Search results for: developed stream power equation
17570 Cloud Effect on Power Generation of Grid-Connected Small PV Systems
Authors: Yehya Abdellatif, Ahmed Alsalaymeh, Iyad Muslih, Ali Alshduifat
Abstract:
Photovoltaic (PV) power generation systems, mainly small scale, are rapidly being deployed in Jordan. The impact of these systems on the grid has not been studied or analyzed. These systems can cause many technical problems such as reverse power flows and voltage rises in distribution feeders, and real and reactive power transients that affect the operation of the transmission system. To fully understand and address these problems, extensive research, simulation, and case studies are required. To this end, this paper studies the cloud shadow effect on the power generation of a ground mounted PV system installed at the test field of the Renewable Energy Center at the Applied Science University.Keywords: photovoltaic, cloud effect, MPPT, power transients
Procedia PDF Downloads 59917569 Sleep Scheduling Schemes Integrating Relay Node and User Equipment in LTE-A
Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Hsieh-Hua Liu
Abstract:
By introduction of Relay Nodes (RNs), LTE-Advanced can provide enhanced coverage and capacity at cell edges and hot-spot areas. The authors have been researching the issue of power saving in mobile communications technology such as WiMax and LTE for some years. Based on the idea of Load-Based Power Saving (LBPS), three efficient power saving schemes for the user equipment (UE) were proposed in the authors’ previous work. In this paper, three revised schemes of the previous work in order to integrate RN and UE in power saving are proposed. Simulation study shows the proposed schemes can achieve significantly better power saving efficiency than the standard based scheme at the cost of moderately increased delay.Keywords: DRX, LTE-A, power saving, RN
Procedia PDF Downloads 52417568 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry
Authors: Vivek Upadhayay, Siddharth Deshmukh
Abstract:
In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization
Procedia PDF Downloads 52517567 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network
Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong
Abstract:
This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)
Procedia PDF Downloads 48017566 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma
Authors: Abderazak Guettaf
Abstract:
The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma
Procedia PDF Downloads 49217565 Performance Study of PV Power plants in Algeria
Authors: Razika Ihaddadene, Nabila Ihaddadene
Abstract:
This paper aims to highlight the importance of the application of the IEC 61724 standard in the study of the performance analysis of photovoltaic power plants on a monthly and annual scale. Likewise, the comparison of two photovoltaic power plants with two different climates was carried out in order to determine the effect of climatic parameters on the analysis of photovoltaic performances. All data from the Ain Skhouna and Adrar photovoltaic power plants for 2018 and the data from the Saida1 field for one month in 2019 were used. The results of the performance analysis according to the indicated standard show that the Saida PV power plant performs better than the Adrar PV power plant, which is due to the effect of increasing the ambient temperature. Increasing ambient temperature increases losses decreases system efficiency and performance ratio. It presents a key element in the proper functioning of PV plants.Keywords: pv power plants, IEC 61724 norm, grid connected pv, algeria
Procedia PDF Downloads 7717564 Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure
Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah
Abstract:
A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable.Keywords: participating media, LBM, CVFEM- radiation coupled with convection
Procedia PDF Downloads 40717563 Towards a Rigorous Analysis for a Supercritical Particulate Process
Authors: Yousef Bakhbakhi
Abstract:
Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process.Keywords: particle formation, particle size and size distribution, PCA, supercritical carbon dioxide
Procedia PDF Downloads 19717562 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems
Authors: S. Sudhharani
Abstract:
Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)
Procedia PDF Downloads 13617561 Evaluation of Biochemical Oxygen Demand and Dissolved Oxygen for Thames River by Using Stream Water Quality Model
Authors: Ghassan Al-Dulaimi
Abstract:
This paper studied the biochemical parameter (BOD5) and (DO) for the Thames River (Canada-Ontario). Water samples have been collected from Thames River along different points between Chatham to Woodstock and were analysed for various water quality parameters during the low flow season (April). The study involves the application of the stream water quality model QUAL2K model to simulate and predict the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) profiles for Thames River in a stretch of 251 kilometers. The model output showed that DO in the entire river was within the limit of not less than 4 mg/L. For Carbonaceous Biochemical Oxygen Demand CBOD, the entire river may be divided into two main reaches; the first one is extended from Chatham City (0 km) to London (150 km) and has a CBOD concentration of 2 mg/L, and the second reach has CBOD range (2–4) mg/L in which begins from London city and extend to near Woodstock city (73km).Keywords: biochemical oxygen demand, dissolved oxygen, Thames river, QUAL2K model
Procedia PDF Downloads 9317560 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 12617559 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field
Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna
Abstract:
The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.Keywords: diffuser, ejector, flow, fluent
Procedia PDF Downloads 43517558 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit
Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang
Abstract:
A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series
Procedia PDF Downloads 34017557 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation
Authors: S. J. Arif
Abstract:
In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems
Procedia PDF Downloads 37617556 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant
Authors: J. R. Wang, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, C. C. Liu
Abstract:
In this research, TRACE model of Chinshan BWR/4 Nuclear Power Plant (NPP) has been developed for the simulation and analysis of Ultimate Response Guideline (URG). The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. Trace analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.Keywords: BWR, trace, safety analysis, URG
Procedia PDF Downloads 62117555 Practical Experiences in the Development of a Lab-Scale Process for the Production and Recovery of Fucoxanthin
Authors: Alma Gómez-Loredo, José González-Valdez, Jorge Benavides, Marco Rito-Palomares
Abstract:
Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health, including antioxidant, anti-cancer, antidiabetic and anti-obesity activity; making the development of a whole process for its production and recovery an important contribution. In this work, the lab-scale production and purification of fucoxanthin in Isocrhysis galbana have been studied. In batch cultures, low light intensities (13.5 μmol/m2s) and bubble agitation were the best conditions for production of the carotenoid with product yields of up to 0.143 mg/g. After fucoxanthin ethanolic extraction from biomass and hexane partition, further recovery and purification of the carotenoid has been accomplished by means of alcohol – salt Aqueous Two-Phase System (ATPS) extraction followed by an ultrafiltration (UF) step. An ATPS comprised of ethanol and potassium phosphate (Volume Ratio (VR) =3; Tie-line Length (TLL) 60% w/w) presented a fucoxanthin recovery yield of 76.24 ± 1.60% among the studied systems and was able to remove 64.89 ± 2.64% of the carotenoid and chlorophyll pollutants. For UF, the addition of ethanol to the original recovered ethanolic ATPS stream to a final relation of 74.15% (w/w) resulted in a reduction of approximately 16% of the protein contents, increasing product purity with a recovery yield of about 63% of the compound in the permeate stream. Considering the production, extraction and primary recovery (ATPS and UF) steps, around a 45% global fucoxanthin recovery should be expected. Although other purification technologies, such as Centrifugal Partition Chromatography are able to obtain fucoxanthin recoveries of up to 83%, the process developed in the present work does not require large volumes of solvents or expensive equipment. Moreover, it has a potential for scale up to commercial scale and represents a cost-effective strategy when compared to traditional separation techniques like chromatography.Keywords: aqueous two-phase systems, fucoxanthin, Isochrysis galbana, microalgae, ultrafiltration
Procedia PDF Downloads 42417554 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 14817553 Performance Analysis of Carbon Nanotube for VLSI Interconnects and Their Comparison with Copper Interconnects
Authors: Gagnesh Kumar, Prashant Gupta
Abstract:
This paper investigates the performance of the bundle of single wall carbon nanotubes (SWCNT) for low-power and high-speed interconnects for future VLSI applications. The power dissipation, delay and power delay product (PDP) of SWCNT bundle interconnects are examined and compared with that of the Cu interconnects at 22 nm technology node for both intermediate and global interconnects. The results show that SWCNT bundle consume less power and also faster than Cu for intermediate and global interconnects. It is concluded that the metallic SWCNT has been regarded as a viable candidate for intermediate and global interconnects in future technologies.Keywords: carbon nanotube, SWCNT, low power, delay, power delay product, global and intermediate interconnects
Procedia PDF Downloads 32017552 An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel
Authors: Sunil Kumar Singal, Manoj Sood, Upendra Bajpai
Abstract:
Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site.Keywords: darrieus turbine, flow velocity, open channel, savoinus turbine, water depth, hydropower
Procedia PDF Downloads 8517551 Supervisory Board in the Governance of Cooperatives: Disclosing Power Elements in the Selection of Directors
Authors: Kari Huhtala, Iiro Jussila
Abstract:
The supervisory board is assumed to use power in the governance of a firm, but the actual use of power has been scantly investigated. The research question of the paper is “How does the supervisory board use power in the selection of the board of directors”. The data stem from 11 large Finnish agricultural cooperatives. The research approach was qualitative including semi-structured interviews of the board of directors and supervisory board chairpersons. The results were analyzed and interpreted against theories of social power. As a result, the use of power is approached from two perspectives: (1) formal position-based authority and (2) informal power. Central elements of power were the mandate of the supervisory board, the role of the supervisory board, the supervisory board chair, the nomination committee, collaboration between the supervisory board and the board of directors, the role of regions and the role of the board of directors. The study contributes to the academic discussion on corporate governance in cooperatives and on the supervisory board in the context of the two-tier model. Additional research of the model in other countries and of other types of cooperatives would further academic understanding of supervisory boards.Keywords: board, co-operative, supervisory board, selection, director
Procedia PDF Downloads 17417550 Pastoral Power, Early Modern Insurrections, and Contemporary Carelessness: What Foucault Can Teach Us about the “Crisis of Care”
Authors: Lucile Richard
Abstract:
Contemporary thinkers studying biopolitics and its lethal logic find little interest in Foucault's "vague sketch of the pastorate.” Despite pastoral power being depicted as the matrix of governmentality in the genealogy of biopower, most post-Foucauldian theorists disregard its study. Sovereign power takes precedence in the examination of the governmental connection between care, violence, and death. Questioning this recurring motif, this article advocates for a feminist exploration of pastoral power. It argues that giving attention to the genealogy of the pastorate is essential to account for the carelessness that runs today's politics. Examining Foucault's understanding of this "power to care" uncovers the link between care work and politics, a facet of governmentality often overlooked in sovereignty-centered perspectives. His description of “pastoral insurrections”, in so far as it highlights that caring, far from being excluded from politics, is the object of competing problematizations, also calls for a more nuanced and complex comprehension of the politicization of care and care work than the ones developed by feminist theorists. As such, it provides an opportunity to delve into under-theorized dimensions of the "care crisis" in feminist accounts. On one hand, it reveals how populations are disciplined and controlled, not only through caregiving obligations, but also through being assigned or excluded from receiving care. On the other, it stresses that the organization of the public sphere is just as important as the organization of the private sphere, which is the main focus for most feminists, in preventing marginalized perspectives on caring from gaining political momentum.Keywords: Foucault, feminist theory, resistance, pastoral power, crisis of care, biopolitics
Procedia PDF Downloads 5317549 Simple and Concise Maximum Power Control Circuit for PV Power Generation
Authors: Keiju Matsui, Mikio Yasubayashi, Masayoshi Umeno
Abstract:
Consumption of energy is increasing every year, and yet does not the decline at all. The main energy source is fossil fuels such as petroleum and natural gas. Since it is the finite resources, they will be exhausted someday. Moreover, to make the fossil fuel an energy source causes an environment problem. In such way, one solution of the problems is the solar battery that is remarkable as one of the alternative energies. Under such circumstances, in this paper, we propose a novel maximum power control circuit for photovoltaic power generation system with simple and fast-response operation. In addition to an application to the solar battery, since this control system is possible to operate with simple circuit and fast-response, the polar value control like the maximum or the minimum value tracking for general application could be easily realized.Keywords: maximum power control, inter-connection, photovoltaic power generation, PI controller, multiplier, exclusive-or, power system
Procedia PDF Downloads 44117548 Turbulent Flow Characteristics and Bed Morphology around Circular Bridge Pier
Authors: Pratik Acharya
Abstract:
Scour is the natural phenomenon brought about by erosive action of the flowing stream in alluvial channels. Frequent scouring around bridge piers may cause damage to the structures. In alluvial channels, a complex interaction between the streamflow and the bed particles results in scouring around piers. Thus, the study of characteristics of flow around piers can give sound knowledge about the scouring process. The present research has been done to investigate the turbulent flow characteristics around bridge piers and corresponding changes in bed morphology. Laboratory experiments were carried out in a tilting flume with a sand bed. The velocities around the pier are measured by Acoustic Doppler Velocimeter. Measurements show that at upstream of the pier velocity and Reynolds stresses are negative near the bed and near the free surface at downstream of the pier. At the downstream of the pier, Reynolds stresses changes rapidly due to the formation of wake vortices. Experimental results show that secondary currents are more predominant at the downstream of the pier. As the flowing stream hits the pier, the flow gets separated in the form of downflow along the face of the pier due to a strong pressure gradient and along the sides of the piers. Separation of flow around the pier leads to scour the bed material and develop the vortex. The downflow hits the bed and removes the bed material, which can be carried forward by the flow circulations along sides of the piers. Eroded bed material is deposited along the centerline at the rear side of the pier and produces hump in the downstream region. Initially, the rate of scouring is high and reduces gradually with increasing time. After a certain limit, equilibrium sets between the erosive capacity of the flowing stream and resistance to the motion by bed particles.Keywords: acoustic doppler velocimeter, pier, Reynolds stress, scour depth, velocity
Procedia PDF Downloads 14817547 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power
Authors: Mohammadreza Heydariazad
Abstract:
Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.Keywords: wind energy, generator, superconducting inductor, wind turbine power
Procedia PDF Downloads 32717546 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation
Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap
Abstract:
The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance
Procedia PDF Downloads 32117545 Dynamics and Advection in a Vortex Parquet on the Plane
Authors: Filimonova Alexanra
Abstract:
Inviscid incompressible fluid flows are considered. The object of the study is a vortex parquet – a structure consisting of distributed vortex spots of different directions, occupying the entire plane. The main attention is paid to the study of advection processes of passive particles in the corresponding velocity field. The dynamics of the vortex structures is considered in a rectangular region under the assumption that periodic boundary conditions are imposed on the stream function. Numerical algorithms are based on the solution of the initial-boundary value problem for nonstationary Euler equations in terms of vorticity and stream function. For this, the spectral-vortex meshless method is used. It is based on the approximation of the stream function by the Fourier series cut and the approximation of the vorticity field by the least-squares method from its values in marker particles. A vortex configuration, consisting of four vortex patches is investigated. Results of a numerical study of the dynamics and interaction of the structure are presented. The influence of the patch radius and the relative position of positively and negatively directed patches on the processes of interaction and mixing is studied. The obtained results correspond to the following possible scenarios: the initial configuration does not change over time; the initial configuration forms a new structure, which is maintained for longer times; the initial configuration returns to its initial state after a certain period of time. The processes of mass transfer of vorticity by liquid particles on a plane were calculated and analyzed. The results of a numerical analysis of the particles dynamics and trajectories on the entire plane and the field of local Lyapunov exponents are presented.Keywords: ideal fluid, meshless methods, vortex structures in liquids, vortex parquet.
Procedia PDF Downloads 6417544 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations
Authors: James Adewale, Joshua Sunday
Abstract:
In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent
Procedia PDF Downloads 50117543 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network
Authors: Wilfred Fritz
Abstract:
Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.Keywords: harmonics, power quality, pulse width modulation, total harmonic distortion
Procedia PDF Downloads 23917542 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic
Procedia PDF Downloads 70017541 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic
Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani
Abstract:
Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter
Procedia PDF Downloads 372