Search results for: database modelling
2858 Maternal, Delivery and Neonatal Outcomes in Women with Cervical Cancer. A Study of a Population Database
Authors: Aaron Samuels, Ahmad Badeghiesh, Haitham Baghlaf, Michael H. Dahan
Abstract:
Importance: Cervical cancer is the fourth most common cancer among women globally and a significant cause of cancer-related deaths. Understanding the impact of cervical cancer diagnosed during pregnancy on maternal, delivery, and neonatal outcomes is crucial for improving clinical management and outcomes for affected women and their children. Objective: The goal is to determine the effects of cervical cancer diagnosed during pregnancy on maternal, delivery, and neonatal outcomes using a population-based American database. Design: This study is a retrospective analysis of the Healthcare Cost and Utilization Project Nationwide Inpatient Sample (HCUP-NIS) database. The study period spans between 2004-2014, and the analysis was conducted in 2023. Setting: The study used the HCUP-NIS database, which includes data from hospital stays across the United States, covering 48 states and the District of Columbia. Participants: The study included all women who delivered a child or had a maternal death from 2004-2014, with pregnancies at 24 weeks or above. The population was comprised of 9,096,788 pregnant women, including 222 diagnosed with cervical cancer prior to delivery. Exposures: The exposure was a diagnosis of cervical cancer during pregnancy, identified using International Classification of Diseases 9th Revision codes 180.0, 180.1, 180.8, and 180.9. Main Outcomes and Measures: Primary outcomes included maternal, delivery, and neonatal complications including preterm delivery, cesarean section, hysterectomy, blood transfusion, deep venous thrombosis, pulmonary embolism, congenital anomalies, intrauterine fetal demise, and small-for-gestational-age neonates. Logistic regression analyses were conducted to evaluate the association between cervical cancer diagnosis and these outcomes, adjusting for potential confounding factors. Results: Women with cervical cancer were older (25.2% ≥35 years vs. 14.7%, p=0.001, respectively); more likely to have Medicare insurance (1.4% vs. 0.6%, p=0.005, respectively); use illicit drugs (4.1% vs. 1.4%, p=0.001, respectively); smoke tobacco during pregnancy (14.9% vs. 4.9%, p=0.001, respectively); and have chronic hypertension (3.6% vs. 1.8%, p=0.046, respectively). These women also had higher rates of preterm delivery (OR = 4.73, 95% CI (3.53-6.36), p=0.001); cesarean section (OR = 5.40, 95% CI (4.00-7.30), p=0.001); hysterectomy (OR = 390.23, 95% CI (286.43-531.65), p=0.001); blood transfusions (OR = 19.23, 95% CI (13.57-27.25), p=0.001); deep venous thrombosis (OR = 9.42, 95% CI (1.32-67.20), p=0.025); and pulmonary embolism (OR = 20.22, 95% CI (2.83-144.48), p=0.003). Neonatal outcomes, including congenital anomalies, intrauterine fetal demise, and small-for-gestational-age neonates, were comparable between groups. Conclusions and Relevance: Cervical cancer during pregnancy is associated with significant maternal and delivery risks; however, neonatal outcomes are largely unaffected. These findings highlight the need for a multidisciplinary approach to managing pregnant cervical cancer patients involving oncological, obstetrical, and neonatal care specialists.Keywords: cervical cancer, maternal outcomes, neonatal outcomes, delivery outcomes
Procedia PDF Downloads 112857 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia
Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli
Abstract:
River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.Keywords: EFDC, river management, TMDL, water quality modelling
Procedia PDF Downloads 3282856 Gypsum Composites with CDW as Raw Material
Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola
Abstract:
On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum
Procedia PDF Downloads 5102855 Carbon Nanotube Field Effect Transistor - a Review
Authors: P. Geetha, R. S. D. Wahida Banu
Abstract:
The crowning advances in Silicon based electronic technology have dominated the computation world for the past decades. The captivating performance of Si devices lies in sustainable scaling down of the physical dimensions, by that increasing device density and improved performance. But, the fundamental limitations due to physical, technological, economical, and manufacture features restrict further miniaturization of Si based devices. The pit falls are due to scaling down of the devices such as process variation, short channel effects, high leakage currents, and reliability concerns. To fix the above-said problems, it is needed either to follow a new concept that will manage the current hitches or to support the available concept with different materials. The new concept is to design spintronics, quantum computation or two terminal molecular devices. Otherwise, presently used well known three terminal devices can be modified with different materials that suits to address the scaling down difficulties. The first approach will occupy in the far future since it needs considerable effort; the second path is a bright light towards the travel. Modelling paves way to know not only the current-voltage characteristics but also the performance of new devices. So, it is desirable to model a new device of suitable gate control and project the its abilities towards capability of handling high current, high power, high frequency, short delay, and high velocity with excellent electronic and optical properties. Carbon nanotube became a thriving material to replace silicon in nano devices. A well-planned optimized utilization of the carbon material leads to many more advantages. The unique nature of this organic material allows the recent developments in almost all fields of applications from an automobile industry to medical science, especially in electronics field-on which the automation industry depends. More research works were being done in this area. This paper reviews the carbon nanotube field effect transistor with various gate configurations, number of channel element, CNT wall configurations and different modelling techniques.Keywords: array of channels, carbon nanotube field effect transistor, double gate transistor, gate wrap around transistor, modelling, multi-walled CNT, single-walled CNT
Procedia PDF Downloads 3272854 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 1442853 An Engineer-Oriented Life Cycle Assessment Tool for Building Carbon Footprint: The Building Carbon Footprint Evaluation System in Taiwan
Authors: Hsien-Te Lin
Abstract:
The purpose of this paper is to introduce the BCFES (building carbon footprint evaluation system), which is a LCA (life cycle assessment) tool developed by the Low Carbon Building Alliance (LCBA) in Taiwan. A qualified BCFES for the building industry should fulfill the function of evaluating carbon footprint throughout all stages in the life cycle of building projects, including the production, transportation and manufacturing of materials, construction, daily energy usage, renovation and demolition. However, many existing BCFESs are too complicated and not very designer-friendly, creating obstacles in the implementation of carbon reduction policies. One of the greatest obstacle is the misapplication of the carbon footprint inventory standards of PAS2050 or ISO14067, which are designed for mass-produced goods rather than building projects. When these product-oriented rules are applied to building projects, one must compute a tremendous amount of data for raw materials and the transportation of construction equipment throughout the construction period based on purchasing lists and construction logs. This verification method is very cumbersome by nature and unhelpful to the promotion of low carbon design. With a view to provide an engineer-oriented BCFE with pre-diagnosis functions, a component input/output (I/O) database system and a scenario simulation method for building energy are proposed herein. Most existing BCFESs base their calculations on a product-oriented carbon database for raw materials like cement, steel, glass, and wood. However, data on raw materials is meaningless for the purpose of encouraging carbon reduction design without a feedback mechanism, because an engineering project is not designed based on raw materials but rather on building components, such as flooring, walls, roofs, ceilings, roads or cabinets. The LCBA Database has been composited from existing carbon footprint databases for raw materials and architectural graphic standards. Project designers can now use the LCBA Database to conduct low carbon design in a much more simple and efficient way. Daily energy usage throughout a building's life cycle, including air conditioning, lighting, and electric equipment, is very difficult for the building designer to predict. A good BCFES should provide a simplified and designer-friendly method to overcome this obstacle in predicting energy consumption. In this paper, the author has developed a simplified tool, the dynamic Energy Use Intensity (EUI) method, to accurately predict energy usage with simple multiplications and additions using EUI data and the designed efficiency levels for the building envelope, AC, lighting and electrical equipment. Remarkably simple to use, it can help designers pre-diagnose hotspots in building carbon footprint and further enhance low carbon designs. The BCFES-LCBA offers the advantages of an engineer-friendly component I/O database, simplified energy prediction methods, pre-diagnosis of carbon hotspots and sensitivity to good low carbon designs, making it an increasingly popular carbon management tool in Taiwan. To date, about thirty projects have been awarded BCFES-LCBA certification and the assessment has become mandatory in some cities.Keywords: building carbon footprint, life cycle assessment, energy use intensity, building energy
Procedia PDF Downloads 1392852 Incidence of Lymphoma and Gonorrhea Infection: A Retrospective Study
Authors: Diya Kohli, Amalia Ardeljan, Lexi Frankel, Jose Garcia, Lokesh Manjani, Omar Rashid
Abstract:
Gonorrhea is the second most common sexually transmitted disease (STDs) in the United States of America. Gonorrhea affects the urethra, rectum, or throat and the cervix in females. Lymphoma is a cancer of the immune network called the lymphatic system that includes the lymph nodes/glands, spleen, thymus gland, and bone marrow. Lymphoma can affect many organs in the body. When a lymphocyte develops a genetic mutation, it signals other cells into rapid proliferation that causes many mutated lymphocytes. Multiple studies have explored the incidence of cancer in people infected with STDs such as Gonorrhea. For instance, the studies conducted by Wang Y-C and Co., as well as Caini, S and Co. established a direct co-relationship between Gonorrhea infection and incidence of prostate cancer. We hypothesize that Gonorrhea infection also increases the incidence of Lymphoma in patients. This research study aimed to evaluate the correlation between Gonorrhea infection and the incidence of Lymphoma. The data for the research was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database. This database was utilized to evaluate patients infected with Gonorrhea versus the ones who were not infected to establish a correlation with the prevalence of Lymphoma using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for academic research. Standard statistical methods were applied throughout. Between January 2010 and December 2019, the query was analyzed and resulted in 254 and 808 patients in both the infected and control group, respectively. The two groups were matched by Age Range and CCI score. The incidence of Lymphoma was 0.998% (254 patients out of 25455) in the Gonorrhea group (patients infected with Gonorrhea that was Lymphoma Positive) compared to 3.174% and 808 patients in the control group (Patients negative for Gonorrhea but with Lymphoma). This was statistically significant by a p-value < 2.210-16 with an OR= 0.431 (95% CI 0.381-0.487). The patients were then matched by antibiotic treatment to avoid treatment bias. The incidence of Lymphoma was 1.215% (82 patients out of 6,748) in the Gonorrhea group compared to 2.949% (199 patients out of 6748) in the control group. This was statistically significant by a p-value <5.410-10 with an OR= 0.468 (95% CI 0.367-0.596). The study shows a statistically significant correlation between Gonorrhea and a reduced incidence of Lymphoma. Further evaluation is recommended to assess the potential of Gonorrhea in reducing Lymphoma.Keywords: gonorrhea, lymphoma, STDs, cancer, ICD
Procedia PDF Downloads 1962851 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies
Authors: Rituparna Nath, Shawn J. Marshall
Abstract:
Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age
Procedia PDF Downloads 2682850 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 1422849 Identification of Tissue-Specific Transcription Factors in C. roseus with Emphasis to the TIA Biosynthetic Pathway
Authors: F. M. El-Domyati, A. Atef, S. Edris, N. O. Gadalla, M. A. Al-Kordy, A. M. Ramadan, Y. M. Saad, H. S. Al-Zahrani, A. Bahieldin
Abstract:
Transcriptome retrieved from SRA database of different tissues and treatments of C. roseus was assembled in order to detect tissue-specific transcription factors (TFs) and TFs possibly related to terpenoid indole alkaloids (TIA) pathway. A number of 290 TF-like transcripts along with 12 transcripts related to TIA biosynthetic pathway were divided in terms of co-expression in the different tissues, treatments and genotypes. Three transcripts encoding peroxidases 1 and 12 were downregulated in hairy root, while upregulated in mature leaf. Eight different transcripts of the TIA pathway co-expressed with TFs either functioning downstream tryptophan biosynthesis, e.g., tdc, str1 and sgd, or upstream vindoline biosynthesis, e.g., t16h, omt, nmt, d4h and dat. The results showed no differential expression of TF transcripts in hairy roots knocked down for tdc gene (TDCi) as compared to their wild type controls. There were several evidences of tissue-specific expression of TF transcripts in flower, mature leaf, root/hairy root, stem, seedling, hairy root and immature/mature leaves. Regulation included transcription factor families, e.g., bHLH, MYB and WRKY mostly induced by ABA and/or JA (or MeJA) and regulated during abiotic or biotic stress. The information of tissue-specific regulation and co-expression of TFs and genes in the TIA pathway can be utilized in manipulating alkaloid biosynthesis in C. roseus.Keywords: SRA database, bHLH, MYB, WRKY, co-expression
Procedia PDF Downloads 4212848 Building Information Models Utilization for Design Improvement of Infrastructure
Authors: Keisuke Fujioka, Yuta Itoh, Masaru Minagawa, Shunji Kusayanagi
Abstract:
In this study, building information models of the underground temporary structures and adjacent embedded pipes were constructed to show the importance of the information on underground pipes adjacent to the structures to enhance the productivity of execution of construction. Next, the bar chart used in actual construction process were employed to make the Gantt chart, and the critical pass analysis was carried out to show that accurate information on the arrangement of underground existing pipes can be used for the enhancement of the productivity of the construction of underground structures. In the analyzed project, significant construction delay was not caused by unforeseeable existence of underground pipes by the management ability of the construction manager. However, in many cases of construction executions in the developing countries, the existence of unforeseeable embedded pipes often causes substantial delay of construction. Design change based on uncertainty on the position information of embedded pipe can be also important risk for contractors in domestic construction. So CPM analyses were performed by a project-management-software to the situation that influence of the tasks causing construction delay was assumed more significant. Through the analyses, the efficiency of information management on underground pipes and BIM analysis in the design stage for workability improvement was indirectly confirmed.Keywords: building-information modelling, construction information modelling, design improvement, infrastructure
Procedia PDF Downloads 3092847 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 1342846 A Cloud-Based Spectrum Database Approach for Licensed Shared Spectrum Access
Authors: Hazem Abd El Megeed, Mohamed El-Refaay, Norhan Magdi Osman
Abstract:
Spectrum scarcity is a challenging obstacle in wireless communications systems. It hinders the introduction of innovative wireless services and technologies that require larger bandwidth comparing to legacy technologies. In addition, the current worldwide allocation of radio spectrum bands is already congested and can not afford additional squeezing or optimization to accommodate new wireless technologies. This challenge is a result of accumulative contributions from different factors that will be discussed later in this paper. One of these factors is the radio spectrum allocation policy governed by national regulatory authorities nowadays. The framework for this policy allocates specified portion of radio spectrum to a particular wireless service provider on exclusive utilization basis. This allocation is executed according to technical specification determined by the standard bodies of each Radio Access Technology (RAT). Dynamic access of spectrum is a framework for flexible utilization of radio spectrum resources. In this framework there is no exclusive allocation of radio spectrum and even the public safety agencies can share their spectrum bands according to a governing policy and service level agreements. In this paper, we explore different methods for accessing the spectrum dynamically and its associated implementation challenges.Keywords: licensed shared access, cognitive radio, spectrum sharing, spectrum congestion, dynamic spectrum access, spectrum database, spectrum trading, reconfigurable radio systems, opportunistic spectrum allocation (OSA)
Procedia PDF Downloads 4332845 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems
Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell
Abstract:
Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.Keywords: building information modeling, BIM, facilities management systems, interoperability, information management
Procedia PDF Downloads 1172844 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics
Authors: Eugene Y. C. Wong
Abstract:
The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics
Procedia PDF Downloads 3752843 Evolution of Deformation in the Southern Central Tunisian Atlas: Parameters and Modelling
Authors: Mohamed Sadok Bensalem, Soulef Amamria, Khaled Lazzez, Mohamed Ghanmi
Abstract:
The southern-central Tunisian Atlas presents a typical example of an external zone. It occupies a particular position in the North African chains: firstly, it is the eastern limit of atlassic structures; secondly, it is the edges between the belts structures to the north and the stable Saharan platform in the south. The evolution of deformation study is based on several methods, such as classical or numerical methods. The principals parameters controlling the genesis of folds in the southern central Tunisian Atlas are; the reactivation of pre-existing faults during the later compressive phase, the evolution of decollement level, and the relation between thin and thick-skinned. One of the more principal characters of the southern-central Tunisian Atlas is the variation of belts structures directions determined by: NE-SW direction, named the attlassic direction in Tunisia, the NW-SE direction carried along the Gafsa fault (the oriental limit of southern atlassic accident), and the E-W direction defined in the southern Tunisian Atlas. This variation of direction is the result of important variation of deformation during different tectonics phases. A classical modelling of the Jebel ElKebar anticline, based on faults throw of the pre-existing faults and its reactivation during compressive phases, shows the importance of extensional deformation, particular during Aptian-Albian period, comparing with that of later compression (Alpine phases). A numerical modelling, based on the software Rampe E.M. 1.5.0, applied on the anticline of Jebel Orbata confirms the interpretation of “fault related fold” with decollement level within the Triassic successions. The other important parameter of evolution of deformation is the vertical migration of decollement level; indeed, more than the decollement level is in the recent series, most that the deformation is accentuated. The evolution of deformation is marked the development of duplex structure in Jebel At Taghli (eastern limit of Jebel Orbata). Consequently, the evolution of deformation is proportional to the depth of the decollement level, the most important deformation is in the higher successions; thus, is associated to the thin-skinned deformation; the decollement level permit the passive transfer of deformation in the cover.Keywords: evolution of deformation, pre-existing faults, decollement level, thin-skinned
Procedia PDF Downloads 1262842 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS
Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija
Abstract:
Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.Keywords: multilevel modelling, family planning, predictors, Nigeria
Procedia PDF Downloads 4202841 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules
Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel
Abstract:
The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling
Procedia PDF Downloads 1332840 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories
Authors: Umesh Kumar Singh, Chanchala Joshi
Abstract:
With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.Keywords: CVSS score, risk level, security measurement, vulnerability category
Procedia PDF Downloads 3222839 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 272838 Characteristics of Acute Poisoning in Emergency Departments: Multicenter Study in Korea
Authors: Hyuk-Hoon Kim, Young Gi Min
Abstract:
Background: Acute poisoning is the common cause of morbidity and mortality. Characteristics of acute poisoning differ between countries. While other countries operate the database system for poisoning, Korea has not collected the database for acute poisoning. Distribution of incidence of acute poisoning depending on the types of materials have also not studied in Korea. Our aims are to evaluate the etiologic and demographic characteristics of acute poisoning cases and to obtain up-to-date information on acute poisonings. Method: We retrospectively recorded cases of acute poisoning from eight emergency departments of second level or university hospitals from different cities in Gyeonggi province in Korea from April 2006 and March 2015. The distributions of incidence of acute poisoning depending on the types of materials are mapped by geographic information system. Result: A total of 3,449 poisoned cases were analyzed. Mean estimated age of patients was 39.56 ± 22.40 years. Mean male to female ratio of patients was 1:1.4. Mean proportion of intentional poisoning was 57.9%. Common materials are benzodiazepine (16.6%), carbon monoxide (10.5%), pesticide (8.1%) and zolpidem (7.1%) Common route of exposure is ingestion (79.5%) and followed by inhalation (16.5%). Common treatment methods are gastric lavage (20%) and activated charcoal (30%). Most cases had uneventful recovery; 61.4% were treated as outpatients and 0.1% of the poisoning resulted in death in ER. Conclusion: Even though the cases enrolled in our study is not the overall cases of acute poisoning in Korea, our study could be the basis of countermeasures for analysis and prevention of acute poisoning in Korea.Keywords: acute poisoning, emergency department, epidemiology, Korea
Procedia PDF Downloads 4052837 Medical Authorizations for Cannabis-Based Products in Canada: Sante Cannabis Data on Patient’s Safety and Treatment Profiles
Authors: Rihab Gamaoun, Cynthia El Hage, Laura Ruiz, Erin Prosk, Antonio Vigano
Abstract:
Introduction: Santé Cannabis (SC), a Canadian medical cannabis-specialized group of clinics based in Montreal and in the province of Québec, has served more than 5000 patients seeking cannabis-based treatment prescription for medical indications over the past five years. Within a research frame, data on the use of medical cannabis products from all the above patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to gather information on the profiles of both patients and prescribed medical cannabis products at SC clinics and to assess the safety of medical cannabis among Canadian patients. Methods: Using a retrospective analysis of the database, records of 2585 patients who were prescribed medical cannabis products for therapeutic purposes between 01-November 2017 and 04-September 2019 were included. Patients’ demographics, primary diagnosis, route of administration, and chemovars recorded at the initial visits were investigated. Results: At baseline: 9% of SC patients were female, with a mean age of 57 (SD= 15.8, range= [18-96]); Cannabis products were prescribed mainly for patients with a diagnosis of chronic pain (65.9% of patients), cancer (9.4%), neurological disorders (6.5%), mood disorders (5.8 %) and inflammatory diseases (4.1%). Route of administration and chemovars of prescribed cannabis products were the following: 96% of patients received cannabis oil (51% CBD rich, 42.5% CBD:THC); 32.1% dried cannabis (21.3% CBD:THC, 7.4% THC rich, 3.4 CBD rich), and 2.1% oral spray cannabis (1.1% CBD:THC, 0.8% CBD rich, 0.2% THC rich). Most patients were prescribed simultaneously, a combination of products with different administration routes and chemovars. Safety analysis is undergoing. Conclusion: Our results provided initial information on the profile of medical cannabis products prescribed in a Canadian population and the experienced adverse events over the past three years. The Santé Cannabis database represents a unique opportunity for comparing clinical practices in prescribing and titrating cannabis-based medications across different centers. Ultimately real-world data, including information about safety and effectiveness, will help to create standardized and validated guidelines for choosing dose, route of administration, and chemovars types for the cannabis-based medication in different diseases and indications.Keywords: medical cannabis, real-world data, safety, pharmacovigilance
Procedia PDF Downloads 1082836 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database
Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan
Abstract:
Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database
Procedia PDF Downloads 5772835 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems
Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga
Abstract:
In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.Keywords: car’s air–conditioning, microstructure, numerical modelling, welding
Procedia PDF Downloads 4082834 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 3892833 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data
Authors: Mahdi Salarian, Xi Xu, Rashid Ansari
Abstract:
Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.Keywords: localization, retrieval, GPS uncertainty, bag of word
Procedia PDF Downloads 2832832 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3672831 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe
Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort
Abstract:
This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle
Procedia PDF Downloads 3392830 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 2862829 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis
Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie
Abstract:
Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis
Procedia PDF Downloads 84