Search results for: degradation of the cementitious composite
3205 Dynamic Damage Analysis of Carbon Fiber Reinforced Polymer Composite Confinement Vessels
Authors: Kamal Hammad, Alexey Fedorenko, Ivan Sergeichev
Abstract:
This study uses analytical modeling, experimental testing, and explicit numerical simulations to evaluate failure and spall damage in Carbon Fiber-Reinforced Polymer (CFRP) composite confinement vessels. It investigates the response of composite materials to explosive loading dynamic impact, revealing varied failure modes. Hashin damage was used to model inplane failure, while the Virtual Crack Closure Technique (VCCT) modeled inter-laminar damage. Results show moderate agreement between simulations and experiments regarding free surface velocity and failure stresses, with discrepancies due to wire alignment imperfections and wave reverberations in the experimental test. The findings can improve design and risk-reduction strategies in high-risk scenarios, leading to enhanced safety and economic efficiency in material assessment and structural design processes.Keywords: explicit, numerical, spall, damage, CFRP, composite, vessels, explosive, dynamic, impact, Hashin, VCCT
Procedia PDF Downloads 513204 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 1953203 Effect of Fiber Orientation on Dynamic Properties of Carbon-Epoxy Composite Laminate under Flexural Vibration
Authors: Bahlouli Ahmed, Bentalab Nourdin, Nigrou Mourad
Abstract:
This study was aimed at investigating the effect of orientation fiber reinforced on dynamic properties of laminate composite FRP. An experimental investigation is implemented using an impulse technique. The various specimens are excited in free vibration by the use of bi-channel Analyzer. The experimental results are compared by model of finite element analysis using ANSYS. The results studies (natural frequencies measurements, vibration mode, dynamic modulus and damping ratio) show that the effects of significant parameters such as lay-up and stacking sequence, boundary conditions and excitation place of accelerometer. These results are critically examined and discussed. The accuracy of these results is demonstrated by comparing results with those available in the literature.Keywords: natural frequency, damping ratio, laminate composite, dynamic modulus
Procedia PDF Downloads 3603202 Large Strain Creep Analysis of Composite Thick-Walled Anisotropic Cylinders
Authors: Vinod Kumar Arya
Abstract:
Creep analysis of a thick-walled composite anisotropic cylinder under internal pressure and considering large strains is presented. Using a threshold creep law for composite materials, expressions for stresses, strains, and strain rates are derived for several anisotropic cases. Numerical results, presented through several graphs and tables, depict the effect of anisotropy on the stress, strain, and strain rate distributions. Since for a specific type of material anisotropy described in the paper, these quantities are found to have the lowest values at the inner radius (the potential location of cylinder failure), it is concluded that by employing such an anisotropic material for the design of a thick-walled cylinder a longer service life for the cylinder may be achieved.Keywords: creep, composites, large strains, thick-walled cylinders, anisotropy
Procedia PDF Downloads 1493201 Numerical and Comparative Analysis between Two Composite Plates Notched in Different Shapes and Repaired by Composite
Authors: Amari Khaoula, Berrahou Mohamed
Abstract:
The topic of our article revolves around a numerical and comparative analysis between two notched Boron/epoxy plates that are U-shaped and the other V-shaped, cracked, and repaired by a rectangular patch of the same composite material; the finite element method was used for the analytical study and comparison of the results obtained for determining the optimal shape of notch which will give a longer life to the repair. In this context, we studied the variation of the stress intensity factor, the evolution of the damaged area, and the calculation of the ratio of the damaged area according to the crack length and the concentration of the Von Mises stresses as a function of the lengths of the paths. According to the results obtained, we conclude that the notch plate U is the optimal one than notch plate V because it has lower values either for the stress intensity factor (SIF), damaged area ratio (Dᵣ), or the Von Mises stresses.Keywords: the notch U, the notch V, the finite element method FEM, comparison, rectangular patch, composite, stress intensity factor, damaged area ratio, Von Mises stresses
Procedia PDF Downloads 1003200 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 3883199 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection
Authors: O. Hassoon, M. Tarfoui, A. El Malk
Abstract:
Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring
Procedia PDF Downloads 3613198 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro
Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich
Abstract:
Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve
Procedia PDF Downloads 1503197 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure
Authors: Tejeet Singh, Ishavneet Singh
Abstract:
The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.Keywords: steady state creep, composite, cylinder, pressure
Procedia PDF Downloads 4173196 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates
Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti
Abstract:
Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing
Procedia PDF Downloads 1513195 Impact of Aging on Fatigue Performance of Novel Hybrid HMA
Authors: Faizan Asghar, Mohammad Jamal Khattak
Abstract:
Aging, in general, refers to changes in rheological characteristics of asphalt mixture due to changes in chemical composition over the course of construction and service life of the pavement. The main goal of this study was to investigate the impact of oxidation on fatigue characteristics of a novel HMA composite fabricated with a combination of crumb rubber (CRM) and polyvinyl alcohol (PVA) fiber subject to aging of 7 and 14 days. A flexural beam fatigue test was performed to evaluate several characteristics of control, CRM modified, PVA reinforced, and novel rubber-fiber HMA composite. Experimental results revealed that aging had a significant impact on the fatigue performance of novel HMA composite. It was found that a suitable proportion of CRM and PVA radically affected the performance of novel rubber-fiber HMA in resistance to fracture and fatigue cracking when subjected to long-term aging. The developed novel HMA composite containing 2% CRM and 0.2% PVA presented around 29 times higher resistance to fatigue cracking for a period of 7 days of aging. To develop a cumulative plastic deformation level of 250 micros, such a mixture required over 50 times higher cycles than control HMA. Moreover, the crack propagation rate was reduced by over 90%, with over 12 times higher energy required to propagate a unit crack length in such a mixture compared to conventional HMA. Further, digital imaging correlation analyses revealed a more twisted and convoluted fracture path and higher strain distribution in rubber-fiber HMA composite. The fatigue performance after long-term aging of such novel HMA composite explicitly validates the ability to withstand load repetition that could lead to an extension in the service life of pavement infrastructure and reduce taxpayers’ dollars spent.Keywords: crumb rubber, PVA fibers, dry process, aging, performance testing, fatigue life
Procedia PDF Downloads 663194 Hierarchical Optimization of Composite Deployable Bridge Treadway Using Particle Swarm Optimization
Authors: Ashraf Osman
Abstract:
Effective deployable bridges that are characterized by an increased capacity to weight ratio are recently needed for post-disaster rapid mobility and military operations. In deployable bridging, replacing metals as the fabricating material with advanced composite laminates as lighter alternatives with higher strength is highly advantageous. This article presents a hierarchical optimization strategy of a composite bridge treadway considering maximum strength design and bridge weight minimization. Shape optimization of a generic deployable bridge beam cross-section is performed to achieve better stress distribution over the bridge treadway hull. The developed cross-section weight is minimized up to reserving the margins of safety of the deployable bridging code provisions. Hence, the strength of composite bridge plates is maximized through varying the plies orientation. Different loading cases are considered of a tracked vehicle patch load. The orthotropic plate properties of a composite sandwich core are used to simulate the bridge deck structural behavior. Whereas, the failure analysis is conducted using Tsai-Wu failure criterion. The naturally inspired particle swarm optimization technique is used in this study. The proposed technique efficiently reduced the weight to capacity ratio of the developed bridge beam.Keywords: CFRP deployable bridges, disaster relief, military bridging, optimization of composites, particle swarm optimization
Procedia PDF Downloads 1403193 Detoxification of Hazardous Organic/Inorganic Contaminants in Automobile Shredder Residue by Multi-Functioned Nano-Size Metallic Calcium Composite
Authors: Srinivasa Reddy Mallampati, Byoung Ho Lee, Yoshiharu Mitoma, Simion Cristian
Abstract:
In recent years, environmental nanotechnology has risen to the forefront and the new properties and enhanced reactivates offered by nanomaterial may offer a new, low-cost paradigm to solving complex environmental pollution problems. This study assessed the synthesis and application of multi-functioned nano-size metallic calcium (nMC) composite for detoxification of hazardous inorganic (heavy metals (HMs)/organic chlorinated/brominated compound (CBCs) contaminants in automobile shredder residue (ASR). ASR residues ball milled with nMC composite can achieve about 90-100% of HMs immobilization and CBCs decomposition. The results highlight the low quantity of HMs leached from ASR residues after treatment with nMC, which was found to be lower than the standard regulatory limit for hazardous waste landfills. The use of nMC composite in a mechanochemical process to treat hazardous ASR (dry conditions) is a simple and innovative approach to remediate hazardous inorganic/organic cross-contaminates in ASR.Keywords: nano-sized metallic calcium, automobile shredder residue, organic/inorganic contaminants, immobilization, detoxification
Procedia PDF Downloads 2273192 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite
Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler
Abstract:
Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC
Procedia PDF Downloads 2793191 Self-Healing Phenomenon Evaluation in Cementitious Matrix with Different Water/Cement Ratios and Crack Opening Age
Authors: V. G. Cappellesso, D. M. G. da Silva, J. A. Arndt, N. dos Santos Petry, A. B. Masuero, D. C. C. Dal Molin
Abstract:
Concrete elements are subject to cracking, which can be an access point for deleterious agents that can trigger pathological manifestations reducing the service life of these structures. Finding ways to minimize or eliminate the effects of this aggressive agents’ penetration, such as the sealing of these cracks, is a manner of contributing to the durability of these structures. The cementitious self-healing phenomenon can be classified in two different processes. The autogenous self-healing that can be defined as a natural process in which the sealing of this cracks occurs without the stimulation of external agents, meaning, without different materials being added to the mixture, while on the other hand, the autonomous seal-healing phenomenon depends on the insertion of a specific engineered material added to the cement matrix in order to promote its recovery. This work aims to evaluate the autogenous self-healing of concretes produced with different water/cement ratios and exposed to wet/dry cycles, considering two ages of crack openings, 3 days and 28 days. The self-healing phenomenon was evaluated using two techniques: crack healing measurement using ultrasonic waves and image analysis performed with an optical microscope. It is possible to observe that by both methods, it possible to observe the self-healing phenomenon of the cracks. For young ages of crack openings and lower water/cement ratios, the self-healing capacity is higher when compared to advanced ages of crack openings and higher water/cement ratios. Regardless of the crack opening age, these concretes were found to stabilize the self-healing processes after 80 days or 90 days.Keywords: sealf-healing, autogenous, water/cement ratio, curing cycles, test methods
Procedia PDF Downloads 1603190 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage
Authors: Pranjali Sharma, Swati Neogi
Abstract:
Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance
Procedia PDF Downloads 1473189 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System
Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo
Abstract:
To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.Keywords: naproxen, nickelate, photocatalysis, oxalic acid
Procedia PDF Downloads 2103188 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.Keywords: circular shear panel damper, FE analysis, hysteretic behavior, large deformation
Procedia PDF Downloads 3883187 The Influence of Cellulose Nanocrystal (CNC) on the Mechanical Properties and Workability of Oil Well Cement
Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile
Abstract:
Well cementing is one of the most crucial and important steps in any well completion. Oil well cement paste is employed to fill the annulus between the casing string and the well bore. However, since the cementing process takes place at the end of the drilling process, a satisfying and acceptable job may not be performed. During the cementing process, the cement paste must be pumped in the annulus, therefore concerns arise both in the workability and the flowability associated with the paste. On the other hand, the cement paste around the casing must demonstrate the adequate compressive strength in order to provide a suitable mechanical support for the casing and desirably prevent collapse of the formation. In this experimental study, the influence of cellulose nanocrystal particles on the workability, flowability and also mechanical properties of oil well cement paste has been investigated. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Two method of testing were considered to understand the flow behavior of the samples: (1) a mini slump test and (2) a conventional flow table test were utilized to study the flowability of the cementitious paste under gravity and also under applied load (number of blows for the flow table test). Furthermore, the mechanical properties of hardened oil well cement paste dosed with CNC were assessed by performing a compression test on cylindrical specimens. Based on the findings in this study, the addition of CNC led to developing a more viscous cement paste with a reduced spread diameter. Also, by introducing a very small dosage of CNC particles (as an additive), a significant increase in the compressive strength of the oil well cement paste was observed.Keywords: cellulose nanocrystal, cement workability, mechanical properties, oil well cement
Procedia PDF Downloads 2593186 Tram Track Deterioration Modeling
Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi
Abstract:
Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.Keywords: deterioration modeling, asset management, railway, tram
Procedia PDF Downloads 3793185 Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite
Authors: Xiao L Dai, Wen X Wei, Shuo Wang, Jia B Li, Yan Wei
Abstract:
Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution.Keywords: heavy oil pollution, microbial remediation, modified zeolite, immobilized bacteria
Procedia PDF Downloads 1503184 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement
Authors: Sh. Minapoor, S. Ajeli
Abstract:
Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending
Procedia PDF Downloads 2983183 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications
Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu
Abstract:
Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation
Procedia PDF Downloads 2573182 Study of Effective Parameters on Mechanical Properties of Toughened PP Compounds in Presence of Biofillers and Blowing Agents
Authors: Koosha Rezaei, Mehdi Moghri bidgoli, Mazyar Khakpour
Abstract:
Wood-plastic composites foam is one of the most used products were the industry today. In this study, composite foam polypropylene in the presence of different biofilers such as Spruce wood, wheat and rice husk as well as 3 different types toughening agents such as polyolefin elastomer, styrene butadiene styrene and styrene-ethylene butadiene styrene, and two types of cause blowing agents azodicarbonamide and sodium bicarbonate was prepared. For improving dispersion of biofilers, in the mixing process we used polypropylene coupling agent grafted with maleic anhydride. Due to the large number of variables, the statistical analysis of response surface to analyze the results of the impact test, tensile modulus and tensile strength and modeling were used. Co-rotating twine extruder was made composite melt mixing method and then to perform mechanical tests using injection molding, respectively.Images from electron microscopy showed cell sandwich structure in composite amply demonstrates.Keywords: polypropylene, wood plastic composite foam, response surface analysis, morphology, mechanical properties
Procedia PDF Downloads 3653181 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations
Authors: Reza Soleimanpour, Ching Tai Ng
Abstract:
Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves
Procedia PDF Downloads 2043180 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications
Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani
Abstract:
A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.Keywords: composite membrane, electrospinning, fuel cell, nanofibers
Procedia PDF Downloads 2663179 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.Keywords: 3D printed, carbon fiber, fiber content, recycling
Procedia PDF Downloads 1903178 Buckling a Reservoir Composite Provided with Notches
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 3593177 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton
Procedia PDF Downloads 2293176 Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes
Authors: K. Selvakumar, J. Kalaiselvimary, B. Jansirani, M. Ramesh Prabhu
Abstract:
Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells.Keywords: composite, proton conduction, sulphonation, water uptake
Procedia PDF Downloads 249