Search results for: fixed end
876 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst
Authors: Napat Hataivichian
Abstract:
The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.Keywords: alumina, dehydrogenation, platinum, transition metal
Procedia PDF Downloads 310875 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors
Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein
Abstract:
We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.Keywords: control, decentralized, gathering, multi-agent, simple sensors
Procedia PDF Downloads 164874 Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology
Authors: Vipan Kumar Sohpal
Abstract:
Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values.Keywords: crystal violet dye, CVD, castor leaf powder, CLP, response surface methodology, temperature, optimization
Procedia PDF Downloads 132873 Electrical and Magnetoelectric Properties of (y)Li0.5Ni0.7Zn0.05Fe2O4 + (1-y)Ba0.5Sr0.5TiO3 Magnetoelectric Composites
Authors: S. U. Durgadsimi, S. Chouguleb, S. Belladc
Abstract:
(y) Li0.5Ni0.7Zn0.05Fe2O4 + (1-y) Ba0.5Sr0.5TiO3 magnetoelectric composites with y = 0.1, 0.3 and 0.5 were prepared by a conventional standard double sintering ceramic technique. X-ray diffraction analysis confirmed the phase formation of ferrite, ferroelectric and their composites. logρdc Vs 1/T graphs reveal that the dc resistivity decreases with increasing temperature exhibiting semiconductor behavior. The plots of logσac Vs logω2 are almost linear indicating that the conductivity increases with increase in frequency i.e, conductivity in the composites is due to small polaron hopping. Dielectric constant (έ) and dielectric loss (tan δ) were studied as a function of frequency in the range 100Hz–1MHz which reveals the normal dielectric behavior except the composite with y=0.1 and as a function of temperature at four fixed frequencies (i.e. 100Hz, 1KHz, 10KHz, 100KHz). ME voltage coefficient decreases with increase in ferrite content and was observed to be maximum of about 7.495 mV/cmOe for (0.1) Li0.5Ni0.7Zn0.05Fe2O4 + (0.9) Ba0.5Sr0.5TiO3 composite.Keywords: XRD, dielectric constant, dielectric loss, DC and AC conductivity, ME voltage coefficient
Procedia PDF Downloads 344872 Performance Evaluation of Grid Connected Photovoltaic System
Authors: Abdulkadir Magaji
Abstract:
This study analyzes and compares the actual measured and simulated performance of a 3.2 kwP grid-connected photovoltaic system. The system is located at the Outdoor Facility of Government Day secondary School Katsina State, which lies approximately between coordinate of 12°15′N 7°30′E. The system consists of 14 Mono crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 340. The data presented in this study were measured in the year 2015, where the system supplied a total of 4628 kWh to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study shows 58.4% is higher than those reported elsewhere as compared in the study.Keywords: performance, evaluation, grid connection, photovoltaic system
Procedia PDF Downloads 181871 Conflict and Hunger Revisit: Evidences from Global Surveys, 1989-2020
Authors: Manasse Elusma, Thung-Hong Lin, Chun-yin Lee
Abstract:
The relationship between hunger and war or conflict remains to be discussed. Do wars or conflicts cause hunger and food scarcity, or is the reverse relationship is true? As the world becomes more peaceful and wealthier, some countries are still suffered from hunger and food shortage. So, eradicating hunger calls for a more comprehensive understanding of the relationship between conflict and hunger. Several studies are carried out to detect the importance of conflict or war on food security. Most of these studies, however, perform only descriptive analysis and largely use food security indicators instead of the global hunger index. Few studies have employed cross-country panel data to explicitly analyze the association between conflict and chronic hunger, including hidden hunger. Herein, this study addresses this issue and the knowledge gap. We combine global datasets to build a new panel dataset including 143 countries from 1989 to 2020. This study examines the effect of conflict on hunger with fixed effect models, and the results show that the increase of conflict frequency deteriorates hunger. Peacebuilding efforts and war prevention initiative are required to eradicate global hunger.Keywords: armed conflict, food scarcity, hidden hunger, hunger, malnutrition
Procedia PDF Downloads 172870 Geo-Additive Modeling of Family Size in Nigeria
Authors: Oluwayemisi O. Alaba, John O. Olaomi
Abstract:
The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.Keywords: Bayesian analysis, family size, geo-additive model, negative binomial
Procedia PDF Downloads 541869 Utilization of Municipal Solid Waste in Thermal Power Production: A Techno-Economic Study of Kasur City, Punjab, Pakistan
Authors: Hafiz Muhammad Umer Aslam, Mohammad Rafiq Khan
Abstract:
This techno-economic study reports the feasibility of generating thermoelectric power from municipal solid waste (MSW) of Kasur City by incineration process. The data was gathered from different establishments of Kasur, through appropriate permission from their heads, and processed to design different alternative projects for installation of a thermal power plant in the city of Kasur. A technique of discounted cash flow was used to evaluate alternative projects so that their Benefit to Cost Ratio, Net Present Value, Internal Rate of Return and Payback Period can be determined. The study revealed that Kasur City currently consumes 18MWh electricity and generates 179 tons/day MSW. The generated waste has the ability to produce 2.1MWh electricity at the cost of USD 0.0581/unit with an expenditure of USD 3,907,692 as initial fixed investment of forming about 1/7th of consumption of Kasur. The cost from this source, when compared to current rate of electricity in Pakistan (USD 0.1346), is roughly half.Keywords: Kasur City, resource recovery, thermoelectric power, waste management
Procedia PDF Downloads 170868 Study on Robot Trajectory Planning by Robot End-Effector Using Dual Curvature Theory of the Ruled Surface
Authors: Y. S. Oh, P. Abhishesh, B. S. Ryuh
Abstract:
This paper presents the method of trajectory planning by the robot end-effector which accounts for more accurate and smooth differential geometry of the ruled surface generated by tool line fixed with end-effector based on the methods of curvature theory of ruled surface and the dual curvature theory, and focuses on the underlying relation to unite them for enhancing the efficiency for trajectory planning. Robot motion can be represented as motion properties of the ruled surface generated by trajectory of the Tool Center Point (TCP). The linear and angular properties of the six degree-of-freedom motion of end-effector are computed using the explicit formulas and functions from curvature theory and dual curvature theory. This paper explains the complete dualization of ruled surface and shows that the linear and angular motion applied using the method of dual curvature theory is more accurate and less complex.Keywords: dual curvature theory, robot end effector, ruled surface, TCP (Tool Center Point)
Procedia PDF Downloads 365867 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 69866 Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement
Authors: Masao Nakagawa, Toshiki Hirogaki, Eiichi Aoyama, Mohamed Ali Ben Abbes
Abstract:
A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes.Keywords: dynamic characteristic, gear, planetary gear set, torque measuring
Procedia PDF Downloads 381865 A New Study on Mathematical Modelling of COVID-19 with Caputo Fractional Derivative
Authors: Sadia Arshad
Abstract:
The new coronavirus disease or COVID-19 still poses an alarming situation around the world. Modeling based on the derivative of fractional order is relatively important to capture real-world problems and to analyze the realistic situation of the proposed model. Weproposed a mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework. The new model is formulated in the Caputo sense and employs a nonlinear time-varying transmission rate. The existence and uniqueness solutions of the fractional order derivative have been studied using the fixed-point theory. The associated dynamical behaviors are discussed in terms of equilibrium, stability, and basic reproduction number. For the purpose of numerical implementation, an effcient approximation scheme is also employed to solve the fractional COVID-19 model. Numerical simulations are reported for various fractional orders, and simulation results are compared with a real case of COVID-19 pandemic. According to the comparative results with real data, we find the best value of fractional orderand justify the use of the fractional concept in the mathematical modelling, for the new fractional modelsimulates the reality more accurately than the other classical frameworks.Keywords: fractional calculus, modeling, stability, numerical solution
Procedia PDF Downloads 111864 Robust State feedback Controller for an Active Suspension System
Authors: Hussein Altartouri
Abstract:
The purpose of this paper is to present a modeling and control of the active suspension system using robust state feedback controller implemented for a half car model. This system represents a mechatronic system which contains all the essential components to be considered a complete mechatronic system. This system must adapt different conditions which are difficult to compromise, such as disturbances, slippage, and motion on rough road (that contains rocks, stones, and other miscellanies). Some current automobile suspension systems use passive components only by utilizing spring and damping coefficient with fixed rates. Vehicle suspensions systems are used to provide good road handling and improve passenger comfort. Passive suspensions only offer compromise between these two conflicting criteria. Active suspension poses the ability to reduce the traditional design as a compromise between handling and comfort by directly controlling the suspensions force actuators. In this study, the robust state feedback controller implemented to the active suspensions system for half car model.Keywords: half-car model, active suspension system, state feedback, road profile
Procedia PDF Downloads 393863 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)
Procedia PDF Downloads 365862 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 90861 Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre
Authors: Gloria James, S. K. Nema, T. S. Anantha Singh, P. Vadivel Murugan
Abstract:
The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres.Keywords: plasma, gasification, syngas, tyre waste
Procedia PDF Downloads 182860 Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles
Authors: H. K. Sachidananda, K. Raghunandana, B. Shivamurthy
Abstract:
The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°.Keywords: altered tooth-sum gearing, bending fatigue, mesh stiffness, spur gear
Procedia PDF Downloads 325859 Effects of Dividend Policy on Firm Profitability and Growth in Light of Present Economic Conditions
Authors: Madani Chahinaz
Abstract:
This study aims to shed light on the impact of dividend policy on corporate profitability and its relationship to growth, considering the economic developments taking place. The study was conducted on a sample of seven companies for the period from 2014 to 2020, based on a set of determinants to select variables affecting dividend distribution, where the descriptive analytical approach relied upon using graphical data models. The study concluded that companies that follow a well-studied dividend distribution policy enjoy higher profitability rates, which contributes to enhancing their growth in light of the economic developments taking place. There is also no statistically significant relationship between the variables of total asset growth and fixed asset growth and profitability. The study also concluded that there is statistical significance for the relationship between the sales volume growth variable, the self-financing ratio variable, and dividend distribution at a significance level of 0.05, as the random effects model was able to explain 68% of the changes in dividend distribution policy.Keywords: dividend distribution policy, profitability, growth, self-financing ratio
Procedia PDF Downloads 9858 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 149857 Corporate Governance and Firms` Performance: Evidence from Quoted Firms on the Nigerian Stock Exchange
Authors: Ogunwole Cecilia Oluwakemi, Wahid Damilola Olanipekun, Omoyele Olufemi Samuel, Timothy Ayomitunde Aderemi
Abstract:
The issues relating to corporate governance in both locally and internationally managed firms cannot be overemphasized because the lack of efficient corporate governance could orchestrate serious problems in any organization. Against this backdrop, this study examines the nexus between corporate governance and performance of firms from 2012 to 2020, using the case study of the Nigerian stock exchange. Consequently, data was collected from forty (40) listed firms on the Nigerian Stock Exchange. The study employed a fixed effect technique of estimation to address the objective of the study. It was discovered from the study that the influence of corporate governance components such as gender diversity, board independence and managerial ownership led to a significant positive impact on the performance of the firms under the investigation. In view of the above finding, this study makes the following recommendations for the policymakers in Nigeria that anytime the goal of the policymakers is the improvement of performance of the listed firms in the Nigerian stock exchange, board independence and a balance in the inclusion of male and female among the board of directors should be encouraged in these firms.Keywords: corporate, governance, firms, performance, Nigeria, stock, exchange
Procedia PDF Downloads 176856 Development of Thermo-Regulating Fabric Using Microcapsules of Phase Change Material
Authors: D. Benmoussa, H. Hannache, O. Cherkaoui
Abstract:
In textiles, the major interest in microencapsulation is currently in the application of durable fragrances, skin softeners, phase-change materials, antimicrobial agents and drug delivery systems onto textile materials. In our research “Polyethylene Glycol” was applied as phase change material and it was encapsulated in polymethacrylic acid (PMA) by radical polymerization in suspension of methacrylic acid in presence of N,N'-methylenebisacrylamide (MBAM) as crosslinking agent. Thereafter the obtained microcapsule was modified by amidation with ethylenediamine as a spacer molecule. At the end of this spacer trichlorotriazine reactive group was fixed. Microcapsules were grafted onto cotton textile substrate. The surface morphologies of the microencapsulated phase change materials (micro PCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared micro PCMs were investigated by differential scanning calorimetry (DSC) and thermogravmetric analysis (TGA). The results obtained show the obtaining microcapsules with a mean diameter of 10 µm and the resistance of the microcapsules is demonstrated by thermal analysis.Keywords: energy storage, microencapsulation, phase-change materials, thermogravmetric analysis (TGA)
Procedia PDF Downloads 675855 Flow Visualization around a Rotationally Oscillating Cylinder
Authors: Cemre Polat, Mustafa Soyler, Bulent Yaniktepe, Coskun Ozalp
Abstract:
In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder.Keywords: active flow control, cylinder, flow visualization rotationally oscillating
Procedia PDF Downloads 175854 Achievable Average Secrecy Rates over Bank of Parallel Independent Fading Channels with Friendly Jamming
Authors: Munnujahan Ara
Abstract:
In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers.Keywords: fading parallel channels, wire-tap channel, OFDM, secrecy capacity, power allocation
Procedia PDF Downloads 512853 High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics
Authors: J. Hidalgo de Quintana, I. Stoner, M. Tackett, G. Doran, C. Rafferty, A. Windemuth, J. Tytell, D. Pregibon
Abstract:
We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particlebased multiplexing, using patented Firefly hydrogel particles, with single step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens.Keywords: biomarkers, biofluids, miRNA, photolithography, flowcytometry
Procedia PDF Downloads 369852 Comparative Analysis of Effecting Factors on Fertility by Birth Order: A Hierarchical Approach
Authors: Ali Hesari, Arezoo Esmaeeli
Abstract:
Regarding to dramatic changes of fertility and higher order births during recent decades in Iran, access to knowledge about affecting factors on different birth orders has crucial importance. In this study, According to hierarchical structure of many of social sciences data and the effect of variables of different levels of social phenomena that determine different birth orders in 365 days ending to 1390 census have been explored by multilevel approach. In this paper, 2% individual row data for 1390 census is analyzed by HLM software. Three different hierarchical linear regression models are estimated for data analysis of the first and second, third, fourth and more birth order. Research results displays different outcomes for three models. Individual level variables entered in equation are; region of residence (rural/urban), age, educational level and labor participation status and province level variable is GDP per capita. Results show that individual level variables have different effects in these three models and in second level we have different random and fixed effects in these models.Keywords: fertility, birth order, hierarchical approach, fixe effects, random effects
Procedia PDF Downloads 339851 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase
Authors: Dengyu You, Alireza Kashani
Abstract:
This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.Keywords: concrete 3D printing, staircase, sustainability, automation
Procedia PDF Downloads 105850 Fiscal Size and Composition Effects on Growth: Empirical Evidence from Asian Economies
Authors: Jeeban Amgain
Abstract:
This paper investigates the impact of the size and composition of government expenditure and tax on GDP per capita growth in 36 Asian economies over the period of 1991-2012. The research employs the technique of panel regression; Fixed Effects and Generalized Method of Moments (GMM) as well as other statistical and descriptive approaches. The finding concludes that the size of government expenditure and tax revenue are generally low in this region. GDP per capita growth is strongly negative in response to Government expenditure, however, no significant relationship can be measured in case of size of taxation although it is positively correlated with economic growth. Panel regression of decomposed fiscal components also shows that the pattern of allocation of expenditure and taxation really matters on growth. Taxes on international trade and property have a significant positive impact on growth. In contrast, a major portion of expenditure, i.e. expenditure on general public services, health and education are found to have significant negative impact on growth, implying that government expenditures are not being productive in the Asian region for some reasons. Comparatively smaller and efficient government size would enhance the growth.Keywords: government expenditure, tax, GDP per capita growth, composition
Procedia PDF Downloads 475849 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink
Authors: Mohammad Arif Khan
Abstract:
This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network
Procedia PDF Downloads 452848 Removal of Heavy Metal Using Continous Mode
Authors: M. Abd elfattah, M. Ossman, Nahla A. Taha
Abstract:
The present work explored the use of Egyptian rice straw, an agricultural waste that leads to global warming problem through brown cloud, as a potential feedstock for the preparation of activated carbon by physical and chemical activation. The results of this study showed that it is feasible to prepare activated carbons with relatively high surface areas and pore volumes from the Egyptian rice straw by direct chemical and physical activation. The produced activated carbon from the two methods (AC1 and AC2) could be used as potential adsorbent for the removal of Fe(III) from aqueous solution contains heavy metals and polluted water. The adsorption of Fe(III) was depended on the pH of the solution. The optimal Fe(III) removal efficiency occurs at pH 5. Based on the results, the optimum contact time is 60 minutes and adsorbent dosage is 3 g/L. The adsorption breakthrough curves obtained at different bed depths indicated increase of breakthrough time with increase in bed depths. A rise in inlet Fe(III) concentration reduces the throughput volume before the packed bed gets saturated. AC1 showed higher affinity for Fe(III) as compared to Raw rice husk.Keywords: rice straw, activated carbon, Fe(III), fixed bed column, pyrolysis
Procedia PDF Downloads 249847 Image Transform Based on Integral Equation-Wavelet Approach
Authors: Yuan Yan Tang, Lina Yang, Hong Li
Abstract:
Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments.Keywords: harmonic model, partial differential equation (PDE), integral equation, integral representation, boundary measure formula, wavelet collocation
Procedia PDF Downloads 558