Search results for: 3D models
1253 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector
Authors: Victor Birikorang Danquah
Abstract:
Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy
Procedia PDF Downloads 1811252 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus
Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson
Abstract:
Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation
Procedia PDF Downloads 1151251 The Impact of a Model's Skin Tone and Ethnic Identification on Consumer Decision Making
Authors: Shanika Y. Koreshi
Abstract:
Sri Lanka housed the lingerie product development and manufacturing subsidiary to renowned brands such as La Senza, Marks & Spencer, H&M, Etam, Lane Bryant, and George. Over the last few years, they have produced local brands such as Amante to cater to the local and regional customers. Past research has identified factors such as quality, price, and design to be vital when marketing lingerie to consumers. However, there has been minimum research that looks into the ethnically targeted market and skin colour within the Asian population. Therefore, the main aim of the research was to identify whether consumer preference for lingerie is influenced by the skin tone of the model wearing it. Moreover, the secondary aim was to investigate if the consumer preference for lingerie is influenced by the consumer’s ethnic identification with the skin tone of the model. An experimental design was used to explore the above aims. The participants constituted of 66 females residing in the western province of Sri Lanka and were gathered via convenience sampling. Six computerized images of a real model were used in the study, and her skin tone was digitally manipulated to express three different skin tones (light, tan and dark). Consumer preferences were measured through a ranking order scale that was constructed via a focus group discussion and ethnic identity was measured by the Multigroup Ethnic Identity Measure-Revised. Wilcoxon signed-rank test, Friedman test, and chi square test of independence were carried out using SPSS version 20. The results indicated that majority of the consumers ethnically identified and preferred the tan skin over the light and dark skin tones. The findings support the existing literature that states there is a preference among consumers when models have a medium skin tone over a lighter skin tone. The preference for a tan skin tone in a model is consistent with the ethnic identification of the Sri Lankan sample. The study implies that lingerie brands should consider the model's skin tones when marketing the brand to different ethnic backgrounds.Keywords: consumer preference, ethnic identification, lingerie, skin tone
Procedia PDF Downloads 2591250 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design
Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad
Abstract:
In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method
Procedia PDF Downloads 2431249 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1041248 Vocational Education and Gender Equality in Nigeria: Challenges and Opportunities
Authors: Josephine Emebiziogo Anene-Okeakwa
Abstract:
This study investigates the challenges and opportunities for gender equality in vocational education in Awka South, Anambra State, Nigeria. Recognizing the critical role of vocational education in economic development, the research aims to evaluate the current state of gender equality, identify key barriers faced by female students, assess the impact of government policies, and explore opportunities for enhancing gender equality in this sector. Ten vocational schools within Awka South were randomly selected, and a total of 1,000 questionnaires were distributed among students, with 991 completed and returned, yielding a high response rate of 99.1%, and the retrieved data were analyzed using SPSS. The findings indicate significant gender disparities in vocational education enrollment and participation, with male students overwhelmingly outnumbering female students in most technical and engineering-related programs. Key barriers identified include cultural norms discouraging females from pursuing technical fields, economic constraints, lack of female role models, and social stereotypes regarding gender roles. Despite various government policies aimed at promoting gender equality, their implementation and effectiveness remain inadequate, as reflected in persistent gender disparities. However, opportunities for improving gender equality were identified, such as implementing gender-sensitive curricula, expanding mentorship programs for female students, and adopting best practices from other countries. The study recommends enhancing access to vocational training resources, implementing gender-sensitive curricula, expanding mentorship programs, and strengthening the implementation and monitoring of government policies. Addressing these challenges through targeted interventions is essential for achieving gender parity in vocational education, thereby empowering female students and contributing to Nigeria's socio-economic development.Keywords: vocational education, gender equality, barriers, government policies
Procedia PDF Downloads 331247 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 651246 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry
Authors: David E. Culler, Noah D. Anderson
Abstract:
Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.Keywords: PDM, PLM, collaboration, CAD/CAM, scalable systems
Procedia PDF Downloads 1741245 Sustainable Development of Adsorption Solar Cooling Machine
Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system
Procedia PDF Downloads 781244 The Mediating Role of Artificial Intelligence (AI) Driven Customer Experience in the Relationship Between AI Voice Assistants and Brand Usage Continuance
Authors: George Cudjoe Agbemabiese, John Paul Kosiba, Michael Boadi Nyamekye, Vanessa Narkie Tetteh, Caleb Nunoo, Mohammed Muniru Husseini
Abstract:
The smartphone industry continues to experience massive growth, evidenced by expanding markets and an increasing number of brands, models and manufacturers. As technology advances rapidly, manufacturers of smartphones are consistently introducing new innovations to keep up with the latest evolving industry trends and customer demand for more modern devices. This study aimed to assess the influence of artificial intelligence (AI) voice assistant (VA) on improving customer experience, resulting in the continuous use of mobile brands. Specifically, this article assesses the role of hedonic, utilitarian, and social benefits provided by AIVA on customer experience and the continuance intention to use mobile phone brands. Using a primary data collection instrument, the quantitative approach was adopted to examine the study's variables. Data from 348 valid responses were used for the analysis based on structural equation modeling (SEM) with AMOS version 23. Three main factors were identified to influence customer experience, which results in continuous usage of mobile phone brands. These factors are social benefits, hedonic benefits, and utilitarian benefits. In conclusion, a significant and positive relationship exists between the factors influencing customer experience for continuous usage of mobile phone brands. The study concludes that mobile brands that invest in delivering positive user experiences are in a better position to improve usage and increase preference for their brands. The study recommends that mobile brands consider and research their prospects' and customers' social, hedonic, and utilitarian needs to provide them with desired products and experiences.Keywords: artificial intelligence, continuance usage, customer experience, smartphone industry
Procedia PDF Downloads 801243 Increase of the Nanofiber Degradation Rate Using PCL-PEO and PCL-PVP as a Shell in the Electrospun Core-Shell Nanofibers Using the Needleless Blades
Authors: Matej Buzgo, Erico Himawan, Ksenija JašIna, Aiva Simaite
Abstract:
Electrospinning is a versatile and efficient technology for producing nanofibers for biomedical applications. One of the most common polymers used for the preparation of nanofibers for regenerative medicine and drug delivery applications is polycaprolactone (PCL). PCL is a biocompatible and bioabsorbable material that can be used to stimulate the regeneration of various tissues. It is also a common material used for the development of drug delivery systems by blending the polymer with small active molecules. However, for many drug delivery applications, e.g. cancer immunotherapy, PCL biodegradation rate that may exceed 9 months is too long, and faster nanofiber dissolution is needed. In this paper, we investigate the dissolution and small molecule release rates of PCL blends with two hydrophilic polymers: polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP). We show that adding hydrophilic polymer to the PCL reduces the water contact angle, increases the dissolution rate, and strengthens the interactions between the hydrophilic drug and polymer matrix that further sustain its release. Finally using this method, we were also able to increase the nanofiber degradation rate when PCL-PEO and PCL-PVP were used as a shell in the electrospun core-shell nanofibers and spread up the release of active proteins from their core. Electrospinning can be used for the preparation of the core-shell nanofibers, where active ingredients are encapsulated in the core and their release rate is regulated by the shell. However, such fibers are usually prepared by coaxial electrospinning that is an extremely low-throughput technique. An alternative is emulsion electrospinning that could be upscaled using needleless blades. In this work, we investigate the possibility of using emulsion electrospinning for encapsulation and sustained release of the growth factors for the development of the organotypic skin models. The core-shell nanofibers were prepared using the optimized formulation and the release rate of proteins from the fibers was investigated for 2 weeks – typical cell culture conditions.Keywords: electrospinning, polycaprolactone (PCL), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP)
Procedia PDF Downloads 2731242 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 171241 Empowered Women Entrepreneurs and Sustainable Rural Tourism: A Study into the Voices and Experiences of Local Women in the Sundarbans Area of Bangladesh
Authors: Jakia Rajoana
Abstract:
The aim of this paper is to examine the role of women entrepreneurs in bringing about sustainable rural tourism (SRT) development in Sundarbans area of Bangladesh. Theoretically, it draws upon empowerment and entrepreneurial marketing concepts. Women entrepreneurship development and lack of empowered women as role models is an important issue for developing economies in South Asia. Despite the substantial role women play in rural economy of Sundarbans, their contribution remains overlooked as enterprises led by them are run on an informal basis and their business acumen is not taken seriously both by their families and society at large. Studies on SRT fail to engage in sufficient depth with the term applied in this paper as ‘invisible women on the margins’ who run their enterprises with no formal training or societal/familial support. Moreover, the link between their (non) tourism enterprise and their empowerment remains under-theorized. Thus empirically, this research seeks to fill a significant gap by focusing on a considerably under-researched Sundarbans region. Methodologically, this study follows a qualitative research design using visual ethnographic approach. Participant observation, semi-structured interviews, and documentation are the primary data collection instruments in three coastal communities – Munshigonj, Burigoalini and Gabura – in the Sundarbans area. By focusing on the narratives of these under-investigated women, this work aims to provide in-depth and nuanced insights into salient issues on marginal communities experience from rural women’s perspectives. Initial findings illustrate that the Sundarbans women have low income due to no or little education. In addition, socio-cultural and religious factors also restrict the scope of their extensive contribution to workplace. In addition, physical and social violence which is a common occurrence for these women inhibits their agency and contributes to their disempowerment.Keywords: gender, empowerment, entrepreneurial marketing, sustainable rural tourism, Sundarbans
Procedia PDF Downloads 2871240 The Competitive Power of Supply Chain Quality Management in Manufacturing Companies in Cameroon
Authors: Nicodemus Tiendem, Arrey Mbayong Napoleon
Abstract:
The heightening of competition and the quest for market share has left business persons and research communities re-examining and reinventing their competitive practices. A case in point is Porter’s generic strategy which has received a lot of criticism lately regarding its inability to maintain a company’s competitive power. This is because it focuses more on the organisation and ignores her external partners, who have a strong bearing on the company’s performance. This paper, therefore, sought to examine Porter’s generic strategies alongside supply chain quality management practices in terms of their effectiveness in building the competitive power of manufacturing companies in Cameroon. This was done with the use of primary data captured from a survey study across the supply chains of 20 manufacturing companies in Cameroon using a five-point Likert scale questionnaire. For each company, four 1st tier suppliers and four 1st tier distributors were carefully chosen to participate in the study alongside the companies themselves. In each case, attention was directed to persons involved in the supply chains of the companies. This gave a total of 180 entities comprising the supply chains of the 20 manufacturing companies involved in the study, making a total of 900 participants. The data was analysed using three multiple regression models to assess the effect of Porter’s generic strategy and supply chain quality management on the marketing performance of the companies. The findings proved that in such a competitive atmosphere, supply chain quality management is a better tool for marketing performance over Porter’s generic strategies and hence building the competitive power of the companies at all levels of the study. Although the study made use of convenience sampling, where sample selectivity biases the results, the findings aligned with many other recent developments in line with building the competitive power of manufacturing companies and thereby made the findings suitable for generalisation.Keywords: supply chain quality management, Porter’s generic strategies, competitive power, marketing performance, manufacturing companies, Cameroon
Procedia PDF Downloads 881239 Divorce Advice and Parents' Council Support Groups: Help for Divorced Parents to Create Co-Parenting after Divorce
Authors: Paivi Hietanen
Abstract:
At family with children, divorce is a risk for a child to lose the relationship to the parent with whom the child doesn't live. A child has the right to the get care from both parents after the divorce. Even though your ex-spouse isn’t longer your companion, to the child he or she is still unique as a parent and parents must cooperate and support their child in the new family situation. To divorcee, it's necessary to understand the difference between the intimate relationship that ends and parenthood that continues. Cooperative parenting takes a lot of effort and flexibility for the parents to make joint custody work well. It is vital that parents get help to understand the situation from child points of view. When parent is facing divorce, and all the emotions that it brings along, can the child easily be forgotten. To help children, we must help parents to understand, that a relationship can end, parenthood cannot. As professionals, we should help the parents to see the significance and value of both parents to the child and try to support and protect parenthood-relationship between parents. The Federation of Mother and Child Homes and Shelters have developed group models to work with parents during or after divorce. These support groups are led by professionals, but peer support is also used. These support groups have been held over 10 years and there are found from 20 different cities in Finland. Eroneuvo event (divorce advice) service is intended for parents who are considering or have already divorced. The Vanhemman neuvo (parents' council) is a peer support group that helps parents with post-divorce parenting issues. From these groups, parents receive information and peer support for matters related to divorcing and how to support the child and do co-parenting. At the groups and in given information for divorced parents, is used a method called the 'Irreversible triangle'. It's a way to picture the intimate relationship and parenthood after the divorce and what is the difference between these two things. 'Irreversible triangle' is used to help parents and professionals to understand, what happens if a child loses the relationship to the other parent or if parents co-parenting doesn't work well. From the largely collected feedback, group members tell that they feel themselves relieved after taking part of the group. Parents also experience that talking with other parents helps to survive. Group members learn to co-operate with the other parent, and they'll also learn to see the best interest of the child after the divorce. Parents would highly recommend these groups to other parents.Keywords: child's right, co-parenting, parenthood after the divorce, peer support
Procedia PDF Downloads 1651238 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 5181237 Preclinical Studying of Stable Fe-Citrate Effect on 68Ga-Citrate Tissue Distribution
Authors: A. S. Lunev, A. A. Larenkov, O. E. Klementyeva, G. E. Kodina
Abstract:
Background and aims: 68Ga-citrate is one of prospective radiopharmaceutical for PET-imaging of inflammation and infection. 68Ga-citrate is 67Ga-citrate analogue using since 1970s for SPECT-imaging. There's known rebinding reaction occurs past Ga-citrate injection and gallium (similar iron Fe3+) binds with blood transferrin. Then radiolabeled protein complex is delivered to pathological foci (inflammation/infection sites). But excessive gallium bindings with transferrin are cause of slow blood clearance, long accumulation time in foci (24-72 h) and exception of application possibility of the short-lived gallium-68 (T½ = 68 min). Injection of additional chemical agents (e.g. Fe3+ compounds) competing with radioactive gallium to the blood transferrin joining (blocking of its metal binding capacity) is one of the ways to solve formulated problem. This phenomenon can be used for correction of 68Ga-citrate pharmacokinetics for increasing of the blood clearance and accumulation in foci. The aim of real studying is research of effect of stable Fe-citrate on 68Ga-citrate tissue distribution. Materials and methods: 68Ga-citrate without/with extra injection of stable Fe-citrate (III) was injected nonlinear mice with inflammation models (aseptic soft tissue inflammation, lung infection, osteomyelitis). PET/X-RAY Genisys4 (Sofie Bioscience, USA) was used for non-invasive PET imaging (for 30, 60, 120 min past injection 68Ga-citrate) with subsequent reconstruction of imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min. Results and conclusions: I. v. injection of stable Fe-citrate blocks the metal-binding capability of transferrin serum and allows decreasing gallium-68 radioactivity in blood significantly and increasing accumulation in inflammation (3-5 time). It allows receiving more informative PET-images of inflammation early (for 30-60 min after injection). Pharmacokinetic parameters prove it. Noted there is no statistically significant difference between 68Ga-citrate accumulation for different inflammation model because PET imaging is indication of pathological processes and is not their identification.Keywords: 68Ga-citrate, Fe-citrate, PET imaging, mice, inflammation, infection
Procedia PDF Downloads 4881236 Creating Complementary Bi-Modal Learning Environments: An Exploratory Study Combining Online and Classroom Techniques
Authors: Justin P. Pool, Haruyo Yoshida
Abstract:
This research focuses on the effects of creating an English as a foreign language curriculum that combines online learning and classroom teaching in a complementary manner. Through pre- and post-test results, teacher observation, and learner reflection, it will be shown that learners can benefit from online programs focusing on receptive skills if combined with a communicative classroom environment that encourages learners to develop their productive skills. Much research has lamented the fact that many modern mobile assisted language learning apps do not take advantage of the affordances of modern technology by focusing only on receptive skills rather than inviting learners to interact with one another and develop communities of practice. This research takes into account the realities of the state of such apps and focuses on how to best create a curriculum that complements apps which focus on receptive skills. The research involved 15 adult learners working for a business in Japan simultaneously engaging in 1) a commercial online English language learning application that focused on reading, listening, grammar, and vocabulary and 2) a 15-week class focused on communicative language teaching, presentation skills, and mitigation of error aversion tendencies. Participants of the study experienced large gains on a standardized test, increased motivation and willingness to communicate, and asserted that they felt more confident regarding English communication. Moreover, learners continued to study independently at higher rates after the study than they had before the onset of the program. This paper will include the details of the program, reveal the improvement in test scores, share learner reflections, and critically view current evaluation models for mobile assisted language learning applications.Keywords: adult learners, communicative language teaching, mobile assisted language learning, motivation
Procedia PDF Downloads 1351235 The Need for Embodiment Perspectives and Somatic Methods in Social Work Curriculum: Lessons Learned from a Decade of Developing a Program to Support College Students Who Exited the State Foster Care System
Authors: Yvonne A. Unrau
Abstract:
Social work education is a competency-based curriculum that relies mostly on cognitive frameworks and problem-solving models. Absent from the curriculum is knowledge and skills that draw from an embodiment perspective, especially somatic practice methods. Embodiment broadly encompasses the understanding that biological, political, historical, and social factors impact human development via changes to the nervous system. In the past 20 years, research has well-established that unresolved traumatic events, especially during childhood, negatively impacts long-term health and well-being. Furthermore, traumatic stress compromises cognitive processing and activates reflexive action such as ‘fight’ or ‘flight,’ which are the focus of somatic methods. The main objective of this paper is to show how embodiment perspectives and somatic methods can enhance social work practice overall. Using an exploratory approach, the author shares a decade-long journey that involved creating an education-support program for college students who exited the state foster care system. Personal experience, program outcomes and case study narratives revealed that ‘classical’ social work methods were insufficient to fully address the complex needs of college students who were living with complex traumatic stressors. The paper chronicles select case study scenarios and key program development milestones over a 10-year period to show the benefit of incorporating embodiment perspectives in social work practice. The lessons reveal that there is an immediate need for social work curriculum to include embodiment perspectives so that social workers may be equipped to respond competently to their many clients who live with unresolved trauma.Keywords: social work practice, social work curriculum, embodiment, traumatic stress
Procedia PDF Downloads 1231234 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging
Authors: Ramin Ghasemi Shayan, Morteza Janebifam
Abstract:
Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET
Procedia PDF Downloads 1461233 Smart Water Cities for a Sustainable Future: Defining, Necessity, and Policy Pathways for Canada's Urban Water Resilience
Authors: Sima Saadi, Carolyn Johns
Abstract:
The concept of a "Smart Water City" is emerging as a framework to address critical urban water challenges, integrating technology, data, and sustainable management practices to enhance water quality, conservation, and accessibility. This paper explores the definition of a Smart Water City, examines the pressing need for such cities in Canada, and proposes policy pathways for their development. Smart Water Cities utilize advanced monitoring systems, data analytics, and integrated water resources management to optimize water usage, anticipate and mitigate environmental impacts, and engage citizens in sustainable practices. Global examples from regions such as Europe, Asia, and Australia illustrate how Smart Water City models can transform urban water systems by enhancing resilience, improving resource efficiency, and driving economic development through job creation in environmental technology sectors. For Canada, adopting Smart Water City principles could address pressing challenges, including climate-induced water stress, aging infrastructure, and the need for equitable water access across diverse urban and rural communities. Building on Canada's existing water policies and technological expertise, it propose strategic investments in digital water infrastructure, data-driven governance, and community partnerships. Through case studies, this paper offers insights into how Canadian cities could benefit from cross-sector collaboration, policy development, and funding for smart water technology. By aligning national policy with smart urban water solutions, Canada has the potential to lead globally in sustainable water management, ensuring long-term water security and environmental stewardship for its cities and communities.Keywords: smart water city, urban water resilience, water management technology, sustainable water infrastructure, canada water policy, smart city initiatives
Procedia PDF Downloads 91232 Linkage between a Plant-based Diet and Visual Impairment: A Systematic Review and Meta-Analysis
Authors: Cristina Cirone, Katrina Cirone, Monali S. Malvankar-Mehta
Abstract:
Purpose: An increased risk of visual impairment has been observed in individuals lacking a balanced diet. The purpose of this paper is to characterize the relationship between plant-based diets and specific ocular outcomes among adults. Design: Systematic review and meta-analysis. Methods: This systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. The databases MEDLINE, EMBASE, Cochrane, and PubMed, were systematically searched up until May 27, 2021. Of the 503 articles independently screened by two reviewers, 21 were included in this review. Quality assessment and data extraction were performed by both reviewers. Meta-analysis was conducted using STATA 15.0. Fixed-effect and random-effect models were computed based on heterogeneity. Results: A total of 503 studies were identified which then underwent duplicate removal and a title and abstract screen. The remaining 61 studies underwent a full-text screen, 21 progressed to data extraction and fifteen were included in the quantitative analysis. Meta-analysis indicated that regular consumption of fish (OR = 0.70; CI: [0.62-0.79]) and skim milk, poultry, and non-meat animal products (OR = 0.70; CI: [0.61-0.79]) is positively correlated with a reduced risk of visual impairment (age-related macular degeneration, age-related maculopathy, cataract development, and central geographic atrophy) among adults. Consumption of red meat [OR = 1.41; CI: [1.07-1.86]) is associated with an increased risk of visual impairment. Conclusion: Overall, a pescatarian diet is associated with the most favorable visual outcomes among adults, while the consumption of red meat appears to negatively impact vision. Results suggest a need for more local and government-led interventions promoting a healthy and balanced diet.Keywords: plant-based diet, pescatarian diet, visual impairment, systematic review, meta-analysis
Procedia PDF Downloads 1851231 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans
Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado
Abstract:
Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.Keywords: cocoa beans, optimization, RSM, shelling parameters
Procedia PDF Downloads 3581230 Genomic Resilience and Ecological Vulnerability in Coffea Arabica: Insights from Whole Genome Resequencing at Its Center of Origin
Authors: Zewdneh Zana Zate
Abstract:
The study focuses on the evolutionary and ecological genomics of both wild and cultivated Coffea arabica L. at its center of origin, Ethiopia, aiming to uncover how this vital species may withstand future climate changes. Utilizing bioclimatic models, we project the future distribution of Arabica under varied climate scenarios for 2050 and 2080, identifying potential conservation zones and immediate risk areas. Through whole-genome resequencing of accessions from Ethiopian gene banks, this research assesses genetic diversity and divergence between wild and cultivated populations. It explores relationships, demographic histories, and potential hybridization events among Coffea arabica accessions to better understand the species' origins and its connection to parental species. This genomic analysis also seeks to detect signs of natural or artificial selection across populations. Integrating these genomic discoveries with ecological data, the study evaluates the current and future ecological and genomic vulnerabilities of wild Coffea arabica, emphasizing necessary adaptations for survival. We have identified key genomic regions linked to environmental stress tolerance, which could be crucial for breeding more resilient Arabica varieties. Additionally, our ecological modeling predicted a contraction of suitable habitats, urging immediate conservation actions in identified key areas. This research not only elucidates the evolutionary history and adaptive strategies of Arabica but also informs conservation priorities and breeding strategies to enhance resilience to climate change. By synthesizing genomic and ecological insights, we provide a robust framework for developing effective management strategies aimed at sustaining Coffea arabica, a species of profound global importance, in its native habitat under evolving climatic conditions.Keywords: coffea arabica, climate change adaptation, conservation strategies, genomic resilience
Procedia PDF Downloads 401229 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 891228 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 1171227 Verification of a Simple Model for Rolling Isolation System Response
Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly
Abstract:
Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system
Procedia PDF Downloads 2501226 Disaster Victim Identification: A Social Science Perspective
Authors: Victor Toom
Abstract:
Albeit it is never possible to anticipate the full range of difficulties after a catastrophe, efforts to identify victims of mass casualty events have become institutionalized and standardized with the aim of effectively and efficiently addressing the many challenges and contingencies. Such ‘disaster victim identification’ (DVI) practices are dependent on the forensic sciences, are subject of national legislation, and are reliant on technical and organizational protocols to mitigate the many complexities in the wake of catastrophe. Apart from such technological, legal and bureaucratic elements constituting a DVI operation, victims’ families and their emotions are also part and parcel of any effort to identify casualties of mass human fatality incidents. Take for example the fact that forensic experts require (antemortem) information from the group of relatives to make identification possible. An identified body or body part is also repatriated to kin. Relatives are thus main stakeholders in DVI operations. Much has been achieved in years past regarding facilitating victims’ families’ issues and their emotions. Yet, how families are dealt with by experts and authorities is still considered a difficult topic. Due to sensitivities and required emphatic interaction with families on the one hand, and the rationalized DVI efforts, on the other hand, there is still scope for improving communication, providing information and meaningful inclusion of relatives in the DVI effort. This paper aims to bridge the standardized world of DVI efforts and families’ experienced realities and makes suggestions to further improve DVI efforts through inclusion of victims’ families. Based on qualitative interviews, the paper narrates involvement and experiences of inter alia DVI practitioners, victims’ families, advocates and clergy in the wake of the 1995 Srebrenica genocide which killed approximately 8,000 men, and the 9/11 in New York City with 2,750 victims. The paper shows that there are several models of including victims’ families into a DVI operation, and it argues for a model of where victims’ families become a partner in DVI operations.Keywords: disaster victim identification (DVI), victims’ families, social science (qualitative), 9/11 attacks, Srebrenica genocide
Procedia PDF Downloads 2321225 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application
Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior
Abstract:
Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks
Procedia PDF Downloads 1701224 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 463