Search results for: elements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3618

Search results for: elements

3078 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 138
3077 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.

Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil

Procedia PDF Downloads 83
3076 Multi-Scale Green Infrastructure: An Integrated Literature Review

Authors: Panpan Feng

Abstract:

The concept of green infrastructure originated in Europe and the United States. It aims to ensure smart growth of urban and rural ecosystems and achieve sustainable urban and rural ecological, social, and economic development by combining it with gray infrastructure in traditional planning. Based on the literature review of the theoretical origin, value connotation, and measurement methods of green infrastructure, this study summarizes the research content of green infrastructure at different scales from the three spatial levels of region, city, and block and divides it into functional dimensions, spatial dimension, and strategic dimension. The results show that in the functional dimension, from region-city-block, the research on green infrastructure gradually shifts from ecological function to social function. In the spatial dimension, from region-city-block, the research on the spatial form of green infrastructure has shifted from two-dimensional to three-dimensional, and the spatial structure of green infrastructure has shifted from single ecological elements to multiple composite elements. From a strategic perspective, green infrastructure research is more of a spatial planning tool based on land management, environmental livability and ecological psychology, providing certain decision-making support.

Keywords: green infrastructure, multi-scale, social and ecological functions, spatial strategic decision-making tools

Procedia PDF Downloads 59
3075 Assessing the Impact of Urbanization on Flood Risk: A Case Study

Authors: Talha Ahmed, Ishtiaq Hassan

Abstract:

Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.

Keywords: urbanization, flood, flood risk, GIS

Procedia PDF Downloads 176
3074 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 347
3073 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 204
3072 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 138
3071 Course Outcomes to Programme Outcomes Mapping: A Methodology Based on Key Elements

Authors: Twarakavi Venkata Suresh Kumar, Sailaja Kumar, B. Eswara Reddy

Abstract:

In a world of tremendous technical developments, effective and efficient higher education has always been a major challenge. The rising number of educational institutions have made it mandatory for healthy competitions among the institutions. To evaluate the qualitative competence of these educations institutions in engineering and technology and related disciplines, an efficient assessment technique in internal and external quality has to be followed. To achieve this, the curriculum is to be developed into courses, and each course has to be presented in the form teaching lesson plan consisting of topics and session outcome known as Course Outcomes (COs), that easily map into different Programme Outcomes (POs). The major objective of these methodologies is to provide quality technical education to its students. Detailed clear weightage in CO-PO mapping helps in proper measurable COs and to devise the POs attainment is an important issue. This ensures in assisting the achievement of the POs with proper weightage to POs, and also improves the successive curriculum development. In this paper, we presented a methodology for mapping CO and PO considering the key elements supported by each PO. This approach is useful in evaluating the attainment of POs which is based on the attainment of COs using the existing data from students' marks taken from various test items. Such direct assessment tools are used to measure the degree to which each student has achieved each course learning outcome by the completion of the course. Hence, these results are also useful in measuring the PO attainment for improving the programme vision and mission.

Keywords: attainment, course outcomes, programme outcomes, educational institutions

Procedia PDF Downloads 468
3070 Research and Innovation Centre

Authors: Krasimir Ivanov, Tonyo Tonev, Nguyen Nguyen, Alexander Peltekov, Anyo Mitkov

Abstract:

Maize is among the most economically important crops and at the same time one of the most sensitive to soil deficiency in zinc. In this paper, the impact of the foliar zinc application in the form of zinc hydroxy nitrate suspension on the micro and macro elements partitioning in maize leaves and grain was studied during spring maize season, 2017. The impact of the foliar zinc fertilization on the grain yield and quality was estimated too. The experiment was performed by the randomized block design with 8 variants in 3 replications. Seven suspension solutions whit different Zn concentration were used, including ZnO suspension and zinc hydroxyl nitrate alone or nixed with other nutrients. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe) and macro (Ca, Mg, P and K) elements in maize leaves were determined two weeks after the first spraying (5-6 sheets), two weeks after the second spraying (9-10 sheets) and after harvesting. It was concluded that the synthesized zinc hydroxy nitrate demonstrates potential as the long-term foliar fertilizer. A significant (p < 0.05) effect of zinc accumulation in maize leaves by foliar zinc application during the first growth stage was found, followed by its reutilization to other plants organs during the second growth stage. Significant export of Cu, P, and K from lower and middle leaves was observed. The content of Ca and Mg remains constant in the whole longevity period, while the content of Fe decreases sharply.

Keywords: foliar fertilization, zinc hydroxy nitrate, maize, zinc

Procedia PDF Downloads 167
3069 Determination of Hydrolisis Condition in the Extraction of Fatty Acids from Pinchagua's (Opisthonema libertate) Heads, a By-Product of Sardine Industry

Authors: Belen Carrillo, Mauricio Mosquera

Abstract:

Fatty acids are bioactive compounds widely used as nutritional supplements in the food and pharmaceutical industry. Bluefish such as sardines have a large variety of these fatty acids in their composition. The objective of this project is to extract these compounds from fishing wastes, to do this, heads of known species as Pinchagua (Opistonema libertate) were used. The conducted study represents a simplified alternative for obtaining and simultaneous saponification of oil through basic hydrolysis, which separates lipids from protein and saponifies sample all the same time to isolate the fatty acid accurately through salts formation. To do these different concentrations of sodium hydroxide were used, it was demonstrated at a concentration of 1 M the highest yield of saponified oil recovery corresponding a value of 3,64% was obtained. Subsequently, the saponified oil was subjected to an acid hydrolysis in which fatty acids were isolated. Different sulfuric acid concentrations and temperatures for the process were tested. Thus, it was shown that the great fatty acids variety were obtained at a 60 °C temperature and sulfuric acid concentration of 50% v/v. Among the obtained compounds the presence of acids such as palmitic, lauric, caproic and myristic are highlighted. Applications of this type of elements are varied and widely used in the nutritional supplements development. Thus, the described methodology proposes a simple mechanism in the revaluation of fishing industry wastes that allow directly generate high added value elements.

Keywords: fatty acids, hydrolysis, Pinchagua, saponification

Procedia PDF Downloads 180
3068 Mechanisms of Metals Stabilization in the Soil by Biochar Material as Affected by the Low Molecular Weight Organic Acids

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Immobilizing trace elements by reducing their mobility and bioavailability through amendment application, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to immobilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study examined the impact of BC derived from rice husk, tartaric acid (TA), and oxalic acid (OA), and the combination of BC and TA/OA on the changes of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the attacks of TA and OA were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The TA and OA each at 2, 5, 10, and 20 mM kg-1 (w/v) were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC, TA, and OA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. The BC, low level of TA (2 mM kg-1 soil), and BC plus the low concentration of TA (BC-TA2) addition considerably declined the acid-soluble Cd, Pb, and Zn in which BC-TA2 was found to be the most effective treatment. The trends were reversed concerning the high levels of TA (>5-20 mM kg-1 soil), all levels of OA (2-20 mM kg-1 soil), and the BC plus high levels of TA/OA treatments. BC-TA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual fractions with time. The most increased electronegative charges of BC-TA2 indicate its (BC-TA2) highest metals' immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite concerning Cd, Pb, and Zn immobilization, respectively. The findings demonstrated that the low level of TA increased metals immobilization, while the high levels of TA and all levels of OA enhanced their mobilization. The BC-TA2 was the best treatment in stabilizing metals in soil.

Keywords: biochar, immobilization, low molecular weight organic acids, trace elements contaminated soil

Procedia PDF Downloads 82
3067 Sustainable Investing and Corporate Performance: Evidence from Shariah Compliant Companies in Southeast Asia

Authors: Norashikin Ismail, Nadia Anridho

Abstract:

Sustainable investing is a responsible investment that focuses on Environmental, Social, and Governance (ESG) elements. ESG integration is essential in the investment process as it provides a positive contribution to the corporate performance for stakeholders, specifically investors. Sustainable investing is in line with the objectives of Shariah (Maqasid of Shariah), such as social inclusion as well as environmental preservation. This study attempts to evaluate the impact of ESG elements to the corporate financial performance among Shariah compliant stocks listed in two countries, namely Malaysia and Indonesia. The motivation of this study is to provide a further understanding in corporate sustainability for two different Islamic capital markets. The existence of the FTSE4Good Asean Index has played a vital role for ESG practices and eventually encouraged specific index for ESG and Shariah Compliant stocks. Our sample consists of 60 companies over the period 2010-2020 from two Southeast countries. We employ System Generalized Method of Moments (GMM) to reduce bias and more specific parameter estimation. Shariah Compliant companies tend to have higher ESG scores and are positively correlated to corporate financial performance. ESG integration with Shariah based investing would provide higher returns and lower risks for Muslim investors. Essentially, integrating ESG and Shariah, compliant companies lead to better financial performance.

Keywords: shariah compliant, southeast asia, corporate performance, sustainable investing

Procedia PDF Downloads 190
3066 Evaluation Criteria for Performance of Knitted Terry Fabrics and Building Elements of Fashion: A Critical Review

Authors: Harpinder Kaur, Amit Madahar

Abstract:

The terry fabric is one of the fastest growing and challenging sub-sectors of the textile industry. Terry fabrics are produced using ground weft, ground warp, and pile yarns. The terry fabrics not only finds applications in towels but also in home textile products, sauna dressing- gowns, slippers, jackets, garments, apparels, outerwears, overcoats, sweatshirts, children’s clothes, and hygiene products for babies, beachwear, sleepwear, gloves, scarfs, shawls, etc. In some cases, these wide ranges of applications not only demand a high degree of absorption but also necessitate the due consideration for the handle properties of the fabrics. These fabrics are required to be accessed for their performance in terms of absorbency and comfort characteristics. Since material (yarns, colors, fabrics, fashion, patrons, accessories and fittings) are the core elements of structure of fashion, hence textile and fashion go hand in hand. This paper throws some light on the performance evaluation of terry fabrics. Here, characteristics/features that are required to be achieved for satisfactory performance of the terry fabrics with reference to fashion are discussed. The terry fabrics are being modified over the years in terms of the raw material requirements such as 100% cotton or blends or cotton with other fibers in order to obtain better performance as well as their structural parameters including stitch length and stitch density etc.

Keywords: absorbency, comfort, cotton, performance, terry fabrics, fashion

Procedia PDF Downloads 147
3065 Flood Hazards, Vulnerability and Adaptations in Upper Imo River Basin of South Eastern Nigera Introduction

Authors: Christian N. Chibo

Abstract:

Imo River Basin is located in South Eastern Nigeria comprising of 11 states of Imo, Abia, Anambra, Ebonyi, Enugu, Edo, Rivers, Cross river, AkwaIbom, Bayelsa, Delta, and Bayelsa states. The basin has a fluvial erosional system dominated by powerful rivers coming down from steep slopes in the area. This research investigated various hazards associated with flood, the vulnerable areas, elements at risk of flood and various adaptation strategies adopted by local inhabitants to cope with the hazards. The research aim is to identify, examine and assess flood hazards, vulnerability and adaptations in the Upper Imo River Basin. The study identified the role of elevation in cause of flood, elements at risk of flood as well as examine the effectiveness or otherwise of the adaptation strategies for coping with the hazards. Data for this research is grouped as primary and secondary. Their various methods of generation are field measurement, questionnaire, library websites etc. Other types of data were generated from topographical, geological, and Digital Elevation model (DEM) maps, while the hydro meteorological data was sourced from Nigeria Meteorological Agency (NIMET), Meteorological stations of Geography and Environmental Management Departments of Imo State University and Alvan Ikoku Federal College of Education. 800 copies of questionnaire were distributed using systematic sampling to 8 locations used for the pilot survey. About 96% of the questionnaire were retrieved and used for the study. 13 flood events were identified in the study area. Their causes, years and dates of events were documented in the text, and the damages they caused were evaluated. The study established that for each flood event, there is over 200mm of rain observed on the day of the flood and the day before the flood. The study also observed that the areas that situate at higher elevation (See DEM) are less prone to flood hazards while areas at low elevations are more prone to flood hazards. Elements identified to be at risk of flood are agricultural land, residential dwellings, retail trading and related services, public buildings and community services. The study thereby recommends non settlement at flood plains and flood prone areas and rearrangement of land use activities in the upper Imo River Basin among others

Keywords: flood hazard, flood plain, geomorphology, Imo River Basin

Procedia PDF Downloads 307
3064 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis

Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali

Abstract:

Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.

Keywords: child pedestrian, collisions, primary school, road injuries

Procedia PDF Downloads 165
3063 Narratives in Science as Covert Prestige Indicators

Authors: Zinaida Shelkovnikova

Abstract:

The language in science is changing and meets the demands of the society. We shall argue that in the varied modern world there are important reasons for the integration of narratives into scientific discourse. As far as nowadays scientists are faced with extremely prompt science development and progress; modern scientific society lives in the conditions of tough competition. The integration of narratives into scientific discourse is thus a good way to prompt scientific experience to different audiences and to express covert prestige of the discourse. Narratives also form the identity of the persuasive narrator. Using the narrative approach to the scientific discourse analysis we reveal the sociocultural diversity of the scientists. If you want to attract audience’s attention to your scientific research, narratives should be integrated into your scientific discourse. Those who understand this consistent pattern are considered the leading scientists. Taking into account that it is prestigious to be renowned, celebrated in science, it is a covert prestige to write narratives in science. We define a science narrative as the intentional, consequent, coherent, event discourse or a discourse fragment, which contains the author creativity, in some cases intrigue, and gives mostly qualitative information (compared with quantitative data) in order to provide maximum understanding of the research. Science narratives also allow the effective argumentation and consequently construct the identity of the persuasive narrator. However, skills of creating appropriate scientific discourse reflect the level of prestige. In order to teach postgraduate students to be successful in English scientific writing and to be prestigious in the scientific society, we have defined the science narrative and outlined its main features and characteristics. Narratives contribute to audience’s involvement with the narrator and his/her narration. In general, the way in which a narrative is performed may result in (limited or greater) contact with the audience. To gain these aim authors use emotional fictional elements; descriptive elements: adjectives; adverbs; comparisons and so on; author’s evaluative elements. Thus, the features of science narrativity are the following: descriptive tools; authors evaluation; qualitative information exceeds the quantitative data; facts take the event status; understandability; accessibility; creativity; logics; intrigue; esthetic nature; fiction. To conclude, narratives function covert prestige of the scientific discourse and shape the identity of the persuasive scientist.

Keywords: covert prestige, narrativity, scientific discourse, scientific narrative

Procedia PDF Downloads 400
3062 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 75
3061 Foreign Elements In The Methodologies of USUL Fiqh: Analysing The Orientalist Thought

Authors: Ariyanti Mustapha

Abstract:

The development of Islamic jurisprudence since the first century of hijra has fascinated many orientalists to explore the historiography of Islamic legislation. The practice of uÎËl fiqh began during the lifetime of the Prophet Muhammad and was continued by the companions as the legal reasoning due to the absence of the legal injunction in the QurÉn and Sunnah. The orientalists propagated that the Roman and Jewish legislation were transplanted in Islamic jurisprudence and it was the primary reason for its progression. This article focuses on the analysis of foreign elements transplanted in the uÎËl fiqh as mentioned by Ignaz Goldziher and Joseph Schacht. They insisted the methodology of Sunna and IjtihÉd were authentically from Roman and Jewish legislation, known as Mishnah and Ha-Kol were invented and transplanted as the principles in uÎËl fiqh. The author used qualitative and comparative methods to analyze the orientalists’ views. The result showed that many erroneous facts were propagated by Goldziher and Schacht by claiming the parallels between the principles, methodologies, and fundamental concepts in uÎËl fiqh and Roman Provincial law. They insisted Sunna and IjtihÉd as an invention from the corpus of Jewish Mishnah and Ha-kol and further affirmed by Schacht that Islamic jurisprudence began in the second century of hijra. These judgments are used by the orientalists to prove the inferiority of Islamic jurisprudence. Nevertheless, many evidences has proven that Islamic legislation is capable of developing independently without any foreign transplant.

Keywords: foreign transplant, ijtihad, orientalist, USUL Fiqh

Procedia PDF Downloads 164
3060 Determination of Heavy Metals in Canned Dry-Milk and Fish from Supermarkets in Addis Ababa

Authors: Kefyalew Muleta, Tetemke Mehari

Abstract:

Background: Human being require metallic elements such as copper and zinc up to certain limits that could cause problems if found in excess. Other metallic elements like cadmium and lead can be harmful to health if foodstuffs containing them are consumed regularly. Canned dry-milk and fish contain these metals in the journey from farm to fork. Objective: This study was designed to determine the concentration of Cd, Cu, Pb, and Zn in four brands of canned dry-milk and fish from supermarkets in Addis Ababa. Methods: Laboratory based cross-sectional study design was used to determine the concentration of the heavy metals in four different brands of canned dry-milk and fish imported from different country from February to March 2013. The foods brands were sampled by simple random sampling method from eight supermarkets in Addis Ababa and coded. Wet oxidation using HNO3 and H2O2 was used to extract the heavy metals from the foods samples and analyzed by Flame Atomic Absorption Spectroscopy. Conclusions: From this study, it can be concluded that the level of Cadmium and Copper residues in canned dry-milk significantly vary among brands; and the levels of copper residue significantly vary among brands of canned fish at 95 % level. The AM milk brand from Ethiopia was safe in cadmium level. The cadmium and lead level in the NF fish brands from Indonesia packed in vegetables oil, and the lead level in DF brand packed in brine are safe.

Keywords: AAS, canned dry milk, canned fish, Cd, Cu, Pb, Zn

Procedia PDF Downloads 421
3059 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods

Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz

Abstract:

Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.

Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure

Procedia PDF Downloads 81
3058 Dynamic Capability: An Exploratory Study Applied to Social Enterprise in South East Asia

Authors: Atiwat Khatpibunchai, Taweesak Kritjaroen

Abstract:

A social enterprise is the innovative hybrid organizations where its ultimate goal is to generate revenue and use it as a fund to solve the social and environmental problem. Although the evidence shows the clear value of economic, social and environmental aspects, the limitations of most of the social enterprises are the expanding impact of social and environmental aspects through the normal market mechanism. This is because the major sources of revenues of social enterprises derive from the business advocates who merely wish to support society and environment by using products and services of social enterprises rather than expect the satisfaction and the distinctive advantage of products and services. Thus, social enterprises cannot reach the achievement as other businesses do. The relevant concepts from the literature review revealed that dynamic capability is the ability to sense, integrate and reconfigure internal resources and utilize external resources to adapt to changing environments, create innovation and achieve competitive advantage. The objective of this research is to study the influence of dynamic capability that affects competitive advantage and sustainable performance, as well as to determine important elements of dynamic capability. The researchers developed a conceptual model from the related concepts and theories of dynamic capability. A conceptual model will support and show the influence of dynamic capability on competitive advantage and sustainable performance of social enterprises. The 230 organizations in South-East Asia served as participants in this study. The results of the study were analyzed by the structural equation model (SEM) and it was indicated that research model is consistent with empirical research. The results also demonstrated that dynamic capability has a direct and indirect influence on competitive advantage and sustainable performance. Moreover, it can be summarized that dynamic capability consists of the five elements: 1) the ability to sense an opportunity; 2) the ability to seize an opportunity; 3) the ability to integrate resources; 4) the ability to absorb resources; 5) the ability to create innovation. The study recommends that related sectors can use this study as a guideline to support and promote social enterprises. The focus should be pointed to the important elements of dynamic capability that are the development of the ability to transform existing resources in the organization and the ability to seize opportunity from changing market.

Keywords: dynamic capability, social enterprise, sustainable competitive advantage, sustainable performance

Procedia PDF Downloads 252
3057 Sociological Portrait of the Korean Diaspora in Kazakhstan

Authors: Yefrem Yefremov

Abstract:

In Kazakhstan, there are approximately 100,000 ethnic Koreans with the ethnonym "Koryo Saram". They are part of the global Korean diaspora around the world, deported to Kazakhstan by Stalin’s decree in 1937. Koryo Saram's diasporic identity is a composite of numerous identities based on a shared cultural heritage of the USSR and independent Kazakhstan and has mosaic character. The author has conducted a sociological survey to find out the main features of the identity of the Koryo Saram diaspora. The purpose of this paper is to depict the degree of ethnic, cultural, and diasporic identity of Koryo Saram and which effect on the preserving Korean diaspora in Kazakhstna do they have. The following elements impacting the above-mentioned identities were investigated in the survey: criteria by which Koryo Saram perceive themselves to be Korean, attitude of Koryo Saram to their ethnicity, degree of feeling of ethnocultural similarity between Koreans of Kazakhstan and Koreans of the Republic of Korea, degree of association of Koreans of Kazakhstan with other Koreans living in other CIS countries, degree of practicing Korean traditions Koryo Saram's attitudes towards interethnic marriages. The primary factor in defining the identity among the respondents is the factor of ethnic origin. Nationality is the second most significant component in establishing Koryo Saram’s identity. The maintenance of "Koreanness" of Koryo Sarams in the context of a multiethnic community, particularly in Kazakhstan, is based on genetic elements as well as the preservation of the culture. In conclusion, the high level of preserving Korean identity is being observed in the Korean Diaspora of Kazakhstan.

Keywords: diasporic identity, diaspora, ethnic identity, identity markers, korean diaspora, koreans of kazakhstan, koryo saram, multiethnicity

Procedia PDF Downloads 136
3056 Smart Web Services in the Web of Things

Authors: Sekkal Nawel

Abstract:

The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.

Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL

Procedia PDF Downloads 72
3055 Effect of Nanoscale Bismuth Oxide on Radiation Shielding and Interaction Characteristics of Polyvinyl Alcohol-Based Polymer for Medical Apron Design

Authors: E. O. Echeweozo

Abstract:

This study evaluated radiation shielding and interaction characteristics of polyvinyl alcohol (PVA) polymer separately doped with 10% and 20% nanoscale Bi₂O₃, respectively, for medical apron design and shielding special electronic installations. Prepared samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The EDS results showed that Carbon (C), Oxygen (O), and bismuth (Bi) elements were the predominant elements present in the prepared samples. The SEM result displaced surface irregularities due to a special bonding matrix between PVA and Bi₂O₃. Mass attenuation coefficient (MAC), effective atomic number (Zeff), Half value layer (HVL), Mean free path (MFP), Fast neutron removal cross-section (R), Total Mass Stopping Power (TSP), and photon Range (R) of the prepared polymer composites (PV-1Bi and PV-2Bi) were evaluated with XCOM and PHITS computer programs. Results showed that the MAC of the prepared polymer samples was significantly higher than some recently developed composites at 0.662MeV and 1.25MeV gamma energy. Therefore, polyvinyl alcohol (PVA) polymer doped with Bi₂O₃ should be deployed in medical apron design and shielding special electronic installations where flexibility and high adhesion ability are crucial.

Keywords: polyvinyl alcohol (PVA);, polymer composite, gamma-rays, charged particles

Procedia PDF Downloads 22
3054 Origin of the Eocene Volcanic Rocks in Muradlu Village, Azerbaijan Province, Northwest of Iran

Authors: A. Shahriari, M. Khalatbari Jafari, M. Faridi

Abstract:

Abstract The Muradlu volcanic area is located in Azerbaijan province, NW Iran. The studied area exposed in a vast region includes lesser Caucasus, Southeastern Turkey, and northwestern Iran, comprising Cenozoic volcanic and plutonic massifs. The geology of this extended region was under the influence of the Alpine-Himalayan orogeny. Cenozoic magmatic activities in this vast region evolved through the northward subduction of the Neotethyan subducted slab and subsequence collision of the Arabian and Eurasian plates. Based on stratigraphy and paleontology data, most of the volcanic activities in the Muradlu area occurred in the Eocene period. The Studied volcanic rocks overly late Cretaceous limestone with disconformity. The volcanic sequence includes thick epiclastic and hyaloclastite breccia at the base, laterally changed to pillow lava and continued by hyaloclastite and lave flows at the top of the series. The lava flows display different textures from megaporphyric-phyric to fluidal and microlithic textures. The studied samples comprise picrobasalt basalt, tephrite basanite, trachybasalt, basaltic trachyandesite, phonotephrite, tephrophonolite, trachyandesite, and trachyte in compositions. Some xenoliths with lherzolitic composition are found in picrobasalt. These xenoliths are made of olivine, cpx (diopside), and opx (enstatite), probably the remain of mantle origin. Some feldspathoid minerals such as sodalite presence in the phonotephrite confirm an alkaline trend. Two types of augite phenocrysts are found in picrobasalt, basalt and trachybasalt. The first types are shapeless, with disharmony zoning and sponge texture with reaction edges probably resulted from sodic magma, which is affected by a potassic magma. The second shows a glomerocryst shape. In discriminative diagrams, the volcanic rocks show alkaline-shoshonitic trends. They contain (0.5-7.7) k2O values and plot in the shoshonitic field. Most of the samples display transitional to potassic alkaline trends, and some samples reveal sodic alkaline trends. The transitional trend probably results from the mixing of the sodic alkaline and potassic magmas. The Rare Earth Elements (REE) patterns and spider diagrams indicate enrichment of Large-Ione Lithophile Element (LILE) and depletion of High Field Strength Elements (HFSE) relative to Heavy Rare Earth Elements (HREE). Enrichment of K, Rb, Sr, Ba, Zr, Th, and U and the enrichment of Light Rare Earth Elements (LREE) relative to Heavy Rare Earth Elements (HREE) indicate the effect of subduction-related fluids over the mantle source, which has been reported in the arc and continental collision zones. The studied samples show low Nb/La ratios. Our studied samples plot in the lithosphere and lithosphere-asthenosphere fields in the Nb/La versus La/Yb ratios diagram. These geochemical characters allow us to conclude that a lithospheric mantle source previously metasomatized by subduction components was the origin of the Muradlu volcanic rocks.

Keywords: alkaline, asthenosphere, lherzolite, lithosphere, Muradlu, potassic, shoshonitic, sodic, volcanism

Procedia PDF Downloads 172
3053 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 427
3052 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami

Abstract:

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Keywords: fibre reinforced concrete, steel fibre, shear strength, crack pattern

Procedia PDF Downloads 147
3051 Engaging Citizen, Sustaining Service Delivery of Rural Water Supply in Indonesia

Authors: Rahmi Yetri Kasri, Paulus Wirutomo

Abstract:

Citizen engagement approach has become increasingly important in the rural water sector. However, the question remains as to what exactly is meant by citizen engagement and how this approach can lead to sustainable service delivery. To understand citizen engagement, this paper argues that we need to understand basic elements of social life that consist of social structure, process, and culture within the realm of community’s living environment. Extracting from empirical data from Pamsimas villages in rural West Java, Indonesia, this paper will identify basic elements of social life and environment that influence and form the engagement of citizen and government in delivering and sustaining rural water supply services in Indonesia. Pamsimas or the Water Supply and Sanitation for Low Income Communities project is the biggest rural water program in Indonesia, implemented since 1993 in more than 27,000 villages. The sustainability of this sector is explored through a rural water supply service delivery life-cycle, starts with capital investment, operational and maintenance, asset expansion or renewal, strategic planning for future services and matching cost with financing. Using mixed-method data collection in case study research, this paper argues that increased citizen engagement contributes to a more sustainable rural water service delivery.

Keywords: citizen engagement, rural water supply, sustainability, Indonesia

Procedia PDF Downloads 269
3050 Fabrication of Textile-Based Radio Frequency Metasurfaces

Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu

Abstract:

Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.

Keywords: electronic textiles, metasurface, printed electronics, flexible

Procedia PDF Downloads 195
3049 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 143