Search results for: pollution sources
42 Development and Characterization of Castor Oil-Based Biopolyurethanes for High-Performance Coatings and Waterproofing Applications
Authors: Julie Anne Braun, Leonardo D. da Fonseca, Gerson C. Parreira, Ricardo J. E. Andrade
Abstract:
Polyurethanes (PU) are multifunctional polymers used across various industries. In construction, thermosetting polyurethanes are applied as coatings for flooring, paints, and waterproofing. They are widely specified in Brazil for waterproofing concrete structures like roof slabs and parking decks. Applied to concrete, they form a fully adhered membrane, providing a protective barrier with low water absorption, high chemical resistance, impermeability to liquids, and low vapor permeability. Their mechanical properties, including tensile strength (1 to 35 MPa) and Shore A hardness (83 to 88), depend on resin molecular weight and functionality, often using Methylene diphenyl diisocyanate. PU production, reliant on fossil-derived isocyanates and polyols, contributes significantly to carbon emissions. Sustainable alternatives, such as biopolyurethanes from renewable sources, are needed. Castor oil is a viable option for synthesizing sustainable polyurethanes. As a bio-based feedstock, castor oil is extensively cultivated in Brazil, making it a feasible option for the national market and ranking third internationally. This study aims to develop and characterize castor oil-based biopolyurethane for high-performance waterproofing and coating applications. A comparative analysis between castor oil-based PU and polyether polyol-based PU was conducted. Mechanical tests (tensile strength, Shore A hardness, abrasion resistance) and surface properties (contact angle, water absorption) were evaluated. Thermal, chemical, and morphological properties were assessed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results demonstrated that both polyurethanes exhibited high mechanical strength. Specifically, the tensile strength for castor oil-based PU was 19.18 MPa, compared to 12.94 MPa for polyether polyol-based PU. Similarly, the elongation values were 146.90% for castor oil-based PU and 135.50% for polyether polyol-based PU. Both materials exhibited satisfactory performance in terms of abrasion resistance, with mass loss of 0.067% for castor oil PU and 0.043% for polyether polyol PU and Shore A hardness values of 89 and 86, respectively, indicating high surface hardness. The results of the water absorption and contact angle tests confirmed the hydrophilic nature of polyether polyol PU, with a contact angle of 58.73° and water absorption of 2.53%. Conversely, the castor oil-based PU exhibited hydrophobic properties, with a contact angle of 81.05° and water absorption of 0.45%. The results of the FTIR analysis indicated the absence of a peak around 2275 cm-1, which suggests that all of the NCO groups were consumed in the stoichiometric reaction. This conclusion is supported by the high mechanical test results. The TGA results indicated that polyether polyol PU demonstrated superior thermal stability, exhibiting a mass loss of 13% at the initial transition (around 310°C), in comparison to castor oil-based PU, which experienced a higher initial mass loss of 25% at 335°C. In summary, castor oil-based PU demonstrated mechanical properties comparable to polyether polyol PU, making it suitable for applications such as trafficable coatings. However, its higher hydrophobicity makes it more promising for watertightness. Increasing environmental concerns necessitate reducing reliance on non-renewable resources and mitigating the environmental impacts of polyurethane production. Castor oil is a viable option for sustainable polyurethanes, aligning with emission reduction goals and responsible use of natural resources.Keywords: polyurethane, castor oil, sustainable, waterproofing, construction industry
Procedia PDF Downloads 4541 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7440 Potential Benefits and Adaptation of Climate Smart Practices by Small Farmers Under Three-Crop Rice Production System in Vietnam
Authors: Azeem Tariq, Stephane De Tourdonnet, Lars Stoumann Jensen, Reiner Wassmann, Bjoern Ole Sander, Quynh Duong Vu, Trinh Van Mai, Andreas De Neergaard
Abstract:
Rice growing area is increasing to meet the food demand of increasing population. Mostly, rice is growing on lowland, small landholder fields in most part of the world, which is one of the major sources of greenhouse gases (GHG) emissions from agriculture fields. The strategies such as, altering water and residues (carbon) management practices are assumed to be essential to mitigate the GHG emissions from flooded rice system. The actual implementation and potential of these measures on small farmer fields is still challenging. A field study was conducted on red river delta in Northern Vietnam to identify the potential challenges and barriers to the small rice farmers for implementation of climate smart rice practices. The objective of this study was to develop and access the feasibility of climate smart rice prototypes under actual farmer conditions. Field and scientific oriented framework was used to meet our objective. The methodological framework composed of six steps: i) identification of stakeholders and possible options, ii) assessment of barrios, drawbacks/advantages of new technologies, iii) prototype design, iv) assessment of mitigation potential of each prototype, v) scenario building and vi) scenario assessment. A farm survey was conducted to identify the existing farm practices and major constraints of small rice farmers. We proposed the two water (pre transplant+midseason drainage and early+midseason drainage) and one straw (full residue incorporation) management option keeping in views the farmers constraints and barriers for implementation. To test new typologies with existing prototypes (midseason drainage, partial residue incorporation) at farmer local conditions, a participatory field experiment was conducted for two consecutive rice seasons at farmer fields. Following the results of each season a workshop was conducted with stakeholders (farmers, village leaders, cooperatives, irrigation staff, extensionists, agricultural officers) at local and district level to get feedbacks on new tested prototypes and to develop possible scenarios for climate smart rice production practices. The farm analysis survey showed that non-availability of cheap labor and lacks of alternatives for straw management influence the small farmers to burn the residues in the fields except to use for composting or other purposes. Our field results revealed that application of early season drainage significantly mitigates (40-60%) the methane emissions from residue incorporation. Early season drainage was more efficient and easy to control under cooperate manage system than individually managed water system, and it leads to both economic (9-11% high rice yield, low cost of production, reduced nutrient loses) and environmental (mitigate methane emissions) benefits. The participatory field study allows the assessment of adaptation potential and possible benefits of climate smart practices on small farmer fields. If farmers have no other residue management option, full residue incorporation with early plus midseason drainage is adaptable and beneficial (both environmentally and economically) management option for small rice farmers.Keywords: adaptation, climate smart agriculture, constrainsts, smallholders
Procedia PDF Downloads 26739 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study
Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet
Abstract:
These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment
Procedia PDF Downloads 6438 Gender Bias After Failure: How Crowd Lenders Disadvantage Female-Led Social Ventures
Authors: Caroline Lindlar, Eva Jakob
Abstract:
Female entrepreneurs often face significant barriers in accessing funding due to biases from business angels, venture capitalists, and financial institutions, which tend to favor male entrepreneurs. These biases contribute to persistent funding disparities, with female entrepreneurs receiving less financial support than their male counterparts. The situation worsens when female entrepreneurs have prior experiences with venture failure, which diminishes their attractiveness to traditional investors. Venture failure, defined as the cessation of operations due to declining revenues, rising costs, or ownership changes, plays a substantial role in shaping funding opportunities. In response, female entrepreneurs frequently turn to alternative funding sources such as crowdlending, where gender biases are often reversed in favor of women, particularly when their ventures emphasize social value creation. While existing research highlights the positive impact of gender on crowdfunding success, it remains unclear how venture failure, known to negatively bias female entrepreneurs in traditional funding contexts, interacts with the positive effects of gender in crowdlending. This interaction is particularly relevant because crowdlending often involves non-professional funders who make repeated investment decisions under uncertainty, based on limited information and past experiences. Given that approximately one-third of ventures fail to deliver promised returns, the role of gender bias after failure in crowdlending is an important area of investigation. This study addresses How failure affects crowd funders’ gender bias in future funding decisions? Drawing on social role and role congruity theory, we posit that societal perceptions of women as more communal conflict with the agentic qualities traditionally associated with entrepreneurship. This incongruence may result in reduced confidence in the success of female entrepreneurs after failure, limiting their access to future funding. However, we also hypothesize that social framing may mitigate this bias by aligning perceptions of female entrepreneurs with traits such as warmth and caring, enhancing their appeal after failure. To test these assertions, it conducted a between-subject audio vignette experiment with 155 participants who listened to entrepreneur pitches manipulated by gender (male vs. female) and venture framing (social vs. commercial). Participants made initial investment decisions, received failure-related news about the venture, and then made subsequent investment decisions. Pre-tests with 159 participants ensured the validity and reliability of the experimental manipulations. Moreover, we did a metric conjoint analysis with 100 participants, and they had to decide between different crowdfunding campaigns based on the attributes of previous failure, gender, and venture mission. it findings reveal that failure activates gender biases in crowdlending. Female-led ventures receive significantly less funding after failure compared to male-led ventures, suggesting the positive bias toward female entrepreneurs in the pre-funding phase does not persist post-failure. Moreover, framing a venture as socially oriented exacerbates the negative effect of failure for female entrepreneurs, as they secure fewer funds after failure compared to male entrepreneurs leading similar social ventures. This indicates that role-congruent framing does not mitigate gender bias after failure. This study contributes to research on gender in entrepreneurship by exploring how failure impacts future funding for female entrepreneurs. It also expands social crowdfunding literature by examining social value framing and adds to the entrepreneurial failure literature by focusing on crowd funders’ post-failure behavior.Keywords: gender bias, crowdfunding, investment failure, investment behavior, social entrepreneurship
Procedia PDF Downloads 1937 Implications of Agricultural Subsidies Since Green Revolution: A Case Study of Indian Punjab
Authors: Kriti Jain, Sucha Singh Gill
Abstract:
Subsidies have been a major part of agricultural policies around the world, and more extensively since the green revolution in developing countries, for the sake of attaining higher agricultural productivity and achieving food security. But entrenched subsidies lead to distorted incentives and promote inefficiencies in the agricultural sector, threatening the viability of these very subsidies and sustainability of the agricultural production systems, posing a threat to the livelihood of farmers and laborers dependent on it. This paper analyzes the economic and ecological sustainability implications of prolonged input and output subsidies in agriculture by studying the case of Indian Punjab, an agriculturally developed state responsible for ensuring food security in the country when it was facing a major food crisis. The paper focuses specifically on the environmentally unsustainable cropping pattern changes as a result of Minimum Support Price (MSP) and assured procurement and on the resource use efficiency and cost implications of power subsidy for irrigation in Punjab. The study is based on an analysis of both secondary and primary data sources. Using secondary data, a time series analysis was done to capture the changes in Punjab’s cropping pattern, water table depth, fertilizer consumption, and electrification of agriculture. This has been done to examine the role of price and output support adopted to encourage the adoption of green revolution technology in changing the cropping structure of the state, resulting in increased input use intensities (especially groundwater and fertilizers), which harms the ecological balance and decreases factor productivity. Evaluation of electrification of Punjab agriculture helped evaluate the trend in electricity productivity of agriculture and how free power imposed further pressure on the extant agricultural ecosystem. Using data collected from a primary survey of 320 farmers in Punjab, the extent of wasteful application of groundwater irrigation, water productivity of output, electricity usage, and cost of irrigation driven electricity subsidy to the exchequer were estimated for the dominant cropping pattern amongst farmers. The main findings of the study revealed how because of a subsidy has driven agricultural framework, Punjab has lost area under agro climatically suitable and staple crops and moved towards a paddy-wheat cropping system, that is gnawing away the state’s natural resources like water table has been declining at a significant rate of 25 cms per year since 1975-76, and excessive and imbalanced fertilizer usage has led to declining soil fertility in the state. With electricity-driven tubewells as the major source of irrigation within a regime of free electricity and water-intensive crop cultivation, there is both wasteful application of irrigation water and electricity in the cultivation of paddy crops, burning an unproductive hole in the exchequer’s pocket. There is limited access to both agricultural extension services and water-conserving technology, along with policy imbalance, keeping farmers in an intensive and unsustainable production system. Punjab agriculture is witnessing diminishing returns to factor, which under the business-as-usual scenario, will soon enter the phase of negative returns to factor.Keywords: cropping pattern, electrification, subsidy, sustainability
Procedia PDF Downloads 18736 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small & Medium-Sized Enterprises
Authors: Antonis Skouloudis, Konstantinos Evangelinos, Walter Leal-Filho, Panagiotis Vouros, Ioannis Nikolaou
Abstract:
Organizational resilience capacity to extreme weather events (EWEs) has sparked a growth in scholarly attention over the past decade as an essential aspect in business continuity management, with supporting evidence for this claim to suggest that it retains a key role in successful responses to adverse situations, crises and shocks. Small and medium-sized enterprises (SMEs) are more vulnerable to face floods compared to their larger counterparts, so they are disproportionately affected by such extreme weather events. The limited resources at their disposal, the lack of time and skills all conduce to inadequate preparedness to challenges posed by floods. SMEs tend to plan in the short-term, reacting to circumstances as they arise and focussing on their very survival. Likewise, they share less formalised structures and codified policies while they are most usually owner-managed, resulting in a command-and-control management culture. Such characteristics result in them having limited opportunities to recover from flooding and quickly turnaround their operation from a loss making to a profit making one. Scholars frame the capacity of business entities to be resilient upon an EWE disturbance (such as flash floods) as the rate of recovery and restoration of organizational performance to pre-disturbance conditions, the amount of disturbance (i.e. threshold level) a business can absorb before losing structural and/or functional components that will alter or cease operation, as well as the extent to which the organization maintains its function (i.e. impact resistance) before performance levels are driven to zero. Nevertheless, while it seems to be accepted as an essential trait of firms effectively transcending uncertain conditions, research deconstructing the enabling conditions and/or inhibitory factors of SMEs resilience capacity to natural hazards is still sparse, fragmentary and mostly fuelled by anecdotal evidence or normative assumptions. Focusing on the individual level of analysis, i.e. the individual enterprise and its endeavours to succeed, the emergent picture from this relatively new research strand delineates the specification of variables, conceptual relationships or dynamic boundaries of resilience capacity components in an attempt to provide prescriptions for policy-making as well as business management. This study will present the development of a flood resilience capacity index (FRCI) and its application to Greek SMEs. The proposed composite indicator pertains to cognitive, behavioral/managerial and contextual factors that influence an enterprise’s ability to shape effective responses to meet flood challenges. Through the proposed indicator-based approach, an analytical framework is set forth that will help standardize such assessments with the overarching aim of reducing the vulnerability of SMEs to flooding. This will be achieved by identifying major internal and external attributes explaining resilience capacity which is particularly important given the limited resources these enterprises have and that they tend to be primary sources of vulnerabilities in supply chain networks, generating Single Points of Failure (SPOF).Keywords: Floods, Small & Medium-Sized enterprises, organizational resilience capacity, index development
Procedia PDF Downloads 19235 Shakespeare's Hamlet in Ballet: Transformation of an Archival Recording of a Neoclassical Ballet Performance into a Contemporary Transmodern Dance Video Applying Postmodern Concepts and Techniques
Authors: Svebor Secak
Abstract:
This four-year artistic research project hosted by the University of New England, Australia has set the goal to experiment with non-conventional ways of presenting a language-based narrative in dance using insights of recent theoretical writing on performance, addressing the research question: How to transform an archival recording of a neoclassical ballet performance into a new artistic dance video by implementing postmodern philosophical concepts? The Creative Practice component takes the form of a dance video Hamlet Revisited which is a reworking of the archival recording of the neoclassical ballet Hamlet, augmented by new material, produced using resources, technicians and dancers of the Croatian National Theatre in Zagreb. The methodology for the creation of Hamlet Revisited consisted of extensive field and desk research after which three dancers were shown the recording of original Hamlet and then created their artistic response to it based on their reception and appreciation of it. The dancers responded differently, based upon their diverse dancing backgrounds and life experiences. They began in the role of the audience observing video of the original ballet and transformed into the role of the choreographer-performer. Their newly recorded material was edited and juxtaposed with the archival recording of Hamlet and other relevant footage, allowing for postmodern features such as aleatoric content, synchronicity, eclecticism and serendipity, that way establishing communication on a receptive reader-response basis, thus blending the roles of the choreographer, performer and spectator, creating an original work of art whose significance lies in the relationship and communication between styles, old and new choreographic approaches, artists and audiences and the transformation of their traditional roles and relationships. In editing and collating, the following techniques were used with the intention to avoid the singular narrative: fragmentation, repetition, reverse-motion, multiplication of images, split screen, overlaying X-rays, image scratching, slow-motion, freeze-frame and simultaneity. Key postmodern concepts considered were: deconstruction, diffuse authorship, supplementation, simulacrum, self-reflexivity, questioning the role of the author, intertextuality and incredulity toward grand narratives - departing from the original story, thus personalising its ontological themes. From a broad brush of diverse concepts and techniques applied in an almost prescriptive manner, the project focuses on intertextuality that proves to be valid on at least two levels. The first is the possibility of a more objective analysis in combination with a semiotic structuralist approach moving from strict relationships between signs to a multiplication of signifiers, considering the dance text as an open construction, containing the elusive and enigmatic quality of art that leaves the interpretive position open. The second one is the creation of the new work where the author functions as the editor, aware and conscious of the interplay of disparate texts and their sources which co-act in the mind during the creative process. It is argued here that the eclectic combination of the old and new material through constant oscillations of different discourses upon the same topic resulted in a transmodern integrationist recent work of art that might be applied as a model for reconsidering existing choreographic creations.Keywords: Ballet Hamlet, intertextuality, transformation, transmodern dance video
Procedia PDF Downloads 25834 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective
Authors: Smita Singh
Abstract:
Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms
Procedia PDF Downloads 3133 Conceptual Design of a Residential House Based on IDEA 4E - Discussion of the Process of Interdisciplinary Pre-Project Research and Optimal Design Solutions Created as Part of Project-Based Learning
Authors: Dorota Winnicka-Jasłowska, Małgorzata Jastrzębska, Jan Kaczmarczyk, Beata Łaźniewska-Piekarczyk, Piotr Skóra, Beata Kobiałko, Agata Kołodziej, Błażej Mól, Ewelina Lasyk, Karolina Brzęczek, Michał Król
Abstract:
Creating economical, comfortable, and healthy buildings which respect the environment is a necessity resulting from legal regulations, but it is also a response to the expectations of a modern investor. Developing the concept of a residential house based on the 4E and the 2+2+(1) IDEAs is a complex process that requires specialist knowledge of many trades and requires adaptation of comprehensive solutions. IDEA 4E assumes the use of energy-saving, ecological, ergonomics, and economic solutions. In addition, IDEA 2+2+(1) assuming appropriate surface and functional-spatial solutions for a family at different stages of a building's life, i.e. 2, 4, or 5 members, enforces certain flexibility of the designed building, which may change with the number and age of its users. The building should therefore be easy to rearrange or expand. The task defined in this way was carried out by an interdisciplinary team of students of the Silesian University of Technology as part of PBL. The team consisted of 6 undergraduate and graduate students representing the following faculties: 3 students of architecture, 2 civil engineering students, and 1 student of environmental engineering. The work of the team was supported by 3 academic teachers representing the above-mentioned faculties and additional experts. The project was completed in one semester. The article presents the successive stages of the project. At first pre-design studies were carried out. They allowed to define the guidelines for the project. For this purpose, the "Model house" questionnaire was developed. The questions concerned determining the utility needs of a potential family that would live in a model house - specifying the types of rooms, their size, and equipment. A total of 114 people participated in the study. The answers to the questions in the survey helped to build the functional programme of the designed house. Other research consisted in the search for optimal technological and construction solutions and the most appropriate building materials based mainly on recycling. Appropriate HVAC systems responsible for the building's microclimate were also selected, i.e. low, temperature heating, mechanical ventilation, and the use of energy from renewable sources was planned so as to obtain a nearly zero-energy building. Additionally, rainwater retention and its local use were planned. The result of the project was a design of a model residential building that meets the presented assumptions. A 3D VR spatial model of the designed building and its surroundings was also made. The final result was the organization of an exhibition for students and the academic community. Participation in the interdisciplinary project allowed the project team members to better understand the consequences of the adopted solutions for achieving the assumed effect and the need to work out a compromise. The implementation of the project made all its participants aware of the importance of cooperation as well as systematic and clear communication. The need to define milestones and their consistent enforcement is an important element guaranteeing the achievement of the intended end result. The implementation of PBL enables students to the acquire competences important in their future professional work.Keywords: architecture and urban planning, civil engineering, environmental engineering, project-based learning, sustainable building
Procedia PDF Downloads 11732 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices
Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett
Abstract:
Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor
Procedia PDF Downloads 22131 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community
Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa
Abstract:
In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets
Procedia PDF Downloads 10030 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles
Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis
Abstract:
E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics
Procedia PDF Downloads 15429 Evaluation of the Incorporation of Modified Starch in Puff Pastry Dough by Mixolab Rheological Analysis
Authors: Alejandra Castillo-Arias, Carlos A. Fuenmayor, Carlos M. Zuluaga-Domínguez
Abstract:
The connection between health and nutrition has driven the food industry to explore healthier and more sustainable alternatives. Key strategies to enhance nutritional quality and extend shelf life include reducing saturated fats and incorporating natural ingredients. One area of focus is the use of modified starch in baked goods, which has attracted significant interest in food science and industry due to its functional benefits. Modified starches are commonly used for their gelling, thickening, and water-retention properties. Derived from sources like waxy corn, potatoes, tapioca, or rice, these polysaccharides improve thermal stability and resistance to dough. The use of modified starch enhances the texture and structure of baked goods, which is crucial for consumer acceptance. In this study, it was evaluated the effects of modified starch inclusion on dough used for puff pastry elaboration, measured with Mixolab analysis. This technique assesses flour quality by examining its behavior under varying conditions, providing a comprehensive profile of its baking properties. The analysis included measurements of water absorption capacity, dough development time, dough stability, softening, final consistency, and starch gelatinization. Each of these parameters offers insights into how the flour will perform during baking and the quality of the final product. The performance of wheat flour with varying levels of modified starch inclusion (10%, 20%, 30%, and 40%) was evaluated through Mixolab analysis, with a control sample consisting of 100% wheat flour. Water absorption, gluten content, and retrogradation indices were analyzed to understand how modified starch affects dough properties. The results showed that the inclusion of modified starch increased the absorption index, especially at levels above 30%, indicating a dough with better handling qualities and potentially improved texture in the final baked product. However, the reduction in wheat flour resulted in a lower kneading index, affecting dough strength. Conversely, incorporating more than 20% modified starch reduced the retrogradation index, indicating improved stability and resistance to crystallization after cooling. Additionally, the modified starch improved the gluten index, contributing to better dough elasticity and stability, providing good structural support and resistance to deformation during mixing and baking. As expected, the control sample exhibited a higher amylase index, due to the presence of enzymes in wheat flour. However, this is of low concern in puff pastry dough, as amylase activity is more relevant in fermented doughs, which is not the case here. Overall, the use of modified starch in puff pastry enhanced product quality by improving texture, structure, and shelf life, particularly when used at levels between 30% and 40%. This research underscores the potential of modified starches to address health concerns associated with traditional starches and to contribute to the development of higher-quality, consumer-friendly baked products. Furthermore, the findings suggest that modified starches could play a pivotal role in future innovations within the baking industry, particularly in products aiming to balance healthfulness with sensory appeal. By incorporating modified starch into their formulations, bakeries can meet the growing demand for healthier, more sustainable products while maintaining the indulgent qualities that consumers expect from baked goods.Keywords: baking quality, dough properties, modified starch, puff pastry
Procedia PDF Downloads 2628 Delivering Safer Clinical Trials; Using Electronic Healthcare Records (EHR) to Monitor, Detect and Report Adverse Events in Clinical Trials
Authors: Claire Williams
Abstract:
Randomised controlled Trials (RCTs) of efficacy are still perceived as the gold standard for the generation of evidence, and whilst advances in data collection methods are well developed, this progress has not been matched for the reporting of adverse events (AEs). Assessment and reporting of AEs in clinical trials are fraught with human error and inefficiency and are extremely time and resource intensive. Recent research conducted into the quality of reporting of AEs during clinical trials concluded it is substandard and reporting is inconsistent. Investigators commonly send reports to sponsors who are incorrectly categorised and lacking in critical information, which can complicate the detection of valid safety signals. In our presentation, we will describe an electronic data capture system, which has been designed to support clinical trial processes by reducing the resource burden on investigators, improving overall trial efficiencies, and making trials safer for patients. This proprietary technology was developed using expertise proven in the delivery of the world’s first prospective, phase 3b real-world trial, ‘The Salford Lung Study, ’ which enabled robust safety monitoring and reporting processes to be accomplished by the remote monitoring of patients’ EHRs. This technology enables safety alerts that are pre-defined by the protocol to be detected from the data extracted directly from the patients EHR. Based on study-specific criteria, which are created from the standard definition of a serious adverse event (SAE) and the safety profile of the medicinal product, the system alerts the investigator or study team to the safety alert. Each safety alert will require a clinical review by the investigator or delegate; examples of the types of alerts include hospital admission, death, hepatotoxicity, neutropenia, and acute renal failure. This is achieved in near real-time; safety alerts can be reviewed along with any additional information available to determine whether they meet the protocol-defined criteria for reporting or withdrawal. This active surveillance technology helps reduce the resource burden of the more traditional methods of AE detection for the investigators and study teams and can help eliminate reporting bias. Integration of multiple healthcare data sources enables much more complete and accurate safety data to be collected as part of a trial and can also provide an opportunity to evaluate a drug’s safety profile long-term, in post-trial follow-up. By utilising this robust and proven method for safety monitoring and reporting, a much higher risk of patient cohorts can be enrolled into trials, thus promoting inclusivity and diversity. Broadening eligibility criteria and adopting more inclusive recruitment practices in the later stages of drug development will increase the ability to understand the medicinal products risk-benefit profile across the patient population that is likely to use the product in clinical practice. Furthermore, this ground-breaking approach to AE detection not only provides sponsors with better-quality safety data for their products, but it reduces the resource burden on the investigator and study teams. With the data taken directly from the source, trial costs are reduced, with minimal data validation required and near real-time reporting enables safety concerns and signals to be detected more quickly than in a traditional RCT.Keywords: more comprehensive and accurate safety data, near real-time safety alerts, reduced resource burden, safer trials
Procedia PDF Downloads 8627 The Role of a Specialized Diet for Management of Fibromyalgia Symptoms: A Systematic Review
Authors: Siddhant Yadav, Rylea Ranum, Hannah Alberts, Abdul Kalaiger, Brent Bauer, Ryan Hurt, Ann Vincent, Loren Toussaint, Sanjeev Nanda
Abstract:
Background and significance: Fibromyalgia (FM) is a chronic pain disorder also characterized by chronic fatigue, morning stiffness, sleep, and cognitive symptoms, psychological disturbances (anxiety, depression), and is comorbid with multiple medical and psychiatric conditions. It has an incidence of 2-4% in the general population and is reported more commonly in women. Oxidative stress and inflammation are thought to contribute to pain in patients with FM, and the adoption of an antioxidant/anti-inflammatory diet has been suggested as a modality to alleviate symptoms. The aim of this systematic review was to evaluate the efficacy of specialized diets (ketogenic, gluten free, Mediterranean, and low carbohydrate) in improving FM symptoms. Methodology: A comprehensive search of the following databases from inception to July 15th, 2021, was conducted: Ovid MEDLINE and Epub ahead of print, in-process and other non-indexed citations and daily, Ovid Embase, Ovid EBM reviews, Cochrane central register of controlled trials, EBSCO host CINAHL with full text, Elsevier Scopus, website and citation index, web of science emerging sources citation and clinicaltrials.gov. We included randomized controlled trials, non-randomized experimental studies, cross-sectional studies, cohort studies, case series, and case reports in adults with fibromyalgia. The risk of bias was assessed with the Agency for Health Care Research and Quality designed, specific recommended criteria (AHRQ). Results: Thirteen studies were eligible for inclusion. This included a total of 761 participants. Twelve out of the 13 studies reported improvement in widespread body pain, joint stiffness, sleeping pattern, mood, and gastrointestinal symptoms, and one study reported no changes in symptomatology in patients with FM on specialized diets. None of the studies showed the worsening of symptoms associated with a specific diet. Most of the patient population was female, with the mean age at which fibromyalgia was diagnosed being 48.12 years. Improvement in symptoms was reported by the patient's adhering to a gluten-free diet, raw vegan diet, tryptophan- and magnesium-enriched Mediterranean diet, aspartame- and msg- elimination diet, and specifically a Khorasan wheat diet. Risk of bias assessment noted that 6 studies had a low risk of bias (5 clinical trials and 1 case series), four studies had a moderate risk of bias, and 3 had a high risk of bias. In many of the studies, the allocation of treatment (diets) was not adequately concealed, and the researchers did not rule out any potential impact from a concurrent intervention or an unintended exposure that might have biased the results. On the other hand, there was a low risk of attrition bias in all the trials; all were conducted with an intention-to-treat, and the inclusion/exclusion criteria, exposures/interventions, and primary outcomes were valid, reliable, and implemented consistently across all study participants. Concluding statement: Patients with fibromyalgia who followed specialized diets experienced a variable degree of improvement in their widespread body pain. Improvement was also seen in stiffness, fatigue, moods, sleeping patterns, and gastrointestinal symptoms. Additionally, the majority of the patients also reported improvement in overall quality of life.Keywords: fibromyalgia, specialized diet, vegan, gluten free, Mediterranean, systematic review
Procedia PDF Downloads 7426 Role of Dedicated Medical Social Worker in Fund Mobilisation and Economic Evaluation in Ovarian Cancer: Experience from a Tertiary Referral Centre in Eastern India
Authors: Aparajita Bhattacharya, Mousumi Dutta, Zakir Husain, Dionne Sequeira, Asima Mukhopadhyay
Abstract:
Background: Tata Medical Centre (TMC), Kolkata is a major cancer referral centre in Eastern India and neighbouring countries providing state of the art facilities; however, it is a non-profit organisation with patients requiring to pay at subsidised rates. Although a system for social assessment and applying for governmental/ non-governmental (NGO) funds is in place, access is challenging. Amongst gynaecological cancers (GC), ovarian cancer (OC) is associated with the highest treatment cost; majority of which is required at the beginning when complex surgery is performed and funding arrangements cannot be made in time. We therefore appointed a dedicated Medical Social Worker (MSW) in 2016, supported by NGO for GC patients in order to assist patients/family members to access/avail these funds more readily and assist in economic evaluation for both direct and opportunity costs. Objectives: To reflect on our experience and challenges in collecting data on economic evaluation of cancer patients and compare success rates in achieving fund mobilization after introduction of MSW. Methods: A Retrospective survey. Patients with OC and their relatives were seen by the MSW during the initial outpatients department visit and followed though till discharge from the hospital and during follow-up visits. Assistance was provided in preparing the essential documents/paperwork/contacts for the funding agencies including both governmental (Chief-Minister/Prime-Minister/President) and NGO sources. In addition, a detailed questionnaire was filled up for economic assessment of direct/opportunity costs during the entire treatment and 12 months follow up period which forms a part of the study called HEPTROC (Health economic evaluation of primary treatment for ovarian cancer) developed in collaboration with economics departments of Universities. Results: In 2015, 102 patients were operated for OC; only 16 patients (15.68 %) had availed funding of a total sum of INR 1640000 through the hospital system for social assessment. Following challenges were faced by majority of the relatives: 1. Gathering important documents/proper contact details for governmental funding bodies and difficulty in following up the current status 3. Late arrival of funds. In contrast in 2016, 104 OC patients underwent surgery; the direct cost of treatment was significantly higher (median, INR 300000- 400000) compared to other GCs (n=274). 98/104 (94.23%) OC patients could be helped to apply for funds and 90/104(86.56%) patients received funding amounting to a total of INR 10897000. There has been a tenfold increase in funds mobilized in 2016 after the introduction of dedicated MSW in GC. So far, in 2017 (till June), 46/54(85.18%) OC patients applied for funds and 37/54(68.51%) patients have received funding. In a qualitative survey, all patients appreciated the role of the MSW who subsequently became the key worker for patient follow up and the chief portal for patient reported outcome monitoring. Data collection quality for the HEPTROC study was improved when questionnaires were administered by the MSW compared to researchers. Conclusion: Introduction of cancer specific MSW can expedite the availability of funds required for cancer patients and it can positively impact on patient satisfaction and outcome reporting. The economic assessment will influence fund allocation and decision for policymaking in ovarian cancer. Acknowledgement: Jivdaya Foundation Dallas, Texas.Keywords: economic evaluation, funding, medical social worker, ovarian cancer
Procedia PDF Downloads 15625 Understanding Systemic Barriers (and Opportunities) to Increasing Uptake of Subcutaneous Medroxy Progesterone Acetate Self-Injection in Health Facilities in Nigeria
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Background: The DISC project collaborated with partners to implement demand creation and service delivery interventions, including the MoT (Moment of Truth) innovation, in over 500 health facilities across 15 states. This has increased the voluntary conversion rate to self-injection among women who opt for injectable contraception. While some facilities recorded an increasing trend in key performance indicators, few others persistently performed sub-optimally due to provider and system-related barriers. Methodology: Twenty-two facilities performing sub-optimally were selected purposively from three Nigerian states. Low productivity was appraised using low reporting rates and poor SI conversion rates as indicators. Interviews were conducted with health providers across these health facilities using a rapid diagnosis tool. The project also conducted a data quality assessment that evaluated the veracity of data elements reported across the three major sources of family planning data in the facility. Findings: The inability and sometimes refusal of providers to support clients to self-inject effectively was associated with the misunderstanding of its value to their work experience. It was also observed that providers still held a strong influence over clients’ method choices. Furthermore, providers held biases and misconceptions about DMPA-SC that restricted the access of obese clients and new acceptors to services – a clear departure from the recommendations of the national guidelines. Additionally, quality of care standards was compromised because job aids were not used to inform service delivery. Facilities performing sub-optimally often under-reported DMPA-SC utilization data, and there were multiple uncoordinated responsibilities for recording and reporting. Additionally, data validation meetings were not regularly convened, and these meetings were ineffective in authenticating data received from health facilities. Other reasons for sub-optimal performance included poor documentation and tracking of stock inventory resulting in commodity stockouts, low client flow because of poor positioning of health facilities, and ineffective messaging. Some facilities lacked adequate human and material resources to provide services effectively and received very few supportive supervision visits. Supportive supervision visits and Data Quality Audits have been useful to address the aforementioned performance barriers. The project has deployed digital DMPA-SC self-injection checklists that have been aligned with nationally approved templates. During visits, each provider and community mobilizer is accorded special attention by the supervisor until he/she can perform procedures in line with best practice (protocol). Conclusion: This narrative provides a summary of a range of factors that identify health facilities performing sub-optimally in their provision of DMPA-SC services. Findings from this assessment will be useful during project design to inform effective strategies. As the project enters its final stages of implementation, it is transitioning high-impact activities to state institutions in the quest to sustain the quality of service beyond the tenure of the project. The project has flagged activities, as well as created protocols and tools aimed at placing state-level stakeholders at the forefront of improving productivity in health facilities.Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, barriers, opportunities, performance
Procedia PDF Downloads 8224 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 1123 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 6822 Sexuality Education through Media and Technology: Addressing Unmet Needs of Adolescents in Bangladesh
Authors: Farhana Alam Bhuiyan, Saad Khan, Tanveer Hassan, Jhalok Ranjon Talukder, Syeda Farjana Ahmed, Rahil Roodsaz, Els Rommes, Sabina Faiz Rashid
Abstract:
Breaking the shame’ is a 3 year (2015-2018) qualitative implementation research project which investigates several aspects of sexual and reproductive health and rights (SRHR) issues for adolescents living in Bangladesh. Scope of learning SRHR issues for adolescents is limited here due to cultural and religious taboos. This study adds to the ongoing discussions around adolescent’s SRHR needs and aims to, 1) understand the overall SRHR needs of urban and rural unmarried female and male adolescents and the challenges they face, 2) explore existing gaps in the content of SRHR curriculum and 3) finally, addresses some critical knowledge gaps by developing and implementing innovative SRHR educational materials. 18 in-depth interviews (IDIs) and 10 focus-group discussions (FGDs) with boys and 21 IDIs and 14 FGDs with girls of ages 13-19, from both urban and rural setting took place. Curriculum materials from two leading organizations, Unite for Body Rights (UBR) Alliance Bangladesh and BRAC Adolescent Development Program (ADP) were also reviewed, with discussions with 12 key program staff. This paper critically analyses the relevance of some of the SRHR topics that are covered, the challenges with existing pedagogic approaches and key sexuality issues that are not covered in the content, but are important for adolescents. Adolescents asked for content and guidance on a number of topics which remain missing from the core curriculum, such as emotional coping mechanisms particularly in relationships, bullying, impact of exposure to porn, and sexual performance anxiety. Other core areas of concern were effects of masturbation, condom use, sexual desire and orientation, which are mentioned in the content, but never discussed properly, resulting in confusion. Due to lack of open discussion around sexuality, porn becomes a source of information for the adolescents. For these reasons, several myths and misconceptions regarding SRHR issues like body, sexuality, agency, and gender roles still persist. The pedagogical approach is very didactic, and teachers felt uncomfortable to have discussions on certain SRHR topics due to cultural taboos or shame and stigma. Certain topics are favored- such as family planning, menstruation- and presented with an emphasis on biology and risk. Rigid formal teaching style, hierarchical power relations between students and most teachers discourage questions and frank conversations. Pedagogy approaches within classrooms play a critical role in the sharing of knowledge. The paper also describes the pilot approaches to implementing new content in SRHR curriculum. After a review of findings, three areas were selected as critically important, 1) myths and misconceptions 2) emotional management challenges, and 3) how to use condom, that have come up from adolescents. Technology centric educational materials such as web page based information platform and you tube videos are opted for which allow adolescents to bypass gatekeepers and learn facts and information from a legitimate educational site. In the era of social media, when information is always a click away, adolescents need sources that are reliable and not overwhelming. The research aims to ensure that adolescents learn and apply knowledge effectively, through creating the new materials and making it accessible to adolescents.Keywords: adolescents, Bangladesh, media, sexuality education, unmet needs
Procedia PDF Downloads 23021 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 7320 Evaluation of Functional Properties of Protein Hydrolysate from the Fresh Water Mussel Lamellidens marginalis for Nutraceutical Therapy
Authors: Jana Chakrabarti, Madhushrita Das, Ankhi Haldar, Roshni Chatterjee, Tanmoy Dey, Pubali Dhar
Abstract:
High incidences of Protein Energy Malnutrition as a consequence of low protein intake are quite prevalent among the children in developing countries. Thus prevention of under-nutrition has emerged as a critical challenge to India’s developmental Planners in recent times. Increase in population over the last decade has led to greater pressure on the existing animal protein sources. But these resources are currently declining due to persistent drought, diseases, natural disasters, high-cost of feed, and low productivity of local breeds and this decline in productivity is most evident in some developing countries. So the need of the hour is to search for efficient utilization of unconventional low-cost animal protein resources. Molluscs, as a group is regarded as under-exploited source of health-benefit molecules. Bivalve is the second largest class of phylum Mollusca. Annual harvests of bivalves for human consumption represent about 5% by weight of the total world harvest of aquatic resources. The freshwater mussel Lamellidens marginalis is widely distributed in ponds and large bodies of perennial waters in the Indian sub-continent and well accepted as food all over India. Moreover, ethno-medicinal uses of the flesh of Lamellidens among the rural people to treat hypertension have been documented. Present investigation thus attempts to evaluate the potential of Lamellidens marginalis as functional food. Mussels were collected from freshwater ponds and brought to the laboratory two days before experimentation for acclimatization in laboratory conditions. Shells were removed and fleshes were preserved at- 20oC until analysis. Tissue homogenate was prepared for proximate studies. Fatty acids and amino acids composition were analyzed. Vitamins, Minerals and Heavy metal contents were also studied. Mussel Protein hydrolysate was prepared using Alcalase 2.4 L and degree of hydrolysis was evaluated to analyze its Functional properties. Ferric Reducing Antioxidant Power (FRAP) and DPPH Antioxidant assays were performed. Anti-hypertensive property was evaluated by measuring Angiotensin Converting Enzyme (ACE) inhibition assay. Proximate analysis indicates that mussel meat contains moderate amount of protein (8.30±0.67%), carbohydrate (8.01±0.38%) and reducing sugar (4.75±0.07%), but less amount of fat (1.02±0.20%). Moisture content is quite high but ash content is very low. Phospholipid content is significantly high (19.43 %). Lipid constitutes, substantial amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which have proven prophylactic values. Trace elements are found present in substantial amount. Comparative study of proximate nutrients between Labeo rohita, Lamellidens and cow’s milk indicates that mussel meat can be used as complementary food source. Functionality analyses of protein hydrolysate show increase in Fat absorption, Emulsification, Foaming capacity and Protein solubility. Progressive anti-oxidant and anti-hypertensive properties have also been documented. Lamellidens marginalis can thus be regarded as a functional food source as this may combine effectively with other food components for providing essential elements to the body. Moreover, mussel protein hydrolysate provides opportunities for utilizing it in various food formulations and pharmaceuticals. The observations presented herein should be viewed as a prelude to what future holds.Keywords: functional food, functional properties, Lamellidens marginalis, protein hydrolysate
Procedia PDF Downloads 41819 Antimicrobial and Antioxidant Activities of Actinobacteria Isolated from the Pollen of Pinus sylvestris Grown on the Lake Baikal Shore
Authors: Denis V. Axenov-Gribanov, Irina V. Voytsekhovskaya, Evgenii S. Protasov, Maxim A. Timofeyev
Abstract:
Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Pinus sylvestris trees growing on the shore of the ancient Lake Baikal in Siberia. The actinobacterial strains were isolated on solid nutrient MS media and Czapek agar supplemented with cycloheximide and phosphomycin. Identification of actinobacteria was carried out by 16S rRNA gene sequencing and further analysis of the evolutionary history. Four different liquid and solid media (NL19, DNPM, SG and ISP) were tested for metabolite production. The metabolite extracts produced by the isolated strains were tested for antibacterial and antifungal activities. Also, antiradical activity of crude extracts was carried out. Strain Streptomyces sp. IB 2014 I 74-3 that active against Gram-negative bacteria was selected for dereplication analysis with using the high-yield liquid chromatography with mass-spectrometry. Mass detection was performed in both positive and negative modes, with the detection range set to 160–2500 m/z. Data were collected and analyzed using Bruker Compass Data Analysis software, version 4.1. Dereplication was performed using the Dictionary of Natural Products (DNP) database version 6.1 with the following search parameters: accurate molecular mass, absorption spectra and source of compound isolation. Thus, in addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. Several of the selected strains were deposited in the Russian Collection of Agricultural Microorganisms (RCAM), St. Petersburg, Russia. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. Moreover, extracts of several strains demonstrated high antioxidant activity. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens. Dereplication of the secondary metabolites of the strain Streptomyces sp. IB 2014 I 74-3 was resulted in the fact that a total of 59 major compounds were detected in the culture liquid extract of strain cultivated in ISP medium. Eight compounds were preliminarily identified based on characteristics described in the Dictionary of Natural Products database, using the search parameters Streptomyces sp. IB 2014 I 74-3 was found to produce saframycin A, Y3 and S; 2-amino-3-oxo-3H-phenoxazine-1,8-dicarboxylic acid; galtamycinone; platencin A4-13R and A4-4S; ganefromycin d1; the antibiotic SS 8201B; and streptothricin D, 40-decarbamoyl, 60-carbamoyl. Moreover, forty-nine of the 59 compounds detected in the extract examined in the present study did not result in any positive hits when searching within the DNP database and could not be identified based on available mass-spec data. Thus, these compounds might represent new findings.Keywords: actinobacteria, Baikal Lake, biodiversity, male cones, Pinus sylvestris
Procedia PDF Downloads 23418 Biotech Processes to Recover Valuable Fraction from Buffalo Whey Usable in Probiotic Growth, Cosmeceutical, Nutraceutical and Food Industries
Authors: Alberto Alfano, Sergio D’ambrosio, Darshankumar Parecha, Donatella Cimini, Chiara Schiraldi.
Abstract:
The main objective of this study regards the setup of an efficient small-scale platform for the conversion of local renewable waste materials, such as whey, into added-value products, thereby reducing environmental impact and costs deriving from the disposal of processing waste products. The buffalo milk whey derived from the cheese-making process, called second cheese whey, is the main by-product of the dairy industry. Whey is the main and most polluting by-product obtained from cheese manufacturing consisting of lactose, lactic acid, proteins, and salts, making whey an added-value product. In Italy, and in particular, in the Campania region, soft cheese production needs a large volume of liquid waste, especially during late spring and summer. This project is part of a circular economy perspective focused on the conversion of potentially polluting and difficult to purify waste into a resource to be exploited, and it embodies the concept of the three “R”: reduce, recycle, and reuse. Special focus was paid to the production of health-promoting biomolecules and biopolymers, which may be exploited in different segments of the food and pharmaceutical industries. These biomolecules may be recovered through appropriate processes and reused in an attempt to obtain added value products. So, ultrafiltration and nanofiltration processes were performed to fractionate bioactive components starting from buffalo milk whey. In this direction, the present study focused on the implementation of a downstream process that converts waste generated from food and food processing industries into added value products with potential applications. Owing to innovative downstream and biotechnological processes, rather than a waste product may be considered a resource to obtain high added value products, such as food supplements (probiotics), cosmeceuticals, biopolymers, and recyclable purified water. Besides targeting gastrointestinal disorders, probiotics such as Lactobacilli have been reported to improve immunomodulation and protection of the host against infections caused by viral and bacterial pathogens. Interestingly, also inactivated microbial (probiotic) cells and their metabolic products, indicated as parabiotic and postbiotics, respectively, have a crucial role and act as mediators in the modulation of the host’s immune function. To boost the production of biomass (both viable and/or heat inactivated cells) and/or the synthesis of growth-related postbiotics, such as EPS, efficient and sustainable fermentation processes are necessary. Based on a “zero-waste” approach, wastes generated from local industries can be recovered and recycled to develop sustainable biotechnological processes to obtain probiotics as well as post and parabiotic, to be tested as bioactive compounds against gastrointestinal disorders. The results have shown it was possible to recover an ultrafiltration retentate with suitable characteristics to be used in skin dehydration, to perform films (i.e., packaging for food industries), or as a wound repair agent and a nanofiltration retentate to recover lactic acid and carbon sources (e.g., lactose, glucose..) used for microbial cultivation. On the side, the last goal is to obtain purified water that can be reused throughout the process. In fact, water reclamation and reuse provide a unique and viable opportunity to augment traditional water supplies, a key issue nowadays.Keywords: biotech process, downstream process, probiotic growth, from waste to product, buffalo whey
Procedia PDF Downloads 6917 Microbes at Work: An Assessment on the Use of Microbial Inoculants in Reforestation and Rehabilitation of the Forest Ancestral Land of Magbukun Aytas of Morong, Bataan, Philippines
Authors: Harold M. Carag, April Charmaine D. Camacho, Girlie Nora A. Abrigo, Florencia G. Palis, Ma. Larissa Lelu P. Gata
Abstract:
A technology impact assessment on the use of microbial inoculants in the reforestation and rehabilitation of forest ancestral lands of the Magbukün Aytas in Morong, Bataan was conducted. This two-year rainforestation technology aimed to determine the optimum condition for the improvement of seedling survival rate in the nursery and in the field to hasten the process of forest regeneration of Magbukün Ayta’s ancestral land. A combination of qualitative methods (key informant interviews, focus groups and participant observation), participated by the farmers who were directly involved in the project, community men and women, the council of elders and the project staff, was employed to complete this impact assessment. The recorded data were transcribed, and the accounts were broadly categorized on the following aspects: social (gender, institutional, anthropological), economic and environmental. The Australian Center for International Agricultural Research (ACIAR) framework was primarily used for the impact analysis while the Harvard Analytical Framework was specifically used for the gender impact analysis. Through this technology, a wildling nursery with more than one thousand seedlings was successfully established and served as a good area for the healthy growth of seedlings that would be planted in the forest. Results showed that this technology affected positively and negatively the various gender roles present in the community although household work remained to be the women’s responsibility. The technology introduced directly added up to the workload done by the men and women (preparing and applying fertilizer, making pots etc.) but this, in turn, provided ways to increase their sources of livelihood. The gender roles that were already present were further strengthened after the project and men remained to be in control. The technology or project in turn also benefited from the already present roles since they no longer have to assign things to them, the execution of the various roles was smoothly executed. In the anthropological aspect, their assigned task to manage the nursery was an easy responsibility because of their deep connection to the environment and their fear and beliefs on ‘engkato’ and ‘anito’ was helpful in guarding the forest. As the cultural value of these trees increases, their mindset of safeguarding the forest also heightens. Meanwhile, the welfare of the whole tribe is the ultimate determinant of the swift entry of projects. The past institutions brought ephemeral reliefs on the subsistence of the Magbukün Aytas. These were good ‘conditioning’ factors for the adoption of the technology of the project. As an attempt to turn away from the dependent of harmful chemical, the project’s way of introducing organic inputs was slowly gaining popularity in the community. Economically, the project was able to provide additional income to the farmers. However, the slow mode of payment dismayed other farmers and abandoned their roles. Lastly, major environmental effects weren’t that much observed after the application of the technology. The minor effects concentrated more on the improved conditions of the soil and water in the community. Because of the introduced technology, soil conditions became more favorable specifically for the species that were planted. The organic fertilizers used were in turn not harmful for the residents living in Sitio Kanawan. There were no human diseases caused by the technology. The conservation of the biodiversity of the forest is clearly the most evident long-term result of the project.Keywords: ancestral lands, impact assessment, microbial inculants, reforestation
Procedia PDF Downloads 14316 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 9315 Identification Strategies for Unknown Victims from Mass Disasters and Unknown Perpetrators from Violent Crime or Terrorist Attacks
Authors: Michael Josef Schwerer
Abstract:
Background: The identification of unknown victims from mass disasters, violent crimes, or terrorist attacks is frequently facilitated through information from missing persons lists, portrait photos, old or recent pictures showing unique characteristics of a person such as scars or tattoos, or simply reference samples from blood relatives for DNA analysis. In contrast, the identification or at least the characterization of an unknown perpetrator from criminal or terrorist actions remains challenging, particularly in the absence of material or data for comparison, such as fingerprints, which had been previously stored in criminal records. In scenarios that result in high levels of destruction of the perpetrator’s corpse, for instance, blast or fire events, the chance for a positive identification using standard techniques is further impaired. Objectives: This study shows the forensic genetic procedures in the Legal Medicine Service of the German Air Force for the identification of unknown individuals, including such cases in which reference samples are not available. Scenarios requiring such efforts predominantly involve aircraft crash investigations, which are routinely carried out by the German Air Force Centre of Aerospace Medicine as one of the Institution’s essential missions. Further, casework by military police or military intelligence is supported based on administrative cooperation. In the talk, data from study projects, as well as examples from real casework, will be demonstrated and discussed with the audience. Methods: Forensic genetic identification in our laboratories involves the analysis of Short Tandem Repeats and Single Nucleotide Polymorphisms in nuclear DNA along with mitochondrial DNA haplotyping. Extended DNA analysis involves phenotypic markers for skin, hair, and eye color together with the investigation of a person’s biogeographic ancestry. Assessment of the biological age of an individual employs CpG-island methylation analysis using bisulfite-converted DNA. Forensic Investigative Genealogy assessment allows the detection of an unknown person’s blood relatives in reference databases. Technically, end-point-PCR, real-time PCR, capillary electrophoresis, pyrosequencing as well as next generation sequencing using flow-cell-based and chip-based systems are used. Results and Discussion: Optimization of DNA extraction from various sources, including difficult matrixes like formalin-fixed, paraffin-embedded tissues, degraded specimens from decomposed bodies or from decedents exposed to blast or fire events, provides soil for successful PCR amplification and subsequent genetic profiling. For cases with extremely low yields of extracted DNA, whole genome preamplification protocols are successfully used, particularly regarding genetic phenotyping. Improved primer design for CpG-methylation analysis, together with validated sampling strategies for the analyzed substrates from, e.g., lymphocyte-rich organs, allows successful biological age estimation even in bodies with highly degraded tissue material. Conclusions: Successful identification of unknown individuals or at least their phenotypic characterization using pigmentation markers together with age-informative methylation profiles, possibly supplemented by family tree search employing Forensic Investigative Genealogy, can be provided in specialized laboratories. However, standard laboratory procedures must be adapted to work with difficult and highly degraded sample materials.Keywords: identification, forensic genetics, phenotypic markers, CPG methylation, biological age estimation, forensic investigative genealogy
Procedia PDF Downloads 5114 Evidence Based Dietary Pattern in South Asian Patients: Setting Goals
Authors: Ananya Pappu, Sneha Mishra
Abstract:
Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices.Keywords: BMI, diet, obesity, South Asian, time-restricted eating
Procedia PDF Downloads 4613 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 59