Search results for: Single Throw Mechanical Equipment (STME)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9458

Search results for: Single Throw Mechanical Equipment (STME)

8918 Pharmacokinetic Modeling of Valsartan in Dog following a Single Oral Administration

Authors: In-Hwan Baek

Abstract:

Valsartan is a potent and highly selective antagonist of the angiotensin II type 1 receptor, and is widely used for the treatment of hypertension. The aim of this study was to investigate the pharmacokinetic properties of the valsartan in dogs following oral administration of a single dose using quantitative modeling approaches. Forty beagle dogs were randomly divided into two group. Group A (n=20) was administered a single oral dose of valsartan 80 mg (Diovan® 80 mg), and group B (n=20) was administered a single oral dose of valsartan 160 mg (Diovan® 160 mg) in the morning after an overnight fast. Blood samples were collected into heparinized tubes before and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12 and 24 h following oral administration. The plasma concentrations of the valsartan were determined using LC-MS/MS. Non-compartmental pharmacokinetic analyses were performed using WinNonlin Standard Edition software, and modeling approaches were performed using maximum-likelihood estimation via the expectation maximization (MLEM) algorithm with sampling using ADAPT 5 software. After a single dose of valsartan 80 mg, the mean value of maximum concentration (Cmax) was 2.68 ± 1.17 μg/mL at 1.83 ± 1.27 h. The area under the plasma concentration-versus-time curve from time zero to the last measurable concentration (AUC24h) value was 13.21 ± 6.88 μg·h/mL. After dosing with valsartan 160 mg, the mean Cmax was 4.13 ± 1.49 μg/mL at 1.80 ± 1.53 h, the AUC24h was 26.02 ± 12.07 μg·h/mL. The Cmax and AUC values increased in proportion to the increment in valsartan dose, while the pharmacokinetic parameters of elimination rate constant, half-life, apparent of total clearance, and apparent of volume of distribution were not significantly different between the doses. Valsartan pharmacokinetic analysis fits a one-compartment model with first-order absorption and elimination following a single dose of valsartan 80 mg and 160 mg. In addition, high inter-individual variability was identified in the absorption rate constant. In conclusion, valsartan displays the dose-dependent pharmacokinetics in dogs, and Subsequent quantitative modeling approaches provided detailed pharmacokinetic information of valsartan. The current findings provide useful information in dogs that will aid future development of improved formulations or fixed-dose combinations.

Keywords: dose-dependent, modeling, pharmacokinetics, valsartan

Procedia PDF Downloads 297
8917 Study on Monitoring Techniques Developed for a City Railway Construction

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Il Kim

Abstract:

Currently, sinkholes may occur due to natural or unknown causes. When the sinkhole is an instantaneous phenomenon, most accidents occur because of significant damage. Thus, methods of monitoring are being actively researched, such that the impact of the accident can be mitigated. A sinkhole can severely affect and wreak havoc in community-based facilities such as a city railway construction. Therefore, the development of a laser / scanning system and an image-based tunnel is one method of pre-monitoring that it stops the accidents. The laser scanning is being used but this has shortcomings as it involves the development of expensive equipment. A laser / videobased scanning tunnel is being developed at Korea Railroad Research Institute. This is designed to automatically operate the railway. The purpose of the scanning is to obtain an image of the city such as of railway structures (stations, tunnel). At the railway structures, it has developed 3D laser scanning that can find a micro-crack can not be distinguished by the eye. An additional aim is to develop technology to monitor the status of the railway structure without the need for expensive post-processing of 3D laser scanning equipment, by developing corresponding software.

Keywords: 3D laser scanning, sinkhole, tunnel, city railway construction

Procedia PDF Downloads 435
8916 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 207
8915 A Study of Mental Health of Higher Secondary School Going Children in Rural Area

Authors: Tanmay L. Joshi

Abstract:

The Mental health allows children and young people to develop the resilience to cope with whatever life throws at them and grow into well-rounded, healthy adults. In urban area, many health professionals are working for the well being for younger population. There is so much of potential in rural area. However, the rural population is somehow neglected. Apart from lack of availability of basic needs like transport, electricity, telecommunication etc; the Psychological health is also overlooked in such area. There are no mental health professionals like Psychologists, counselors etc. So the researcher tries to throw some light on the mental health of Higher Secondary School going children in rural area. The current research tries to study the Mental Health (Confidence, Sociability and Neurotic Tendency) of Higher Secondary School going children. Researchers have used the tool Vyaktitva Shodhika (a personality inventory) by Dr. U. Khire (JPIP,Pune). The Sample size is 45 (N= 40, 24 boys/21 girls). The present study may provide a good support to inculcate emotional-management programs for higher secondary school going children in rural areas.

Keywords: mental health, neurotic tendency, rural area, school going children

Procedia PDF Downloads 591
8914 Comfort Evaluation of Summer Knitted Clothes of Tencel and Cotton Fabrics

Authors: Mona Mohamed Shawkt Ragab, Heba Mohamed Darwish

Abstract:

Context: Comfort properties of garments are crucial for the wearer, and with the increasing demand for cotton fabric, there is a need to explore alternative fabrics that can offer similar or superior comfort properties. This study focuses on comparing the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the aim of identifying fabrics that are more suitable for summer clothes. Research Aim: The aim of this study is to evaluate the comfort properties of tencel/cotton single jersey fabric and cotton single jersey fabric, with the goal of identifying fabrics that can serve as alternatives to cotton, considering their comfort properties for summer clothing. Methodology: An experimental, analytical approach was employed in this study. Two circular knitting machines were used to produce the fabrics, one with a 24 inches gauge and the other with a 28 inches gauge. Both fabrics were knitted with three different loop lengths (3.05 mm, 2.9 mm, and 2.6 mm) to obtain loose, medium, and tight fabrics for evaluation. Various comfort properties, including air permeability, water vapor permeability, wickability, and thermal resistance, were measured for both fabric types. Findings: The study found a significant difference in comfort properties between tencel/cotton single jersey fabric and cotton single jersey fabric. Tencel/cotton fabric exhibited higher air permeability, water vapor permeability, and wickability compared to cotton fabric. These findings suggest that tencel fabric is more suitable for summer clothes due to its superior ventilation and absorption properties. Theoretical Importance: This study contributes to the exploration of alternative fabrics to cotton by evaluating their comfort properties. By identifying fabrics that offer better comfort properties than cotton, particularly in terms of water usage, the study provides valuable insights into sustainable fabric choices for the fashion industry. Data Collection and Analysis Procedures: The comfort properties of the fabrics were measured using appropriate testing methods. Paired comparison t-tests were conducted to determine the significant differences between tencel/cotton fabric and cotton fabric in the measured properties. Correlation coefficients were also calculated to examine the relationships between the factors under study. Question Addressed: The study addresses the question of whether tencel/cotton single jersey fabric can serve as an alternative to cotton fabric for summer clothes, considering their comfort properties. Conclusion: The study concludes that tencel/cotton single jersey fabric offers superior comfort properties compared to cotton single jersey fabric, making it a suitable alternative for summer clothes. The findings also highlight the importance of considering fabric properties, such as air permeability, water vapor permeability, and wickability, when selecting materials for garments to enhance wearer comfort. This research contributes to the search for sustainable alternatives to cotton and provides valuable insights for the fashion industry in making informed fabric choices.

Keywords: comfort properties, cotton fabric, tencel fabric, single jersey

Procedia PDF Downloads 74
8913 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 117
8912 Production Line Layout Planning Based on Complexity Measurement

Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu

Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Keywords: production line, layout planning, complexity measurement, optimization, mass customization

Procedia PDF Downloads 393
8911 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems

Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat

Abstract:

Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.

Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning

Procedia PDF Downloads 120
8910 Analysis on the Importance and Direction of Change in Residential Environment of Apartment with the Change of Population Structure

Authors: Jo, Eui Chang, Shin, Heekang, Mun, A. Young , Kim, Hong Kyu

Abstract:

Regarding change on population and family structure in Korea after the 1980s, there has been a rapid change of low fertility, graying and increase of single household that cannot be found in any other parts of the world. With the result of total population residence by the National Statistical Office, Korea will hold 52,160,065 people in 2030 and reduction is predicted and from 2025 people above the age of 65 will take 20% of the total population, which means the entry of a super aging society. Also, average number in a family will be 2.71 in 2015 and decrease to 2.33 in 2035. On the other hand, proportion of single and two person household will be 53.7% in 2015 and it will increase up to 68.4% in 2035. Old population will increase greatly, single and two person household will take 2/3 of the total households. Delphi research was processed in 3 steps on 40 professionals about the importance and changing factors of residential environment of apartment followed by the change of population structure. For interior plan, space variety, variability, safety, convenient installation, eco-friendly installation, and IT installation were important factors for construction plan, plan on aged and single households, convenient installation, safety installation, eco-friendly installation for subdivision plan, education/child care facility, parks/gymnasium facility, community facility, and accessibility of transportation were predicted as important factors.

Keywords: change of population structure, super-graying, change of residential environment of apartment, single household, interior plan, construction plan, subdivision plan, Delphi research

Procedia PDF Downloads 436
8909 Performance Evaluation of Iar Multi Crop Thresher

Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam

Abstract:

Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.

Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher

Procedia PDF Downloads 350
8908 Mechanical and Tribological Characterization of Squeeze Cast Al 6061 Alloy Reinforced with SiC and Al₂O₃ Particulates

Authors: Gurcan A. B., Baker T. N.

Abstract:

Due to economic and environmental requirements, it is becoming increasingly important to reduce vehicle weight. The first approach consisted in using light materials with high thermal conductivity, such as aluminium alloys. This choice allowed significant mass reduction and lower temperature but required recourse to ventilated discs. Among aluminium alloys, Al 6xxx series alloys enjoy the highest strength-to-weight ratio and, therefore, have found wide applications in the automobile and aerospace industries. However, these alloys lose their high strength rapidly when they are exposed to elevated temperatures. This rapid decline in the strength is directly related to the coarsening of very fine precipitates which are then not as effective in obstructing the dislocations. The incorporation of micro-scale and nano-scale particulates in aluminium systems can greatly enhance their mechanical characteristics.

Keywords: mechanical and tribological behaviour, scanning electron microscope, optical test, mechanical properties test, experimental test

Procedia PDF Downloads 55
8907 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 85
8906 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 164
8905 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 309
8904 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 194
8903 Flexible Ureterorenoscopy as a New Possibility of Treating Nephrolithiasis in Children – Preliminary Reports

Authors: Adam Haliński, Andrzej Haliński

Abstract:

Introduction: Flexible ureterorenoscopy is a surgery technique used for the treatment of the upper urinary tract. It is very often used in adult patients; however, due to the advancing miniaturization of the equipment as well as its precision, this technique has also become possible in the treatment process in children. Material and method: We would like to present 26 cases of flexible ureterorenoscopy carried out in children with nephrolithiasis of the upper urinary tract aged 6 to 17 years. The average age was 9.5 years and the children were treated in our department from June 2013 to January 2015. The first surgery in Poland took place in our Department on 06.06.2013. Because of nephrolithiasis all the children had been subjected earlier to ESWL treatment, which was unsuccessful. Results: 14 children had deposits in the lower calyx, 9 children had deposits in the middle and lower calyx and in 3 children a stone was located in the initial ureter. An efficiency of 88 % was achieved. Conclusions: Flexible ureterorenoscopy is effective and minimally invasive tool both for the diagnosis and treatment of upper urinary tract. We believe that the advancing miniaturization of the equipment and gaining experience will enable carrying out of this procedure in smaller children with high efficiency.

Keywords: flexible ureterorenoscopy, urolithisis, endourology, nephrolithiasis

Procedia PDF Downloads 383
8902 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

Authors: C. H. S. Vidyasagar, D. B. Karunakar

Abstract:

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

Keywords: mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation

Procedia PDF Downloads 152
8901 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites

Authors: Hamed Khezrzadeh

Abstract:

Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.

Keywords: fractal geometry, homogenization, micromehcanics, particulate composites

Procedia PDF Downloads 292
8900 Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion

Authors: Filip Stojcevski, Tim Hilditch, Luke Henderson

Abstract:

Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion.

Keywords: carbon fibers, interfacial adhesion, surface treatment, sizing

Procedia PDF Downloads 265
8899 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory

Procedia PDF Downloads 278
8898 Single Ended Primary Inductance Converter with Internal Model Controller

Authors: Fatih Suleyman Taskincan, Ahmet Karaarslan

Abstract:

In this article, the study and analysis of Single Ended Primary Inductance Converter (SEPIC) are presented for battery charging applications that will be used in military applications. The usage of this kind of converters come from its advantage of non-reverse polarity at outputs. As capacitors charge and discharge through inductance, peak current does not occur on capacitors. Therefore, the efficiency will be high compared to buck-boost converters. In this study, the converter (SEPIC) is designed to be operated with Internal Model Controller (IMC). The traditional controllers like Proportional Integral Controller are not preferred as its linearity behavior. Hence IMC is designed for this converter. This controller is a model-based control and provides more robustness and better set point monitoring. Moreover, it can be used for an unstable process where the conventional controller cannot handle the dynamic operation. Matlab/Simulink environment is used to simulate the converter and its controller, then, the results are shown and discussed.

Keywords: DC/DC converter, single ended primary inductance converter, SEPIC, internal model controller, IMC, switched mode power supply

Procedia PDF Downloads 629
8897 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 115
8896 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 233
8895 The Problems of Current Earth Coordinate System for Earthquake Forecasting Using Single Layer Hierarchical Graph Neuron

Authors: Benny Benyamin Nasution, Rahmat Widia Sembiring, Abdul Rahman Dalimunthe, Nursiah Mustari, Nisfan Bahri, Berta br Ginting, Riadil Akhir Lubis, Rita Tavip Megawati, Indri Dithisari

Abstract:

The earth coordinate system is an important part of an attempt for earthquake forecasting, such as the one using Single Layer Hierarchical Graph Neuron (SLHGN). However, there are a number of problems that need to be worked out before the coordinate system can be utilized for the forecaster. One example of those is that SLHGN requires that the focused area of an earthquake must be constructed in a grid-like form. In fact, within the current earth coordinate system, the same longitude-difference would produce different distances. This can be observed at the distance on the Equator compared to distance at both poles. To deal with such a problem, a coordinate system has been developed, so that it can be used to support the ongoing earthquake forecasting using SLHGN. Two important issues have been developed in this system: 1) each location is not represented through two-value (longitude and latitude), but only a single value, 2) the conversion of the earth coordinate system to the x-y cartesian system requires no angular formulas, which is therefore fast. The accuracy and the performance have not been measured yet, since earthquake data is difficult to obtain. However, the characteristics of the SLHGN results show a very promising answer.

Keywords: hierarchical graph neuron, multidimensional hierarchical graph neuron, single layer hierarchical graph neuron, natural disaster forecasting, earthquake forecasting, earth coordinate system

Procedia PDF Downloads 216
8894 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 190
8893 Insomnia and Depression in Outpatients of Dementia Center

Authors: Jun Hong Lee

Abstract:

Background: Many dementia patients complain insomnia and depressive mood, and hypnotics and antidepressants are being prescribed. As prevalence of dementia is increasing, insomnia and depressive mood are becoming more important. Objective: We evaluated insomnia and depression in outpatients of dementia center. Patients and Methods/Material and Methods: We reviewed medical records of the patients who visited outpatients clinic of NHIS Ilsan Hospital Dementia Center during 2016. Results: Total 716 patients are included; Subjective Memory Impairment (SMI) : 143 patients (20%), non-amnestic Mild Cognitive Impairment (MCI): single domain 70 (10%), multiple domain 34 (5%), amnestic MCI: single domain 74 (10%), multiple domain 159 (22%), Early onset Alzheimer´s disease (AD): 9 (1%), AD 121 (17%), Vascular dementia: 62 (9%), Mixed dementia 44 (6%). Hypnotics and antidepressants are prescribed as follows; SMI : hypnotics 14 patients (10%), antidepressants 27 (19%), non-amnestic MCI: single domain hypnotics 9 (13%), antidepressants 12 (17%), multiple domain hypnotics 4 (12%), antidepressants 6 (18%), amnestic MCI: single domain hypnotics 10 (14%), antidepressants 16 (22%), multiple domain hypnotics 22 (14%), antidepressants 24 (15%), Early onset Alzheimer´s disease (AD): hypnotics 1 (11%), antidepressants 2 (22%), AD: hypnotics 10 (8%), antidepressants 36 (30%), Vascular dementia: hypnotics 8 (13%), antidepressants 20 (32%), Mixed dementia: hypnotics 4 (9%), antidepressants 17 (39%). Conclusion: Among the outpatients of Dementia Center, MCI and SMI are majorities, and the number of MCI patients are almost half. Depression is more prevalent in AD, and Vascular dementia than MCI and SMI, and about 22% of patients are being prescribed by antidepressants and 11% by hypnotics.

Keywords: insomnia, depression, dementia, antidepressants, hypnotics

Procedia PDF Downloads 168
8892 Assessment of Designed Outdoor Playspaces as Learning Environments and Its Impact on Child’s Wellbeing: A Case of Bhopal, India

Authors: Richa Raje, Anumol Antony

Abstract:

Playing is the foremost stepping stone for childhood development. Play is an essential aspect of a child’s development and learning because it creates meaningful enduring environmental connections and increases children’s performance. The children’s proficiencies are ever varying in their course of growth. There is innovation in the activities, as it kindles the senses, surges the love for exploration, overcomes linguistic barriers and physiological development, which in turn allows them to find their own caliber, spontaneity, curiosity, cognitive skills, and creativity while learning during play. This paper aims to comprehend the learning in play which is the most essential underpinning aspect of the outdoor play area. It also assesses the trend of playgrounds design that is merely hammered with equipment's. It attempts to derive a relation between the natural environment and children’s activities and the emotions/senses that can be evoked in the process. One of the major concerns with our outdoor play is that it is limited to an area with a similar kind of equipment, thus making the play highly regimented and monotonous. This problem is often lead by the strict timetables of our education system that hardly accommodates play. Due to these reasons, the play areas remain neglected both in terms of design that allows learning and wellbeing. Poorly designed spaces fail to inspire the physical, emotional, social and psychological development of the young ones. Currently, the play space has been condensed to an enclosed playground, driveway or backyard which confines the children’s capability to leap the boundaries set for him. The paper emphasizes on study related to kids ranging from 5 to 11 years where the behaviors during their interactions in a playground are mapped and analyzed. The theory of affordance is applied to various outdoor play areas, in order to study and understand the children’s environment and how variedly they perceive and use them. A higher degree of affordance shall form the basis for designing the activities suitable in play spaces. It was observed during their play that, they choose certain spaces of interest majority being natural over other artificial equipment. The activities like rolling on the ground, jumping from a height, molding earth, hiding behind tree, etc. suggest that despite equipment they have an affinity towards nature. Therefore, we as designers need to take a cue from their behavior and practices to be able to design meaningful spaces for them, so the child gets the freedom to test their precincts.

Keywords: children, landscape design, learning environment, nature and play, outdoor play

Procedia PDF Downloads 124
8891 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 454
8890 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 418
8889 Mechanical Properties of Fibre Reinforced High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Vitalijs Lusis, Genadijs Sahmenko, Aleksandrs Korjakins

Abstract:

This study focused on the mechanical properties of the fibre reinforced High Performance Concrete. The most important benefits of addition of fibres to the concrete mix are the hindrance of the development of microcracks, the delay of the propagation of microcracks to macroscopic cracks and the better ductility after microcracks have been occurred. This work presents an extensive comparative experimental study on six different types of fibres (alkali resistant glass, polyvinyl alcohol fibres, polypropylene fibres and carbon fibres) with the same binding High Performance Concrete matrix. The purpose was to assess the influence of the type of fibre on the mechanical properties of Fibre Reinforced High Performance Concrete. Therefore, in this study three main objectives have been chosen: 1) analyze the structure of the bulk cementitious matrix, 2) determine the influence of fibres and distribution in the matrix on the mechanical properties of fibre reinforced High Performance Concrete and 3) characterize the microstructure of the fibre-matrix interface. Acknowledgement: This study was partially funded by European Regional Development Fund project Nr.1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” and COST Action TU1404 Conference grants project.

Keywords: high performance concrete, fibres, mechanical properties, microstructure

Procedia PDF Downloads 283