Search results for: flotation machines
206 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 274205 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 82204 Noise Measurement and Awareness at Construction Site: A Case Study
Authors: Feiruz Ab'lah, Zarini Ismail, Mohamad Zaki Hassan, Siti Nadia Mohd Bakhori, Mohamad Azlan Suhot, Mohd Yusof Md. Daud, Shamsul Sarip
Abstract:
The construction industry is one of the major sectors in Malaysia. Apart from providing facilities, services, and goods it also offers employment opportunities to local and foreign workers. In fact, the construction workers are exposed to a hazardous level of noises that generated from various sources including excavators, bulldozers, concrete mixer, and piling machines. Previous studies indicated that the piling and concrete work was recorded as the main source that contributed to the highest level of noise among the others. Therefore, the aim of this study is to obtain the noise exposure during piling process and to determine the awareness of workers against noise pollution at the construction site. Initially, the reading of noise was obtained at construction site by using a digital sound level meter (SLM), and noise exposure to the workers was mapped. Readings were taken from four different distances; 5, 10, 15 and 20 meters from the piling machine. Furthermore, a set of questionnaire was also distributed to assess the knowledge regarding noise pollution at the construction site. The result showed that the mean noise level at 5m distance was more than 90 dB which exceeded the recommended level. Although the level of awareness regarding the effect of noise pollution is satisfactory, majority of workers (90%) still did not wear ear protecting device during work period. Therefore, the safety module guidelines related to noise pollution controls should be implemented to provide a safe working environment and prevent initial occupational hearing loss.Keywords: construction, noise awareness, noise pollution, piling machine
Procedia PDF Downloads 385203 Analysis of the Effects of Vibrations on Tractor Drivers by Measurements With Wearable Sensors
Authors: Gubiani Rino, Nicola Zucchiatti, Da Broi Ugo, Bietresato Marco
Abstract:
The problem of vibrations in agriculture is very important due to the different types of machinery used for the different types of soil in which work is carried out. One of the most commonly used machines is the tractor, where the phenomenon has been studied for a long time by measuring the whole body and placing the sensor on the seat. However, this measurement system does not take into account the characteristics of the drivers, such as their body index (BMI), their gender (male, female) or the muscle fatigue they are subjected to, which is highly dependent on their age for example. The aim of the research was therefore to place sensors not only on the seat but along the spinal column to check the transmission of vibration on drivers with different BMI on different tractors and at different travel speeds and of different genders. The test was also done using wearable sensors such as a dynamometer applied to the muscles, the data of which was correlated with the vibrations produced by the tractor. Initial data show that even on new tractors with pneumatic seats, the vibrations attenuate little and are still correlated with the roughness of the track travelled and the forward speed. Another important piece of data are the root-mean square values referred to 8 hours (A(8)x,y,z) and the maximum transient vibration values (MTVVx,y,z) and, the latter, the MTVVz values were problematic (limiting factor in most cases) and always aggravated by the speed. The MTVVx values can be lowered by having a tyre-pressure adjustment system, able to properly adjust the tire pressure according to the specific situation (ground, speed) in which a tractor is operating.Keywords: fatigue, effect vibration on health, tractor driver vibrations, vibration, muscle skeleton disorders
Procedia PDF Downloads 71202 High Rise Building Vibration Control Using Tuned Mass Damper
Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor
Abstract:
This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper
Procedia PDF Downloads 340201 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 369200 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe
Authors: Ziya Uddin
Abstract:
This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer
Procedia PDF Downloads 390199 Interaction Design In Home Appliance: An Integrated Approach InKanseiAnd Hedonomic “Cases: Rice Cooker, Juicer, Mixer”
Authors: Sara Mostowfi, Hassan Sadeghinaeini, Sana Behnamasl, Leila Ensaniat, Maryam Mostafaee
Abstract:
Nowadays, most of product producers, e.g. home appliance, electronic machines and vehicles focus on quality and comfort, and promise consumers ease of use and pleasurable experiences during product using. Consumers make their purchase decisions according to two needs: functional and emotional needs. Functional needs are fulfilled by product functionality, besides emotional needs are related to psychologists’ aspects of production. Emotions are distinctive elements which should be added to products and services to lead them up. In this case, the authors’ survey conducted pleasurable and hedonomic aspects in products of a home appliance company in Iran. In this regard, three samples of home appliance were selected: mixer, rice cooker, iron. Fifteen women (20-60) participated in this study. Every user evaluated each product by questionnaire based on 7 point semantic differential scale. After analyzing the results with statistical methods, results showed that 90% of users aren’t satisfied with hedonic and pleasurable criteria in interaction with these products. They notified that regarding hedonomics and pleasurable criteria’s they will have better ease of use and functionality. Our findings show a significant association between products’ features and user satisfaction. It seems that industrial design has a significant impression on the company’s products and with regard the pleasurable criteria the company sales will be more successful.Keywords: home appliance, interaction, pleasure, hedonomy, ergonomy
Procedia PDF Downloads 382198 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 70197 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads
Authors: Riaan Kleyn
Abstract:
Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.Keywords: computer vision, wine grapes, machine learning, machine harvested grapes
Procedia PDF Downloads 96196 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 101195 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 340194 Modern Agriculture and Industrialization Nexus in the Nigerian Context
Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon, Olabanji Ewetan
Abstract:
Modern agriculture involves the use of improved tools and equipment (instead of crude and ineffective tools) like tractors, hand operated planters, hand operated fertilizer drills and combined harvesters - which increase agricultural productivity. Farmers in Nigeria still have huge potentials to enhance their productivity. The study argues that the increase in agricultural output due to increased productivity, orchestrated by modern agriculture will promote forward linkages and opportunities in the processing sub-sector; both the manufacturing of machines and the processing of raw materials. Depending on existing incentives, foreign investment could be attracted to augment local investment in the sector. The availability of raw materials in large quantity – which prices are competitive – will attract investment in other industries. In addition, potentials for backward linkages will also be created. In a nutshell, adopting the unbalanced growth theory in favour of the agricultural sector could engender industrialization in a country with untapped potentials. The paper highlights the numerous potentials of modern agriculture that are yet to be tapped in Nigeria and also provides a theoretical analysis of how the realization of such potentials could promote industrialization in the country. The study adopts the Lewis’ theory of structural–change model and Hirschman’s theory of unbalanced growth in the design of the analytical framework. The framework will be useful in empirical studies that will guide policy formulation.Keywords: modern agriculture, industrialization, structural change model, unbalanced growth
Procedia PDF Downloads 304193 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor
Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher
Abstract:
The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application
Procedia PDF Downloads 192192 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 305191 Designing and Prototyping Permanent Magnet Generators for Wind Energy
Authors: T. Asefi, J. Faiz, M. A. Khan
Abstract:
This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms
Procedia PDF Downloads 151190 Muscle Activation Comparisons in a Lat Pull down Exercise with Machine Weights, Resistance Bands and Body Weight Exercises
Authors: Trevor R. Higgins
Abstract:
The aim of this study was to compare muscle activation of the latissimus dorsi between pin-loaded machine (Lat Pull Down), resistance band (Lat Pull Down) and body-weight (Chin Up) exercises. A convenient sample of male college students with >2 years resistance training experience volunteered for the study. A paired t-test with repeated measures designs was carried out on results from EMG analysis. EMG analysis was conducted with Trigno wireless sensors (Delsys) placed laterally on the latissimus dorsi (left and right) of each participant. By conventional criteria the two-tailed P value suggested that differences between pin-loaded and body-weight was not significantly different (p = 0.93) and differences between pin-loaded and resistance band was not significantly different (p = 0.17) in muscle activity. In relation to conventional criteria the two-tailed P value suggested differences between body-weight and resistance band was not quite significantly different (p = 0.06) in muscle activity. However, effect size trends indicated that both body-weight and pin-loaded exercises where more effective in stimulating muscle electrical activity than a resistance band with male college athletes with >2 years resistance training experience. Although, resistance bands have increased in popularity in health and fitness centres, that for well-trained participants, they may not be effective in stimulating muscles of the latissimus dorsi. Therefore, when considering equipment and exercise selection for experienced resistance training participants pin-loaded machines and body-weight should be prescribed.Keywords: pin-loaded, resistance bands, body weight, EMG analysis
Procedia PDF Downloads 267189 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility
Authors: Etienne Provencal, David L. St-Pierre
Abstract:
A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.Keywords: EGM, linear regression, model prediction, slot operations
Procedia PDF Downloads 255188 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company
Authors: Farzad Jafarpour Taher, Maghsud Solimanpur
Abstract:
Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.Keywords: multi-period, multi-product production, multi-stage, production planning
Procedia PDF Downloads 98187 On the Development of Medical Additive Manufacturing in Egypt
Authors: Khalid Abdelghany
Abstract:
Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants
Procedia PDF Downloads 315186 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 206185 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 410184 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: cloud computing systems, multicore systems, parallel Delaunay triangulation, parallel surface modeling and generation
Procedia PDF Downloads 206183 Finite Element Analysis of a Modular Brushless Wound Rotor Synchronous Machine
Authors: H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno-Mariani, S. Mollov, N. Voyer
Abstract:
This paper presents a comparative study of different modular brushless wound rotor synchronous machine (MB-WRSM). The goal of the study is to highlight the structure which offers the best fault tolerant capability and the highest output performances. The fundamental winding factor is calculated by using the method based on EMF phasors as a significant criterion to select the preferred number of phases, stator slots, and poles. With the limited number of poles for a small machine (3.67kW/7000rpm), 15 different machines for preferred phase/slot/pole combinations are analyzed using two-dimensional (2-D) finite element method and compared according to three criteria: torque density, torque ripple and efficiency. The 7phase/7slot/6pole machine is chosen with the best compromise of high torque density, small torque ripple (3.89%) and high nominal efficiency (95%). This machine is then compared with a reference design surface permanent magnet synchronous machine (SPMSM). In conclusion, this paper provides an electromagnetic analysis of a new brushless wound-rotor synchronous machine using multiphase non-overlapping fractional slot double layer winding. The simulation results are discussed and demonstrate that the MB-WRSM presents interesting performance features, with overall performance closely matching that of an equivalent SPMSM.Keywords: finite element method (FEM), machine performance, modular wound rotor synchronous machine, non-overlapping concentrated winding
Procedia PDF Downloads 290182 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling
Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar
Abstract:
The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength
Procedia PDF Downloads 74181 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 26180 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: environmental industry, separator, CFD, fine aggregate
Procedia PDF Downloads 595179 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: DBSCAN, potential function, speech signal, the UBSS model
Procedia PDF Downloads 135178 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 480177 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing
Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin
Abstract:
Garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, and also a complicated sewing operation. Due to these reasons, garment manufacturers created systems to monitor and control the product’s quality regularly by conducting quality approaches to minimize variation. The aims of this research were to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas-quality systems and tools; quality control and types of inspection; sampling procedures chosen for garment inspection. The focus of this research also aimed to distinguish quality approaches used by companies that supplied the finished garments to both domestic and international markets. The feedback from each of company’s representatives was obtained using the online survey, which comprised of five sections and 44 questions on the organizational profile and quality approaches used in the garment industry. The results revealed that almost all companies had established their own mechanism of process control by conducting a series of quality inspection for daily production either it was formally been set up or vice versa. Quality inspection was the predominant quality control activity in the garment manufacturing and the level of complexity of these activities was substantially dictated by the customers. AQL-based sampling was utilized by companies dealing with the export market, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. This research provides an insight into the implementation of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.Keywords: garment manufacturing, quality approaches, quality control, inspection, Acceptance Quality Limit (AQL), sampling
Procedia PDF Downloads 444