidates for treating infectious diseases. Material and Methods: The present study is a review study by searching reputable scientific databases such as PubMed, Google Scholar, Scopus, and Web of Science from 2000 to 2023 using the keywords Antimicrobial, Quercus infectoria, Medicinal herbal, Infectious diseases the latest information obtained. Results: In this study, 45 articles were found and reviewed. Quercus infectoria is a small tree native to Greece, Asia Minor, and Iran. Quercus is a plant genus in the family of Fagaceae. This species is generally known under the name ‘‘baloot” in Iran and is commonly used as a medicinal plant. The extracts used included water, hydro-alcoholic, ethanol, methanol. This plant had high inhibition activity and a lethal effect on gram-positive and gram-negative bacteria of ATCC strains, hospital, and resistant strains. Therefore, in addition to antibacterial effects, antiparasitic and antifungal effects. The seed of the plant was the most used and the most effective antimicrobial extract among the ethanol and methanol extracts. Conclusion: The findings of this study suggest that Quercus infectoria has significant antimicrobial effects against a wide range of microorganisms. This makes it a potential candidate for the development of new antimicrobial drugs. Further research is needed to confirm the efficacy and safety of Quercus infectoria in clinical trials.

Keywords: antimicrobial, Quercus infectoria, medicinal herbal, infectious diseases

Procedia PDF Downloads 96
8484 Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov.

Authors: Grecco M. Ante, Princess Rochelle O. Gan

Abstract:

Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines.

Keywords: phytomining, Phyllanthus sp. nov., EDTA, nickel, laterite

Procedia PDF Downloads 465
8483 Application of Crude Palm Oil Liquid Sludge Sewage On Maize (Zea mays. L) as Re-Cycle Possibility to Fertilizer

Authors: Hasan Basri Jumin, Henni Rosneti, Agusnimar

Abstract:

Crude palm oil liquid sludge sewage was treated to maize with 400 cc/plant could be increased mean relative growth rates, net assimilation rate, leaf area and dry weight of seed. There are indicated that 400 cc / plant treated to maize significantly increase the average of mean relative growth rates into 0.32 g.day-1. Net assimilation rates increase from 13.5 mg.m-2.day-1 into 34.5 mg.m-2.day-1, leaf area at 50 days after planting increase from 1419 cm-2 into 2458 cm-2 and dry weight of seed from 38 g per plant into 43 g per plant. Crude palm oil liquid sludge waste chemical analysis indicated that, there are no exceed threshold content of dangerous metals and biology effects. Cadmium content as heavy metal is lower than threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. Biological oxygen demands and chemical oxygen demands as indicators for micro-organism activities, there are under the threshold of human healthy tolerance.

Keywords: crude-palm-oil, fertilizer, liquid-sludge, maize, pollutant, waste

Procedia PDF Downloads 566
8482 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 31
8481 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores

Authors: Natheer Alatawneh

Abstract:

The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.

Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses

Procedia PDF Downloads 252
8480 Design and Finite Element Analysis of Clamp Cylinder for Capacity Augmentation of Injection Moulding Machine

Authors: Vimal Jasoliya, Purnank Bhatt, Mit Shah

Abstract:

The Injection Moulding is one of the principle methods of conversions of plastics into various end products using a very wide range of plastics materials from commodity plastics to specialty engineering plastics. Injection Moulding Machines are rated as per the tonnage force applied. The work present includes Design & Finite Element Analysis of a structure component of injection moulding machine i.e. clamp cylinder. The work of the project is to upgrade the 1300T clamp cylinder to 1500T clamp cylinder for injection moulding machine. The design of existing clamp cylinder of 1300T is checked. Finite Element analysis is carried out for 1300T clamp cylinder in ANSYS Workbench, and the stress values are compared with acceptance criteria and theoretical calculation. The relation between the clamp cylinder diameter and the tonnage capacity has been derived and verified for 1300T clamp cylinder. The same correlation is used to find out the thickness for 1500T clamp cylinder. The detailed design of 1500T cylinder is carried out based on calculated thickness.

Keywords: clamp cylinder, fatigue analysis, finite element analysis, injection moulding machines

Procedia PDF Downloads 335
8479 Genetic Improvement of Centella asiatica (Linn.) Urban. For Therapeutically Active Compounds

Authors: Dalave S. C., S. G. Auti, B. J. Apparao

Abstract:

Centella asiatica (L) Urban, commonly known as Brahmi and Mandookaparni is a valuable medicinal plant highly valued for its asiaticoside and madecassoside. It is widely used in Ayurveda and Unani systems of medicine. Attempts are made in the present investigation to improve the genotype of Centella plant that can yield higher amount of the therapeutically active compounds viz., asiaticosides and madecassosides, employing techniques of polyploidy breeding. Young developing shoots of Centella were treated with different concentrations of colchicine for varying time intervals. 0.4 % colchicine for 6 hours duration at room temperature was effective in inducing autopolyploidy in this plant. The colchicine treated plants were allowed to reproduce vegetatively for several generations in a polyhouse. The colchicine treated plants showed significant increase in plant size, fresh & dry weights, vigorous growth, broad leaves and double the number of chromosomes. HPTLC analysis of dried leaves of control and polyploid plants, even after 9th generations, revealed that the tetraploids synthesized at two times more asiaticoside and madecassoside, as compared to control, untreated diploid plants.

Keywords: Centella asiatica, polyploidy, asiaticosides, madecassoside, HPTLC

Procedia PDF Downloads 245
8478 Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus

Authors: Ian Marc G. Cabugsa, Zarine M. Hermita

Abstract:

Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments.

Keywords: chelating agent EDTA, hyperaccumulator, phytoextraction, phytoremediation, terminalia catappa

Procedia PDF Downloads 384
8477 A Review on the Use of Herbal Alternatives to Antibiotics in Poultry Diets

Authors: Sasan Chalaki, Seyed Ali Mirgholange, Touba Nadri, Saman Chalaki

Abstract:

In the current world, proper poultry nutrition has garnered special attention as one of the fundamental factors for enhancing their health and performance. Concerns related to the excessive use of antibiotics in the poultry industry and their role in antibiotic resistance have transformed this issue into a global challenge in public health and the environment. On the other hand, poultry farming plays a vital role as a primary source of meat and eggs in human nutrition, and improving their health and performance is crucial. One effective approach to enhance poultry nutrition is the utilization of the antibiotic properties of plant-based ingredients. The use of plant-based alternatives as natural antibiotics in poultry nutrition not only aids in improving poultry health and performance but also plays a significant role in reducing the consumption of synthetic antibiotics and preventing antibiotic resistance-related issues. Plants contain various antibacterial compounds, such as flavonoids, tannins, and essential oils. These compounds are recognized as active agents in combating bacteria. Plant-based antibiotics are compounds extracted from plants with antibacterial properties. They are acknowledged as effective substitutes for chemical antibiotics in poultry diets. The advantages of plant-based antibiotics include reducing the risk of resistance to chemical antibiotics, increasing poultry growth performance, and lowering the risk of disease transmission.

Keywords: poultry, antibiotics, essential oils, plant-based

Procedia PDF Downloads 77
8476 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 132
8475 Management of Fungal Diseases of Onion (Allium cepa L.) by Using Plant Extracts

Authors: Shobha U. Jadhav, R. S. Saler

Abstract:

Onion is most Important Vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but the fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil borne pathogens of onion. Effect of three different plant extract (Datura metel, Pongamia pinnata, Ipomoea palmata) at five different concentration Viz, 10,25,50,75 and 100 percentage on these pathogens was studied by food poisoning techniquie. Detura metal gave 94.73% growth of Alternaria porri at 10% extract concentraton and 26.31% growth in 100% extract concentration. As compared to Fusarium oxysporium, and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Pongamia pinnata L. at 10% extract concentration 84.21% growth and at 100% extract concentration 36.84% growth of Stemphylium vesicarium was observed. Stemphylium vesicarium give good in inhibitory response as compared to Alternaria porri and Fusarium oxysporium. Ipomoea palmata in 10% extract concentration 92% growth and in 100% extract concentration 40% growth of Fusarium oxysporium was recorded. Fusarium oxysporium give good inhibitory response as compared to Alternaria porri and, Stemphylium vesicarium.

Keywords: pathogen, onion, plant extract, Allium cepa L.

Procedia PDF Downloads 466
8474 Direct Translation vs. Pivot Language Translation for Persian-Spanish Low-Resourced Statistical Machine Translation System

Authors: Benyamin Ahmadnia, Javier Serrano

Abstract:

In this paper we compare two different approaches for translating from Persian to Spanish, as a language pair with scarce parallel corpus. The first approach involves direct transfer using an statistical machine translation system, which is available for this language pair. The second approach involves translation through English, as a pivot language, which has more translation resources and more advanced translation systems available. The results show that, it is possible to achieve better translation quality using English as a pivot language in either approach outperforms direct translation from Persian to Spanish. Our best result is the pivot system which scores higher than direct translation by (1.12) BLEU points.

Keywords: statistical machine translation, direct translation approach, pivot language translation approach, parallel corpus

Procedia PDF Downloads 487
8473 Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures

Authors: Sunil Verma

Abstract:

This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6.

Keywords: combustion, autoignition, ignition delay, rapid compression machine

Procedia PDF Downloads 351
8472 Performances Analysis and Optimization of an Adsorption Solar Cooling System

Authors: Nadia Allouache

Abstract:

The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.

Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling

Procedia PDF Downloads 439
8471 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads

Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei

Abstract:

The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.

Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load

Procedia PDF Downloads 107
8470 Analysis of Behaviors of Single and Group Helical Piles in Sands from Experiment Results

Authors: Jongho Park, Junwon Lee, Byeonghyun Choi, Kicheol Lee, Dongwook Kim

Abstract:

The typically-used oil sand plant foundations are driven pile or drilled shaft. With more strict environmental regulations world widely, it became more important to completely remove the foundation during the stage of plant demolition. However, it is difficult to remove driven piles or drilled shafts that are installed at a deeper and stronger depth to gain more bearing pile capacity. The helical pile can be easily removed after its use and recycled; therefore it is suitable for oil sand plant foundation. This study analyzes the behavior of helical piles in sands. Axial pile load tests were carried out the varying spacing of helix plates (helices), rotation speed and weight of axial loading during pile installation. From the experiments, optimal helix plate spacing, rotation speed, axial loading during installation were determined. In addition, the behavior of helical pile groups was examined varying pile spacing. Finally, the behavior of single helical piles and that of group helical piles were compared.

Keywords: oil sand plant, pile load test, helical pile, group helical pile, behavior

Procedia PDF Downloads 167
8469 Study of NGL Feed Price Calculation for a Typical NGL Fractionation Plant

Authors: Simin Eydivand, Ali Ghanadieslami, Reza Amiri

Abstract:

Natural gas liquids (NGLs) are light hydrocarbons that are dissolved in associated or non‐associated natural gas in a hydrocarbon reservoir and are produced within a gas stream. There are different ways to calculate the price of NGL. In this study, a spreadsheet calculation method is used for calculation of NGL price with an attractive economy of IRR 25%. For a typical NGL Plant with 3,200,000 t/y capacity of investment and operation of 90% capacity to have IRR 25%, the price of NGL is calculated 277 $/t.

Keywords: natural gas liquid, NGL, LPG, price, NGL fractionation, NF, investment, IRR, NPV

Procedia PDF Downloads 405
8468 Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada

Authors: J. Jayasuriya

Abstract:

In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site.

Keywords: solar efficiency, building sustainability, PV panel, solar energy

Procedia PDF Downloads 136
8467 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 277
8466 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 165
8465 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads

Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan

Abstract:

Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.

Keywords: stream speed, urban roads, machine learning, traffic flow

Procedia PDF Downloads 70
8464 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 376
8463 Cryptolepis sanguinolenta - A Medicinal Plant Used in the Treatment of Malaria, Cultivate It or Lose It

Authors: J. Naalamle Amissah, Dorcas Osei‐Safo, C. M. Asare, Benjamin Missah‐Assihene, Eric. Y. Danquah, Ivan Addae‐Mensah

Abstract:

Medicinal plants serve as a reservoir of active ingredients for the treatment of common ailments such as cancer, malaria and diabetes. With the recent wave of health consciousness and reliance on plant based medicines, the demand for medicinal plants has increased considerably. This surge in medicinal plant use has raised great concern amongst key players (herbalist, collectors, conservationist and researchers) along the value chain about the sustainability of the raw material. The over reliance on wild crafting as a means to obtain the raw material spells doom for several of Africa’s native medicinal plant species. In this study domestication protocols for the cultivation of Cryptolepis sanguinolenta (CS), a medicinal plant used in the treatment of malaria were developed. Initial surveys were conducted, using questionnaires comprising of open and close ended questions, to gather information that would inform the domestication and cultivation of the species. A field study was then conducted to determine the plant’s cropping cycle and the effect of staking and plant age on the active ingredient (cryptolepine) concentration in its roots. Results of the survey confirmed the demand for the raw material and threw more light on the harvesting methods and intensity of CS collection from the wild. Cryptolepine concentration was found to be highest (~1.84 mg/100 mg of root material) at 289 days after planting (DAP) which coincided with the peak of root dry weight (52.8 g), signifying the best time for root harvest. Staking was found to be important for seed production. The first 105 DAP were characterized by low yields of root dry weight (13.5 g), followed by a period of rapid growth in which the root dry weight increased almost linearly until 289 DAP. Although dry matter partitioned to the vines increased towards the end of the experimental period (60%), dry matter partitioned to the roots remained fairly constant (30%) throughout the experimental period. Cryptolepine was found to increase as the plant aged and the practice of staking CS promoted pod formation. A suitable cropping cycle for the cultivation of CS was also developed.

Keywords: domestication, staking, conservation, wild harvesting

Procedia PDF Downloads 385
8462 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor

Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee

Abstract:

Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.

Keywords: accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test

Procedia PDF Downloads 611
8461 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 297
8460 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 369
8459 Design of an Automatic Bovine Feeding Machine

Authors: Huseyin A. Yavasoglu, Yusuf Ziya Tengiz, Ali Göksenli

Abstract:

In this study, an automatic feeding machine for different type and class of bovine animals is designed. Daily nutrition of a bovine consists of grass, corn, straw, silage, oat, wheat and different vitamins and minerals. The amount and mixture amount of each of the nutrition depends on different parameters of the bovine. These parameters are; age, sex, weight and maternity of the bovine, also outside temperature. The problem in a farm is to constitute the correct mixture and amount of nutrition for each animal. Faulty nutrition will cause an insufficient feeding of the animal concluding in an unhealthy bovine. To solve this problem, a new automatic feeding machine is designed. Travelling of the machine is performed by four tires, which is pulled by a tractor. The carrier consists of eight bins, which each of them carries a nutrition type. Capacity of each unit is 250 kg. At the bottom of each chamber is a sensor measuring the weight of the food inside. A funnel is at the bottom of each chamber by which open/close function is controlled by a valve. Each animal will carry a RFID tag including ID on its ear. A receiver on the feeding machine will read this ID and by given previous information by the operator (veterinarian), the system will detect the amount of each nutrition unit which will be given to the selected animal for feeding. In the system, each bin will open its exit gate by the help of the valve under the control of PLC (Programmable Logic Controller). The amount of each nutrition type will be controlled by measuring the open/close time. The exit canals of the bins are collected in a reservoir. To achieve a homogenous nitration, the collected feed will be mixed by a worm gear. Further the mixture will be transported by a help of a funnel to the feeding unit of the animal. The feeding process can be performed in 100 seconds. After feeding of the animal, the tractor pulls the travelling machine to the next animal. By the help of this system animals can be feeded by right amount and mixture of nutrition

Keywords: bovine, feeding, nutrition, transportation, automatic

Procedia PDF Downloads 342