Search results for: learning curve
2753 The Impact of Entrepreneurship Education on the Entrepreneurial Tendencies of Students: A Quasi-Experimental Design
Authors: Lamia Emam
Abstract:
The attractiveness of entrepreneurship education stems from its perceived value as a venue through which students can develop an entrepreneurial mindset, skill set, and practice, which may not necessarily lead to them starting a new business, but could, more importantly, be manifested as a life skill that could be applied to all types of organizations and career endeavors. This, in turn, raises important questions about what happens in our classrooms; our role as educators, the role of students, center of learning, and the instructional approach; all of which eventually contribute to achieving the desired EE outcomes. With application to an undergraduate entrepreneurship course -Entrepreneurship as Practice- the current paper aims to explore the effect of entrepreneurship education on the development of students’ general entrepreneurial tendencies. Towards that purpose, the researcher herein uses a pre-test and post-test quasi-experimental research design where the Durham University General Enterprising Tendency Test (GET2) is administered to the same group of students before and after course delivery. As designed and delivered, the Entrepreneurship as Practice module is a highly applied and experiential course where students are required to develop an idea for a start-up while practicing the entrepreneurship-related knowledge, mindset, and skills that are taught in class, both individually and in groups. The course is delivered using a combination of short lectures, readings, group discussions, case analysis, guest speakers, and, more importantly, actively engaging in a series of activities that are inspired by diverse methods for developing successful and innovative business ideas, including design thinking, lean-start up and business feasibility analysis. The instructional approach of the course particularly aims at developing the students' critical thinking, reflective, analytical, and creativity-based problem-solving skills that are needed to launch one’s own start-up. The analysis and interpretation of the experiment’s outcomes shall simultaneously incorporate the views of both the educator and students. As presented, the study responds to the rising call for the application of experimental designs in entrepreneurship in general and EE in particular. While doing so, the paper presents an educator’s perspective of EE to complement the dominant stream of research which is constrained to the students’ point of view. Finally, the study sheds light on EE in the MENA region, where the study is applied.Keywords: entrepreneurship education, andragogy and heutagogy, scholarship of teaching and learning, experiment
Procedia PDF Downloads 1312752 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System
Authors: Rajan Goyal, S. Lamba, S. Annapoorni
Abstract:
The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve
Procedia PDF Downloads 1912751 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach
Authors: Utkarsh A. Mishra, Ankit Bansal
Abstract:
At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks
Procedia PDF Downloads 2282750 A Challenge of the 3ʳᵈ Millenium: The Emotional Intelligence Development
Authors: Florentina Hahaianu, Mihaela Negrescu
Abstract:
The analysis of the positive and negative effects of technology use and abuse in Generation Z comes as a necessity in order to understand their ever-changing emotional development needs. The article quantitatively analyzes the findings of a sociological questionnaire on a group of students in social sciences. It aimed to identify the changes generated by the use of digital resources in the emotional intelligence development. Among the outcomes of our study we include a predilection for IT related activities – be they social, learning, entertainment, etc. which undermines the manifestation of emotional intelligence, especially the reluctance to face-to-face interaction. In this context, the issue of emotional intelligence development comes into focus as a solution to compensate for the undesirable effects that contact with technology has on this generation.Keywords: digital resources, emotional intelligence, generation Z, students
Procedia PDF Downloads 2152749 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 2852748 The Impact of Critical Thinking on Educational Management for the Professional Development of English Language Teachers
Authors: Simin Baneshi
Abstract:
Critical thinking, as one of the essential skills of the 21st century, plays a fundamental role in improving teaching and learning processes. In the field of educational management, strengthening this skill among teachers can contribute to designing more effective educational programs, enhancing teaching quality, and improving learning outcomes. English language teachers, by utilizing critical thinking, can analyze educational challenges and find innovative solutions for them. The aim of this research is to examine the role of critical thinking in educational management and its impact on the professional development of English language teachers. Additionally, identifying optimal methods to enhance this skill among teachers and educational managers is another objective of this study. This research was conducted using a mixed-methods approach with a sample population of 200 teachers and 20 educational managers from schools and English language teaching institutions across three provinces in Iran. Sampling was carried out through stratified random sampling for teachers and purposive sampling for managers. In the quantitative section, a standardized critical thinking questionnaire with 30 closed-ended questions and a Likert scale was employed, and the data were analyzed using independent t-tests, multivariate analysis of variance (MANOVA), and regression analysis. In the qualitative section, semi-structured interviews were conducted with 15 managers and 10 experienced teachers. Qualitative data were analyzed using thematic analysis. The validity of the instruments was confirmed by five experts in the field of education, and the reliability of the questionnaire was evaluated with a Cronbach’s alpha coefficient of 0.89. The findings revealed that teachers with high critical thinking skills are more successful in designing innovative educational programs, managing classrooms, and solving educational issues. Additionally, managers who adopt critical management approaches create a more dynamic educational environment for fostering these skills. Regular training programs and critical thinking workshops had a positive impact on the professional development of teachers. Critical thinking is a key element in educational management and the professional development of English language teachers. Providing targeted educational opportunities, specialized workshops, and constructive feedback can strengthen this skill among teachers and lead to improved teaching quality. The results of this study can assist educational policymakers in designing professional development programs for teachers and serve as a model for other educational domains.Keywords: critical thinking, educational management, professional development, teachers
Procedia PDF Downloads 02747 Neurocognitive and Executive Function in Cocaine Addicted Females
Authors: Gwendolyn Royal-Smith
Abstract:
Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function
Procedia PDF Downloads 4042746 Artificial Intelligence for All: Artificial Intelligence Education for K-12
Authors: Yiqiao Yin
Abstract:
Many scholars and educators have dedicated their lives in K12 education system and there has been an exploding amount of attention to implement technical foundations for Artificial Intelligence Education for high school and precollege level students. This paper focuses on the development and use of resources to support K-12 education in Artificial Intelligence (AI). The author and his team have more than three years of experience coaching students from pre-college level age from 15 to 18. This paper is a culmination of the experience and proposed online tools, software demos, and structured activities for high school students. The paper also addresses a portfolio of AI concepts as well as the expected learning outcomes. All resources are provided with online videos and Github repositories for immediate use.Keywords: K12 education, AI4ALL, pre-college education, pre-college AI
Procedia PDF Downloads 1372745 Understand and Redefine Lean Product Development
Authors: Alemu Moges Belay, Torgeir Welo, Jan Ola Strandhagen
Abstract:
Lean has long been linked with manufacturing, but its application claimed also by other functions such as product development and services. However, there is a challenge on understanding and defining lean in each function context. This paper aims to investigate the literature that focus mainly on PD process improvement, obtain better understanding and redefine LPD in systematic way. In addition to that, the paper attempts to summarize various proposed transformation strategies, definitions, identifying features of manufacturing and product development that would help to redefining lean in product development context. Finally we redefine LPD in organized way that encompasses different steps such as stage gate, communication and information, events, learning, innovation, knowledge and value creation.Keywords: lean, lean manufacturing, lean product development, transformation, strategies
Procedia PDF Downloads 4782744 Supports for Student Learning Program: Exploring the Educational Terrain of Newcomer and Refugee Students in Canada
Authors: Edward Shizha, Edward Makwarimba
Abstract:
This literature review explores current research on the educational strengths and barriers of newcomer and refugee youth in Canada. Canada’s shift in immigration policy in the past three decades, from Europe to Asian and African countries as source continents of recent immigrants to Canada, has tremendously increased the ethnic, linguistic, cultural and religious diversity of the population, including that of students in its education system. Over 18% of the country’s population was born in another country, of which 70% are visible minorities. There has been an increase in admitted immigrants and refugees, with a total of 226,203 between July 2020 and June 2021. Newcomer parents and their children in all major destination countries, including Canada, face tremendous challenges, including racism and discrimination, lack of English language skills, poverty, income inequality, unemployment, and underemployment. They face additional challenges, including discrimination against those who cannot speak the official languages, English or French. The severity of the challenges depends on several intersectional factors, including immigrant status (asylum seeker, refugee, or immigrant), age, gender, level of education and others. Through the lens of intersectionality as an explanatory perspective, this literature review examines the educational attainment and outcomes of newcomer and refugee youth in Canada in order to understand their educational needs, educational barriers and strengths. Newcomer youths’ experiences are shaped by numerous intersectional and interconnected sociocultural, sociopolitical, and socioeconomic factors—including gender, migration status, racialized status, ethnicity, socioeconomic class, sexual minority status, age, race—that produce and perpetuate their disadvantage. According to research, immigrants and refugees from visible minority ethnic backgrounds experience exclusions more than newcomers from other backgrounds and groups from the mainstream population. For many immigrant parents, migration provides financial and educational opportunities for their children. Yet, when attending school, newcomer and refugee youth face unique challenges related to racism and discrimination, negative attitudes and stereotypes from teachers and other school authorities, language learning and proficiency, differing levels of acculturation, and different cultural views of the role of parents in relation to teachers and school, and unfamiliarity with the social or school context in Canada. Recognizing discrepancies in educational attainment of newcomer and refugee youth based on their race and immigrant status, the paper develops insights into existing research and data gaps related to educational strengths and challenges for visible minority newcomer youth in Canada. The paper concludes that the educational successes or failures of the newcomer and refugee youth and their settlement and integration into the school system in Canada may depend on where their families settle, the attitudes of the host community and the school officials (teachers, guidance counsellors and school administrators) after-school support programs and their own set of coping mechanisms. Conceivably a unique approach to after-school programming should provide learning supports and opportunities that consider newcomer and refugee youth’s needs, experiences, backgrounds and circumstances. This support is likely to translate into significant academic and psychological well-being of newcomer students.Keywords: deficit discourse, discrimination, educational outcomes, newcomer and refugee youth, racism, strength-based approach, whiteness
Procedia PDF Downloads 702743 Challenges of School Leadership
Authors: Stefan Ninković
Abstract:
The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.Keywords: educational changes, leaders, leadership, school
Procedia PDF Downloads 3392742 The Use of Artificial Intelligence to Identify Ore-Prospective Territories in East Kazakhstan
Authors: O. D. Gavrilenko, N. M Temirbekov, Z. A. Mustafina
Abstract:
This article discusses the possibility of using machine learning algorithms to analyze and synthesize historical geological data with mathematical geophysics and geochemistry data, as well as Earth remote sensing (ERS) results. Creating geoinformation systems for such Big Data with their subsequent processing using artificial intelligence methods provides unique opportunities for more accurate minerogenic zoning of territories, which significantly increases the efficiency of geological exploration. This will improve the accuracy of geological exploration and forecast zones with potential mineral resources.Keywords: methods of remote sensing of the earth, geographic information systems, artificial intelligence, geological geophysical geochemical and minerogenic data, minerogenic model
Procedia PDF Downloads 42741 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 1812740 Music Listening in Dementia: Current Developments and the Potential for Automated Systems in the Home: Scoping Review and Discussion
Authors: Alexander Street, Nina Wollersberger, Paul Fernie, Leonardo Muller, Ming Hung HSU, Helen Odell-Miller, Jorg Fachner, Patrizia Di Campli San Vito, Stephen Brewster, Hari Shaji, Satvik Venkatesh, Paolo Itaborai, Nicolas Farina, Alexis Kirke, Sube Banerjee, Eduardo Reck Miranda
Abstract:
Escalating neuropsychiatric symptoms (NPS) in people with dementia may lead to earlier care home admission. Music listening has been reported to stimulate cognitive function, potentially reducing agitation in this population. We present a scoping review, reporting on current developments and discussing the potential for music listening with related technology in managing agitation in dementia care. Of two searches for music listening studies, one focused on older people or people living with dementia where music listening interventions, including technology, were delivered in participants’ homes or in institutions to address neuropsychiatric symptoms, quality of life and independence. The second included any population focusing on the use of music technology for health and wellbeing. In search one 70/251 full texts were included. The majority reported either statistical significance (6, 8.5%), significance (17, 24.2%) or improvements (26, 37.1%). Agitation was specifically reported in 36 (51.4%). The second search included 51/99 full texts, reporting improvement (28, 54.9%), significance (11, 21.5%), statistical significance (1, 1.9%) and no difference compared to the control (6, 11.7%). The majority in the first focused on mood and agitation, and the second on mood and psychophysiological responses. Five studies used AI or machine learning systems to select music, all involving healthy controls and reporting benefits. Most studies in both reviews were not conducted in a home environment (review 1 = 12; 17.1%; review 2 = 11; 21.5%). Preferred music listening may help manage NPS in the care home settings. Based on these and other data extracted in the review, a reasonable progression would be to co-design and test music listening systems and protocols for NPS in all settings, including people’s homes. Machine learning and automated technology for music selection and arousal adjustment, driven by live biodata, have not been explored in dementia care. Such approaches may help deliver the right music at the appropriate time in the required dosage, reducing the use of medication and improving quality of life.Keywords: music listening, dementia, agitation, scoping review, technology
Procedia PDF Downloads 1182739 An Analytical Review of Tourism Management in India with Special Reference to Maharashtra State
Authors: Anilkumar L. Rathod
Abstract:
This paper examines event tourism as a field of study and area of professional practice updating the previous review article published in 2015. In this substantially extended review, a deeper analysis of the field's evolution and development is presented, charting the growth of the literature, focusing both chronologically and thematically. A framework for understanding and creating knowledge about events and tourism is presented, forming the basis which signposts established research themes and concepts and outlines future directions for research. In addition, the review article focuses on constraining and propelling forces, ontological advances, contributions from key journals, and emerging themes and issues. It also presents a roadmap for research activity in event tourism. Published scholarly studies within this period are examined through content analysis, using such keywords as knowledge management, organizational learning, hospitality, tourism, tourist destinations, travel industry, hotels, lodging, motels, hotel industry, gaming, casino hotel and convention to search scholarly research journals. All contributions found are then screened for a hospitality and tourism theme. Researchers mostly discuss knowledge management approach in improving information technology, marketing and strategic planning in order to gain competitive advantage. Overall, knowledge management research is still limited. Planned events in tourism are created for a purpose, and what was once the realm of individual and community initiatives has largely become the realm of professionals and entrepreneurs provides a typology of the four main categories of planned events within an event-tourism context, including the main venues associated with each. It also assesses whether differences exist between socio-demographic groupings. An analysis using primarily descriptive statistics indicated both sub-samples had similar viewpoints although Maharashtra residents tended to have higher scores pertaining to the consequences of gambling. It is suggested that the differences arise due to the greater exposure of Maharashtra residents to the influences of casino development.Keywords: organizational learning, hospitality, tourism, tourist destinations, travel industry, hotels, lodging, motels, hotel industry, gaming, casino hotel and convention to search scholarly research journals
Procedia PDF Downloads 2402738 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features
Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng
Abstract:
Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.Keywords: HTML5, web worker, canvas, web socket
Procedia PDF Downloads 3092737 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection
Procedia PDF Downloads 2362736 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 4502735 A Grid Synchronization Method Based On Adaptive Notch Filter for SPV System with Modified MPPT
Authors: Priyanka Chaudhary, M. Rizwan
Abstract:
This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.Keywords: solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique
Procedia PDF Downloads 5962734 Integrating a Six Thinking Hats Approach Into the Prewriting Stage of Argumentative Writing In English as a Foreign Language: A Chinese Case Study of Generating Ideas in Action
Abstract:
Argumentative writing is the most prevalent genre in diverse writing tests. How to construct academic arguments is often regarded as a difficult task by most English as a foreign language (EFL) learners. A failure to generate enough ideas and organise them coherently and logically as well as a lack of competence in supporting their arguments with relevant evidence are frequent problems faced by EFL learners when approaching an English argumentative writing task. Overall, these problems are closely related to planning, and planning an argumentative writing at pre-writing stage plays a vital role in a good academic essay. However, how teachers can effectively guide students to generate ideas is rarely discussed in planning English argumentative writing, apart from brainstorming. Brainstorming has been a common practice used by teachers to help students generate ideas. However, some limitations of brainstorming suggest that it can help students generate many ideas, but ideas might not necessarily be coherent and logic, and could sometimes impede production. It calls for a need to explore effective instructional strategies at pre-writing stage of English argumentative writing. This paper will first examine how a Six Thinking Hats approach can be used to provide a dialogic space for EFL learners to experience and collaboratively generate ideas from multiple perspectives at pre-writing stage. Part of the findings of the impact of a twelve-week intervention (from March to July 2021) on students learning to generate ideas through engaging in group discussions of using Six Thinking Hats will then be reported. The research design is based on the sociocultural theory. The findings present evidence from a mixed-methods approach and fifty-nine participants from two first-year undergraduate natural classes in a Chinese university. Analysis of pre- and post- questionnaires suggests that participants had a positive attitude toward the Six Thinking Hats approach. It fosters their understanding of prewriting and argumentative writing, helps them to generate more ideas not only from multiple perspectives but also in a systematic way. A comparison of participants writing plans confirms an improvement in generating counterarguments and rebuttals to support their arguments. Above all, visual and transcripts data of group discussion collected from different weeks throughout the intervention enable teachers and researchers to ‘see’ the hidden process of learning to generate ideas in action.Keywords: argumentative writing, innovative pedagogy, six thinking hats, dialogic space, prewriting, higher education
Procedia PDF Downloads 922733 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)
Authors: Wafa' Slaibi Alsharafat
Abstract:
Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection
Procedia PDF Downloads 4762732 People Management, Knowledge Sharing and Intermediary Variables
Authors: Nizar Mansour, Chiha Gaha, Emna Gara
Abstract:
The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia
Procedia PDF Downloads 3382731 A Case Study on Experiences of Clinical Preceptors in the Undergraduate Nursing Program
Authors: Jacqueline M. Dias, Amina A Khowaja
Abstract:
Clinical education is one of the most important components of a nursing curriculum as it develops the students’ cognitive, psychomotor and affective skills. Clinical teaching ensures the integration of knowledge into practice. As the numbers of students increase in the field of nursing coupled with the faculty shortage, clinical preceptors are the best choice to ensure student learning in the clinical settings. The clinical preceptor role has been introduced in the undergraduate nursing programme. In Pakistan, this role emerged due to a faculty shortage. Initially, two clinical preceptors were hired. This study will explore clinical preceptors views and experiences of precepting Bachelor of Science in Nursing (BScN) students in an undergraduate program. A case study design was used. As case studies explore a single unit of study such as a person or very small number of subjects; the two clinical preceptors were fundamental to the study and served as a single case. Qualitative data were obtained through an iterative process using in depth interviews and written accounts from reflective journals that were kept by the clinical preceptors. The findings revealed that the clinical preceptors were dedicated to their roles and responsibilities. Another, key finding was that clinical preceptors’ prior knowledge and clinical experience were valuable assets to perform their role effectively. The clinical preceptors found their new role innovative and challenging; it was stressful at the same time. Findings also revealed that in the clinical agencies there were unclear expectations and role ambiguity. Furthermore, clinical preceptors had difficulty integrating theory into practice in the clinical area and they had difficulty in giving feedback to the students. Although this study is localized to one university, generalizations can be drawn from the results. The key findings indicate that the role of a clinical preceptor is demanding and stressful. Clinical preceptors need preparation prior to precepting students on clinicals. Also, institutional support is fundamental for their acceptance. This paper focuses on the views and experiences of clinical preceptors undertaking a newly established role and resonates with the literature. The following recommendations are drawn to strengthen the role of the clinical preceptors: A structured program for clinical preceptors is needed along with mentorship. Clinical preceptors should be provided with formal training in teaching and learning with emphasis on clinical teaching and giving feedback to students. Additionally, for improving integration of theory into practice, clinical modules should be provided ahead of the clinical. In spite of all the challenges, ten more clinical preceptors have been hired as the faculty shortage continues to persist.Keywords: baccalaureate nursing education, clinical education, clinical preceptors, nursing curriculum
Procedia PDF Downloads 1782730 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1392729 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1292728 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions
Authors: Saif Alomari
Abstract:
The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters
Procedia PDF Downloads 1462727 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3402726 CDIO-Based Teaching Reform for Software Project Management Course
Authors: Liping Li, Wenan Tan, Na Wang
Abstract:
With the rapid development of information technology, project management has gained more and more attention recently. Based on CDIO, this paper proposes some teaching reform ideas for software project management curriculum. We first change from Teacher-centered classroom to Student-centered and adopt project-driven, scenario animation show, teaching rhythms, case study and team work practice to improve students' learning enthusiasm. Results showed these attempts have been well received and very effective; as well, students prefer to learn with this curriculum more than before the reform.Keywords: CDIO, teaching reform, engineering education, project-driven, scenario animation simulation
Procedia PDF Downloads 4332725 Applied Linguistics: Language, Corpora, and Technology
Authors: M. Imran
Abstract:
This research explores the intersections of applied linguistics, corpus linguistics, translation, and technology, aiming to present innovative cross-disciplinary tools and frameworks. It highlights significant contributions to language, corpora, and technology within applied linguistics, which deepen our understanding of these domains and provide practical resources for scholars, educators, and translators. By showcasing these advancements, the study seeks to enhance collaboration and application in language-related fields. The significance of applied linguistics is emphasized by some of the research that has been emphasized, which presents pedagogical perspectives that could enhance instruction and the learning results of student’s at all academic levels as well as translation trainees. Researchers provided useful data from language studies with classroom applications from an instructional standpoint.Keywords: linguistics, language, corpora, technology
Procedia PDF Downloads 232724 Student Absenteeism as a Challenge for Inclusion: A Comparative Study of Primary Schools in an Urban City in India
Authors: Deepa Idnani
Abstract:
Attendance is an important factor in school success among children. Studies show that better attendance is related to higher academic achievement for students of all backgrounds, but particularly for children with lower socio-economic status. Beginning from the early years, students who attend school regularly score higher on tests than their peers who are frequently absent. The present study in different types of School In Delhi tries to highlight the impact of student absenteeism and the challenges it poses for the students. The study relies on Lewin ‘Model of Exclusion’ and tries to focus on the analysis of children with special needs and the inclusion and exclusion of students in the school.Keywords: student absenteeism, pedagogy, learning, right to education act, exclusion
Procedia PDF Downloads 303