Search results for: explainable machine learning
3101 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors
Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi
Abstract:
The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor
Procedia PDF Downloads 6333100 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 4583099 Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science
Authors: Alaina Caulkett, Audra Selkowitz, Lauren Harter, Aimee DeFoe
Abstract:
Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future.Keywords: computer science education, online professional development, professional development, robotics education, video-based instruction
Procedia PDF Downloads 1053098 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: string classification, data quality, feature selection, probability distribution, string length
Procedia PDF Downloads 3213097 Students' Online Evaluation: Impact on the Polytechnic University of the Philippines Faculty's Performance
Authors: Silvia C. Ambag, Racidon P. Bernarte, Jacquelyn B. Buccahi, Jessica R. Lacaron, Charlyn L. Mangulabnan
Abstract:
This study aimed to answer the query, “What is the impact of Students Online Evaluation on PUP Faculty’s Performance?” The problem of the study was resolve through the objective of knowing the perceived impact of students’ online evaluation on PUP faculty’s performance. The objectives were carried through the application of quantitative research design and by conducting survey research method. The researchers utilized primary and secondary data. Primary data was gathered from the self-administered survey and secondary data was collected from the books, articles on both print-out and online materials and also other theses related study. Findings revealed that PUP faculty in general stated that students’ online evaluation made a highly positive impact on their performance based on their ‘Knowledge of Subject’ and ‘Teaching for Independent Learning’, giving a highest mean of 3.62 and 3.60 respectively., followed by the faculty’s performance which gained an overall means of 3.55 and 3.53 are based on their ‘Commitment’ and ‘Management of Learning’. From the findings, the researchers concluded that Students’ online evaluation made a ‘Highly Positive’ impact on PUP faculty’s performance based on all Four (4) areas. Furthermore, the study’s findings reveal that PUP faculty encountered many problems regarding the students’ online evaluation; the impact of the Students’ Online Evaluation is significant when it comes to the employment status of the faculty; and most of the PUP faculty recommends reviewing the PUP Online Survey for Faculty Evaluation for improvement. Hence, the researchers recommend the PUP Administration to revisit and revise the PUP Online Survey for Faculty Evaluation, specifically review the questions and make a set of questions that will be appropriate to the discipline or field of the faculty. Also, the administration should fully orient the students about the importance, purpose and impact of online faculty evaluation. And lastly, the researchers suggest the PUP Faculty to continue their positive performance and continue on being cooperative with the administrations’ purpose of addressing the students’ concerns and for the students, the researchers urged them to take the online faculty evaluation honestly and objectively.Keywords: on-line Evaluation, faculty, performance, Polytechnic University of the Philippines (PUP)
Procedia PDF Downloads 4133096 Multi-source Question Answering Framework Using Transformers for Attribute Extraction
Authors: Prashanth Pillai, Purnaprajna Mangsuli
Abstract:
Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.Keywords: natural language processing, deep learning, transformers, information retrieval
Procedia PDF Downloads 1983095 “It Plays a Huge Role”: Examining Dual Language Teachers’ Conceptions of Language, Culture and Sociocultural Competence
Authors: Giselle Martinez Negrette
Abstract:
Language and culture mutually shape and reflect the human experience. In the learning process, this connection creates and sustains the shared world of learners and educators. Dual Language (DL) programs exemplify this relationship by placing language and culture at the center of their educational approach. These programs, originally conceived to advance social justice in education, aim to foster bilingualism, biliteracy, academic development and sociocultural competence, emphasizing the inseparability of linguistic and cultural growth. Furthermore, because DL programs serve children from diverse cultural, ethnic, and socioeconomic backgrounds, they operate as spaces where linguistic skills and sociocultural understandings are actively cultivated, negotiated, and celebrated. Against this background, this paper examines how two DL teachers see language and culture shaping and reflecting the educational experience, and how their understandings of the relationship influence their mediation of sociocultural competence in their classrooms. This qualitative study employs critical discourse analysis to study in detail participants’ narratives seeking to uncover their perspectives on the “politics” surrounding language use and cultural understandings in their school contexts. Our findings show that these educators are not only keenly aware of the pivotal role that language and culture play in multilingual students’ learning journeys, but they have identified the sociolinguistic “games” taking place in their classrooms. We contend these understandings are pivotal for the critical development of sociocultural competence in DL programs. This study provides DL educators with important conceptual and pedagogical insights regarding the intersection between language and culture in their classrooms and seeks to encourage them to analyze their roles as supporters or opponents of transformative rupture opportunities to contest inequities in educationKeywords: sociocultural competence, critical discourse analysis, dual language programs, language, culture
Procedia PDF Downloads 173094 Moral Brand Machines: Towards a Conceptual Framework
Authors: Khaled Ibrahim, Mathew Parackal, Damien Mather, Paul Hansen
Abstract:
The integration between marketing and technology has given brands unprecedented opportunities to reach accurate customer data and competence to change customers' behaviour. Technology has generated a transformation within brands from traditional branding to algorithmic branding. However, brands have utilised customer data in non-cognitive programmatic targeting. This algorithmic persuasion may be effective in reaching the targeted audience. But it may encounter a moral conflict simultaneously, as it might not consider our social principles. Moral branding is a critical topic; particularly, with the increasing interest in commercial settings to teaching machines human morals, e.g., autonomous vehicles and chatbots; however, it is understudied in the marketing literature. Therefore, this paper aims to investigate the recent moral branding literature. Furthermore, applying human-like mind theory as initial framing to this paper explores a more comprehensive concept involving human morals, machine behaviour, and branding.Keywords: brand machines, conceptual framework, moral branding, moral machines
Procedia PDF Downloads 1673093 Galvinising Higher Education Institutions as Creative, Humanised and Innovative Environments
Authors: A. Martins, I. Martins, O. Pereira
Abstract:
The purpose of this research is to focus on the importance of distributed leadership in universities and Higher Education Institutions (HEIs). The research question is whether there a significant finding in self-reported ratings of leadership styles of those respondents that are studying management. The study aims to further discover whether students are encouraged to become responsible and proactive citizens, to develop their skills set, specifically shared leadership and higher-level skills to inspire creation knowledge, sharing and distribution thereof. Contemporary organizations need active and responsible individuals who are capable to make decisions swiftly and responsibly. Leadership influences innovative results and education play a dynamic role in preparing graduates. Critical reflection of extant literature indicates a need for a culture of leadership and innovation to promote organizational sustainability in the globalised world. This study debates the need for HEIs to prepare the graduate for both organizations and society as a whole. This active collaboration should be the very essence of both universities and the industry in order for these to achieve responsible sustainability. Learning and innovation further depend on leadership efficacy. This study follows the pragmatic paradigm methodology. Primary data collection is currently being gathered via the web-based questionnaire link which was made available on the UKZN notice system. The questionnaire has 35 items with a Likert scale of five response options. The purposeful sample method was used, and the population entails the undergraduate and postgraduate students in the College of Law and Business, University of KwaZulu-Natal, South Africa. Limitations include the design of the study and the reliance on the quantitative data as the only method of primary data collection. This study is of added value for scholars and organizations in the innovation economy.Keywords: knowledge creation, learning, performance, sustainability
Procedia PDF Downloads 2903092 Signed Language Phonological Awareness: Building Deaf Children's Vocabulary in Signed and Written Language
Authors: Lynn Mcquarrie, Charlotte Enns
Abstract:
The goal of this project was to develop a visually-based, signed language phonological awareness training program and to pilot the intervention with signing deaf children (ages 6 -10 years/ grades 1 - 4) who were beginning readers to assess the effects of systematic explicit American Sign Language (ASL) phonological instruction on both ASL vocabulary and English print vocabulary learning. Growing evidence that signing learners utilize visually-based signed language phonological knowledge (homologous to the sound-based phonological level of spoken language processing) when reading underscore the critical need for further research on the innovation of reading instructional practices for visual language learners. Multiple single-case studies using a multiple probe design across content (i.e., sign and print targets incorporating specific ASL phonological parameters – handshapes) was implemented to examine if a functional relationship existed between instruction and acquisition of these skills. The results indicated that for all cases, representing a variety of language abilities, the visually-based phonological teaching approach was exceptionally powerful in helping children to build their sign and print vocabularies. Although intervention/teaching studies have been essential in testing hypotheses about spoken language phonological processes supporting non-deaf children’s reading development, there are no parallel intervention/teaching studies exploring hypotheses about signed language phonological processes in supporting deaf children’s reading development. This study begins to provide the needed evidence to pursue innovative teaching strategies that incorporate the strengths of visual learners.Keywords: American sign language phonological awareness, dual language strategies, vocabulary learning, word reading
Procedia PDF Downloads 3373091 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather
Authors: Usama Mohamed Ahamed
Abstract:
This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers
Procedia PDF Downloads 1133090 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 863089 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 623088 Making Food Science Education and Research Activities More Attractive for University Students and Food Enterprises by Utilizing Open Innovative Space-Approach
Authors: Anna-Maria Saarela
Abstract:
At the Savonia University of Applied Sciences (UAS), curriculum and studies have been improved by applying an Open Innovation Space approach (OIS). It is based on multidisciplinary action learning. The key elements of OIS-ideology are work-life orientation, and student-centric communal learning. In this approach, every participant can learn from each other and innovations will be created. In this social innovation educational approach, all practices are carried out in close collaboration with enterprises in real-life settings, not in classrooms. As an example, in this paper, Savonia UAS’s Future Food RDI hub (FF) shows how OIS practices are implemented by providing food product development and consumer research services for enterprises in close collaboration with academicians, students and consumers. In particular one example of OIS experimentation in the field is provided by a consumer research carried out utilizing verbal analysis protocol combined with audio-visual observation (VAP-WAVO). In this case, all co-learners were acting together in supermarket settings to collect the relevant data for a product development and the marketing department of a company. The company benefitted from the results obtained, students were more satisfied with their studies, educators and academicians were able to obtain good evidence for further collaboration as well as renewing curriculum contents based on the requirements of working life. In addition, society will benefit over time as young university adults find careers more easily through their OIS related food science studies. Also this knowledge interaction model re-news education practices and brings working-life closer to educational research institutes.Keywords: collaboration, education, food science, industry, knowledge transfer, RDI, student
Procedia PDF Downloads 3763087 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2833086 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 2443085 Co-Creation of an Entrepreneurship Living Learning Community: A Case Study of Interprofessional Collaboration
Authors: Palak Sadhwani, Susie Pryor
Abstract:
This paper investigates interprofessional collaboration (IPC) in the context of entrepreneurship education. Collaboration has been found to enhance problem solving, leverage expertise, improve resource allocation, and create organizational efficiencies. However, research suggests that successful collaboration is hampered by individual and organizational characteristics. IPC occurs when two or more professionals work together to solve a problem or achieve a common objective. The necessity for this form of collaboration is particularly prevalent in cross-disciplinary fields. In this study, we utilize social exchange theory (SET) to examine IPC in the context of an entrepreneurship living learning community (LLC) at a large university in the Western United States. Specifically, we explore these research questions: How are rules or norms established that govern the collaboration process? How are resources valued and distributed? How are relationships developed and managed among and between parties? LLCs are defined as groups of students who live together in on-campus housing and share similar academic or special interests. In 2007, the Association of American Colleges and Universities named living communities a high impact practice (HIP) because of their capacity to enhance and give coherence to undergraduate education. The entrepreneurship LLC in this study was designed to offer first year college students the opportunity to live and learn with like-minded students from diverse backgrounds. While the university offers other LLC environments, the target residents for this LLC are less easily identified and are less apparently homogenous than residents of other LLCs on campus (e.g., Black Scholars, LatinX, Women in Science and Education), creating unique challenges. The LLC is a collaboration between the university’s College of Business & Public Administration and the Department of Housing and Residential Education (DHRE). Both parties are contributing staff, technology, living and learning spaces, and other student resources. This paper reports the results an ethnographic case study which chronicles the start-up challenges associated with the co-creation of the LLC. SET provides a general framework for examining how resources are valued and exchanged. In this study, SET offers insights into the processes through which parties negotiate tensions resulting from approaching this shared project from very different perspectives and cultures in a novel project environment. These tensions occur due to a variety of factors, including team formation and management, allocation of resources, and differing output expectations. The results are useful to both scholars and practitioners of entrepreneurship education and organizational management. They suggest probably points of conflict and potential paths towards reconciliation.Keywords: case study, ethnography, interprofessional collaboration, social exchange theory
Procedia PDF Downloads 1443084 Experiences Using Autoethnography as a Methodology for Research in Education
Authors: Sarah Amodeo
Abstract:
Drawing on the author’s research about the experiences of female immigrant students in academic Adult Education, in Montreal, Quebec, this paper deconstructs the benefits of autoethnography as a methodology for educators in Adult Education. Autoethnography is an advantageous methodology for teachers in Adult Education as it allows for deep engagement, allowing for educators to reflect on student experiences and their day-to-day realities, and in turn, allowing for professional development, improved andragogy, and changes to classroom practices. Autoethnography is a qualitative research methodology that cultivates strategies for improving adult learning. The paper begins by outlining the context that inspired autoethnography for the author’s work, highlighting the emergence of autoethnography as a method, while examining how it is evolving and drawing on foundational work that continues to inspire research. The basic autoethnographic methodologies that are explored in this paper include the use of memory work in episode formation, the use of personal photographs, and textual readings of artworks. Memory work allows for the researcher to use their professional experience and the lived/shared experiences of their students in their research, drawing on episodes from their past. Personal photographs and descriptions of artwork allow researchers to explore images of learning environments/realities in ways that compliment student experiences. Major findings of the text are examined through the analysis of categories of autoethnography. Specific categories include realism, impressionism, and conceptualism which aid in orientating the analysis and emergent themes that develop through self-study. Finally, the text presents a discussion surrounding the limitations of autoethnography, with attention to the trustworthiness and ethical issues. The paper concludes with a consideration of the implications of autoethnography for adult educators in juxtaposition with youth sector work.Keywords: artwork, autoethnography, conceptualism, episode formation, impressionism, memory work, personal photographs, and realism, realism
Procedia PDF Downloads 1963083 Multi-Response Optimization of EDM for Ti-6Al-4V Using Taguchi-Grey Relational Analysis
Authors: Ritesh Joshi, Kishan Fuse, Gopal Zinzala, Nishit Nirmal
Abstract:
Ti-6Al-4V is a titanium alloy having high strength, low weight and corrosion resistant which is a required characteristic for a material to be used in aerospace industry. Titanium, being a hard alloy is difficult to the machine via conventional methods, so it is a call to use non-conventional processes. In present work, the effects on Ti-6Al-4V by drilling a hole of Ø 6 mm using copper (99%) electrode in Electric Discharge Machining (EDM) process is analyzed. Effect of various input parameters like peak current, pulse-on time and pulse-off time on output parameters viz material removal rate (MRR) and electrode wear rate (EWR) is studied. Multi-objective optimization technique Grey relational analysis is used for process optimization. Experiments are designed using an L9 orthogonal array. ANOVA is used for finding most contributing parameter followed by confirmation tests for validating the results. Improvement of 7.45% in gray relational grade is observed.Keywords: ANOVA, electric discharge machining, grey relational analysis, Ti-6Al-4V
Procedia PDF Downloads 3693082 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety
Authors: David Bakker, Nikki Rickard
Abstract:
Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission
Procedia PDF Downloads 2733081 Examining the Effect of Online English Lessons on Nursery School Children
Authors: Hidehiro Endo, Taizo Shigemichi
Abstract:
Introduction & Objectives: In 2008, the revised course of study for elementary schools was published by MEXT, and from the beginning of the academic year of 2011-2012, foreign language activities (English lessons) became mandatory for 5th and 6th graders in Japanese elementary schools. Foreign language activities are currently offered once a week for approximately 50 minutes by elementary school teachers, assistant language teachers who are native speakers of English, volunteers, among others, with the purpose of helping children become accustomed to functional English. However, the new policy has disclosed a myriad of issues in conducting foreign language activities since the majority of the current elementary school teachers has neither English teaching experience nor English proficiency. Nevertheless, converting foreign language activities into English, as a subject in Japanese elementary schools (for 5th and 6th graders) from 2020 is what MEXT currently envisages with the purpose of reforming English education in Japan. According to their new proposal, foreign language activities will be mandatory for 3rd and 4th graders from 2020. Consequently, gaining better access to English learning opportunities becomes one of the primary concerns even in early childhood education. Thus, in this project, we aim to explore some nursery schools’ attempts at providing toddlers with online English lessons via Skype. The main purpose of this project is to look deeply into what roles online English lessons in the nursery schools play in guiding nursery school children to enjoy learning the English language as well as to acquire English communication skills. Research Methods: Setting; The main research site is a nursery school located in the northern part of Japan. The nursery school has been offering a 20-minute online English lesson via Skype twice a week to 7 toddlers since September 2015. The teacher of the online English lessons is a male person who lives in the Philippines. Fieldwork & Data; We have just begun collecting data by attending the Skype English lessons. Direct observations are the principal components of the fieldwork. By closely observing how the toddlers respond to what the teacher does via Skype, we examine what components stimulate the toddlers to pay attention to the English lessons. Preliminary Findings & Expected Outcomes: Although both data collection and analysis are ongoing, we found that the online English teacher remembers the first name of each toddler and calls them by their first name via Skype, a technique that is crucial in motivating the toddlers to actively participate in the lessons. In addition, when the teacher asks the toddlers the name of a plastic object such as grapes in English, the toddlers tend to respond to the teacher in Japanese. Accordingly, the effective use of Japanese in teaching English for nursery school children need to be further examined. The anticipated results of this project are an increased recognition of the significance of creating English language learning opportunities for nursery school children and a significant contribution to the field of early childhood education.Keywords: teaching children, English education, early childhood education, nursery school
Procedia PDF Downloads 3293080 Machinability Study of A201-T7 Alloy
Authors: Onan Kilicaslan, Anil Kabaklarli, Levent Subasi, Erdem Bektas, Rifat Yilmaz
Abstract:
The Aluminum-Copper casting alloys are well known for their high mechanical strength, especially when compared to more commonly used Aluminum-Silicon alloys. A201 is one of the best in terms of strength vs. weight ratio among other aluminum alloys, which makes it suitable for premium quality casting applications in aerospace and automotive industries. It is reported that A201 has low castability, but it is easy to machine. However, there is a need to specifically determine the process window for feasible machining. This research investigates the machinability of A201 alloy after T7 heat treatment in terms of chip/burr formation, surface roughness, hardness, and microstructure. The samples are cast with low-pressure sand casting method and milling experiments are performed with uncoated carbide tools using different cutting speeds and feeds. Statistical analysis is used to correlate the machining parameters to surface integrity. It is found that there is a strong dependence of the cutting conditions on machinability and a process window is determined.Keywords: A201-T7, machinability, milling, surface integrity
Procedia PDF Downloads 2013079 OER on Academic English, Educational Research and ICT Literacy, Promoting International Graduate Programs in Thailand
Authors: Maturos Chongchaikit, Sitthikorn Sumalee, Nopphawan Chimroylarp, Nongluck Manowaluilou, Thapanee Thammetha
Abstract:
The 2015 Kasetsart University Research Plan, which was funded by the National Research Institutes: TRF – NRCT, comprises four sub-research projects on the development of three OER websites and on their usage study by students in international programs. The goals were to develop the open educational resources (OER) in the form of websites that will promote three key skills of quality learning and achievement: Academic English, Educational Research, and ICT Literacy, to graduate students in international programs of Thailand. The statistics from the Office of Higher Education showed that the number of foreign students who come to study in international higher education of Thailand has increased respectively by 25 percent per year, proving that the international education system and institutes of Thailand have been already recognized regionally and globally as meeting the standards. The output of the plan: the OER websites and their materials, and the outcome: students’ learning improvement due to lecturers’ readiness for open educational media, will ultimately lead the country to higher business capabilities for international education services in ASEAN Community in the future. The OER innovation is aimed at sharing quality knowledge to the world, with the adoption of Creative Commons Licenses that makes sharing be able to do freely (5Rs openness), without charge and leading to self and life-long learning. The research has brought the problems on the low usage of existing OER in the English language to develop the OER on three specific skills and try them out with the sample of 100 students randomly selected from the international graduate programs of top 10 Thai universities, according to QS Asia University Rankings 2014. The R&D process was used for product evaluation in 2 stages: the development stage and the usage study stage. The research tools were the questionnaires for content and OER experts, the questionnaires for the sample group and the open-ended interviews for the focus group discussions. The data were analyzed using frequency, percentage, mean and SD. The findings revealed that the developed websites were fully qualified as OERs by the experts. The students’ opinions and satisfaction were at the highest levels for both the content and the technology used for presentation. The usage manual and self-assessment guide were finalized during the focus group discussions. The direct participation according to the concept of 5Rs Openness Activities through the provided tools of OER models like MERLOT and OER COMMONS, as well as the development of usage manual and self-assessment guide, were revealed as a key approach to further extend the output widely and sustainably to the network of users in various higher education institutions.Keywords: open educational resources, international education services business, academic English, educational research, ICT literacy, international graduate program, OER
Procedia PDF Downloads 2253078 Factors that Contribute to the Improvement of the Sense of Self-Efficacy of Special Educators in Inclusive Settings in Greece
Authors: Sotiria Tzivinikou, Dimitra Kagkara
Abstract:
Teacher’s sense of self-efficacy can affect significantly both teacher’s and student’s performance. More specific, self-efficacy is associated with the learning outcomes as well as student’s motivation and self-efficacy. For example, teachers with high sense of self-efficacy are more open to innovations and invest more effort in teaching. In addition to this, effective inclusive education is associated with higher levels of teacher’s self-efficacy. Pre-service teachers with high levels of self-efficacy could handle student’s behavior better and more effectively assist students with special educational needs. Teacher preparation programs are also important, because teacher’s efficacy beliefs are shaped early in learning, as a result the quality of teacher’s education programs can affect the sense of self-efficacy of pre-service teachers. Usually, a number of pre-service teachers do not consider themselves well prepared to work with students with special educational needs and do not have the appropriate sense of self-efficacy. This study aims to investigate the factors that contribute to the improvement of the sense of self-efficacy of pre-service special educators by using an academic practicum training program. The sample of this study is 159 pre-service special educators, who also participated in the academic practicum training program. For the purpose of this study were used quantitative methods for data collection and analysis. Teacher’s self-efficacy was assessed by the teachers themselves with the completion of a questionnaire which was based on the scale of Teacher’s Sense of Efficacy Scale. Pre and post measurements of teacher’s self-efficacy were taken. The results of the survey are consistent with those of the international literature. The results indicate that a significant number of pre-service special educators do not hold the appropriate sense of self-efficacy regarding teaching students with special educational needs. Moreover, a quality academic training program constitutes a crucial factor for the improvement of the sense of self-efficacy of pre-service special educators, as additional for the provision of high quality inclusive education.Keywords: inclusive education, pre-service, self-efficacy, training program
Procedia PDF Downloads 2553077 The Politics and Consequences of Decentralized Vocational Education: The Modified System of Vocational Studies in Ghana
Authors: Nkrumak Micheal Atta Ofori
Abstract:
The Vocational System is a decentralized Studies System implemented in Ghana as vocation studies strategy for grassroot that focuses on providing individuals with the specific skills, knowledge, and training necessary for a particular trade, craft, profession, or occupation. This article asks how devolution of vocational studies to local level authorities produces responsive and accountable representation and sustainable vocational learning under the vocational Studies System. It focuses on two case studies: Asokore Mampong and Atwima kwanwoma Municipal. Then, the paper asks how senior high school are developing new material and social practices around the vocational studies System to rebuild their livelihoods and socio-economic wellbeing. Here, the article focusses on Kumasi District, drawing lessons for the two other cases. The article shows how the creation of representative groups under the Vocational Studies System provides the democratic space necessary for effective representation of community aspirations. However, due to elite capture, the interests of privilege few people are promoted. The state vocational training fails to devolve relevant and discretionary resources to local teachers and do not follow the prescribed policy processes of the Vocational Studies System. Hence, local teachers are unable to promote responsive and accountable representation. Rural communities continue to show great interest in the Vocational Studies System, but the interest is bias towards gaining access to vocational training schools for advancing studies. There is no active engagement of the locals in vocational training, and hence, the Vocational Studies System exists only to promote individual interest of communities. This article shows how ‘failed’ interventions can gain popular support for rhetoric and individual gains.Keywords: vocational studies system, devolution of vocational studies, local-level authorities, senior high schools and vocational learning, community aspirations and representation
Procedia PDF Downloads 833076 Virtual Reference Service as a Space for Communication and Interaction: Providing Infrastructure for Learning in Times of Crisis at Uppsala University
Authors: Nadja Ylvestedt
Abstract:
Uppsala University Library is a geographically dispersed research library consisting of nine subject libraries located in different campus areas throughout the city of Uppsala. Despite the geographical dispersion, it is the library's ambition to be perceived as a cohesive library with consistently high service and quality. A key factor to being one cohesive library is the library's online services, especially the virtual reference service. E-mail, chat and phone are answered by a team of specially trained staff under the supervision of a team leader. When covid-19 hit, well-established routines and processes to provide an infrastructure for students and researchers at the university changed radically. The strong connection between services provided at the library locations as well as at the VRS has been one of the key components of the library’s success in providing patrons with the help they need. With radically minimized availability at the physical locations, the infrastructure was at risk of collapsing. Objectives:- The objective of this project has been to evaluate the consequences of the sudden change in the organization of the library. The focus of this evaluation is the library’s VRS as an important space for learning, interaction and communication between the library and the community when other traditional spaces were not available. The goal of this evaluation is to capture the lessons learned from providing infrastructure for learning and research in times of crisis both on a practical, user-centered level but also to stress the importance of leadership in ever-changing environments that supports and creates agile, flexible services and teams instead of rigid processes adhering to obsolete goals. Results:- Reduced availability at the physical library locations was one of the strategies to prevent the spread of the covid-19 virus. The library staff was encouraged to work from home, so student workers staffed the library’s physical locations during that time, leaving the VRS to be the only place where patrons could get expert help. The VRS had an increase of 65% of questions asked between spring term 2019 and spring term 2020. The VRS team had to navigate often complicated and fast-changing new routines depending on national guidelines. The VRS team has a strong emphasis on agility in their approach to the challenges and opportunities, with methods to evaluate decisions regularly with user experience in mind. Fast decision-making, collecting feedback, an open-minded approach to reviewing rules and processes with both a short-term and a long-term focus and providing a healthy work environment have been key factors in managing this crisis and learn from it. This was resting on a strong sense of ownership regarding the VRS, well-working communication tools and agile and active communication between team members, as well as between the team and the rest of the organization who served as a second-line support system to aid the VRS team. Moving forward, the VRS has become an important space for communication, interaction and provider of infrastructure, implementing new routines and more extensive availability due to the lessons learned during crisis. The evaluation shows that the virtual environment has become an important addition to the physical spaces, existing in its own right but always in connection with and in relationship with the library structure as a whole. Thereby showing that the basis of human interaction stays the same while its form morphs and adapts to changes, thus leaving the virtual environment as a space of communication and infrastructure with unique opportunities for outreach and the potential to become a staple in patron’s education and learning.Keywords: virtual reference service, leadership, digital infrastructure, research library
Procedia PDF Downloads 1723075 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media
Authors: Jinghui Peng, Shanyu Tang, Jia Li
Abstract:
Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.Keywords: steganalysis, security, Fast Fourier Transform, streaming media
Procedia PDF Downloads 1513074 Teaching for Social Justice: Towards Education for Sustainable Development
Authors: Nashwa Moheyeldine
Abstract:
Education for sustainable development (ESD) aims to preserve the rights of the present and future generations as well as preserving the globe, both humans and nature. ESD should aim not only to bring about consciousness of the current and future issues, but also to foster student agency to bring about change at schools, communities and nations. According to the Freirian concept of conscientização, (conscientization) — “learning to perceive social, political, and economic contradictions, and to take action against the oppressive elements of reality”, education aims to liberate people to understand and act upon their worlds. Social justice is greatly intertwined with a nation’s social, political and economic rights, and thus, should be targeted through ESD. “Literacy researchers have found that K-12 students who engage in social justice inquiries develop vital academic knowledge and skills, critical understandings about oppression in the world, and strong dispositions to continue working toward social justice beyond the initial inquiries they conduct”. Education for social justice greatly equips students with the critical thinking skills and sense of agency, that are required for responsible decision making that would ensure a sustainable world. In fact teaching for social justice is intersecting with many of the pedagogies such as multicultural education, cultural relevant pedagogy, education for sustainable development, critical theory pedagogy, (local and global) citizenship education, all of which aim to prepare students for awareness, responsibility and agency. Social justice pedagogy has three specific goals, including helping students develop 1) a sociopolitical consciousness - an awareness of the symbiotic relationship between the social and political factors that affect society, 2) a sense of agency, the freedom to act on one’s behalf and to feel empowered as a change agent, and 3) positive social and cultural identities. The keyword to social justice education is to expose the realities to the students, and challenge the students not only to question , but also to change. Social justice has been usually discussed through the subjects of history and social sciences, however, an interdisciplinary approach is essential to enhance the students’ understanding of their world. Teaching social justice through various subjects is also important, as it make students’ learning relevant to their lives. The main question that this paper seeks to answer is ‘How could social justice be taught through different subjects and tools, such as mathematics, literature through story-telling, geography, and service learning will be shown in this paper. Also challenges to education for social justice will be described. Education is not a neutral endeavor, but is either oriented toward the cause of liberation or in support of domination. In fact , classrooms can be “a microcosm of the emancipatory societies we seek to encourage”, education for the 21st century should be relevant to students' lives where it exposes life's realities to them. Education should also provide students with the basics of school subjects with the bigger goal of helping them make the world a better, more just place to live in.Keywords: teaching for social justice, student agency, citizenship education, education
Procedia PDF Downloads 4073073 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing
Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano
Abstract:
Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning
Procedia PDF Downloads 4473072 Multimodal Database of Emotional Speech, Video and Gestures
Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Abstract:
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech
Procedia PDF Downloads 352