Search results for: AIMMS mathematical software
927 Exploring the History of Chinese Music Acoustic Technology through Data Fluctuations
Abstract:
The study of extant musical sites can provide a side-by-side picture of historical ethnomusicological information. In their data collection on Chinese opera houses, researchers found that one Ming Dynasty opera house reached a width of nearly 18 meters, while all opera houses of the same period and after it was far from such a width, being significantly smaller than 18 meters. The historical transient fluctuations in the data dimension of width that caused Chinese theatres to fluctuate in the absence of construction scale constraints have piqued the interest of researchers as to why there is data variation in width. What factors have contributed to the lack of further expansion in the width of theatres? To address this question, this study used a comparative approach to conduct a venue experiment between this theater stage and another theater stage for non-heritage opera performances, collecting the subjective perceptions of performers and audiences at different theater stages, as well as combining BK Connect platform software to measure data such as echo and delay. From the subjective and objective results, it is inferred that the Chinese ancients discovered and understood the acoustical phenomenon of the Haas effect by exploring the effect of stage width on musical performance and appreciation of listening states during the Ming Dynasty and utilized this discovery to serve music in subsequent stage construction. This discovery marked a node of evolution in Chinese architectural acoustics technology driven by musical demands. It is also instructive to note that, in contrast to many of the world's "unsuccessful civilizations," China can use a combination of heritage and intangible cultural research to chart a clear, demand-driven course for the evolution of human music technology, and that the findings of such research will complete the course of human exploration of music acoustics. The findings of such research will complete the journey of human exploration of music acoustics, and this practical experience can be applied to the exploration and understanding of other musical heritage base data.Keywords: Haas effect, musical acoustics, history of acoustical technology, Chinese opera stage, structure
Procedia PDF Downloads 185926 The Relationship between Mobile Phone Usage and Secondary School Students’ Academic Performance: Work Experience at an International School
Authors: L. N. P. Wedikandage, Mohamed Razmi Zahir
Abstract:
Technology is a global imperative because of its contributions to human existence and because it has improved global socioeconomic relations. As a result, the mobile phone has become the most important mode of communication today. Smartphones, Internet-enabled devices with built-in computer software and applications, are one of the most significant inventions of the twenty-first century. Technology is advantageous to many people, especially those involved in education. It is an important learning tool for today's schoolchildren. It enables students to access online learning platforms and course resources and interact digitally. Senior secondary students, in particular, have some of the most expensive and sophisticated mobile phones, tablets, and iPads capable of connecting to the internet and various social media platforms, other websites, and so on. At present, the use of mobile phones' potential for effective teaching and learning is growing. This is due to the benefits of mobile learning, including the ability to share knowledge without any limits in space or Time and the capacity to facilitate the development of critical thinking, participatory learning, problem-solving, and the development of lifelong communication skills. However, it is yet unclear how mobile devices may affect education and how they may affect opportunities for learning. As a result, the purpose of this research was to ascertain the relationship between mobile phone usage and the academic Performance of secondary-level students at an international school in Sri Lanka. The study's sample consisted of 523 secondary-level students from an international school, ranging from Form 1 to Upper 6. For the study, a survey research design and questionnaires were used. Google Forms was used to create the students' survey. There were three hypotheses tested to find out the relationship between mobile phone usage and academic preference. The findings show that there is a positive relationship between mobile phone usage and academic performance among secondary school students (the number of students obtaining simple passes is significantly higher when mobile phones are being used for more than 7 hours), no relationship between mobile phone usage and academic performance among secondary school students of different parents' occupations, and a relationship between the frequency of mobile phone usage and academic performance among secondary school students.Keywords: mobile phone, academic performance, secondary level, international schools
Procedia PDF Downloads 87925 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems
Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell
Abstract:
Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.Keywords: building information modeling, BIM, facilities management systems, interoperability, information management
Procedia PDF Downloads 117924 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 178923 Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada
Authors: Abbas Kamalibandpey, Alain Beland, Joseph Mukendi Kabuya
Abstract:
Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%.Keywords: barton-Bandis criterion, Hoek-brown and Mohr-Coulomb criteria, open pit, slope stability
Procedia PDF Downloads 109922 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 163921 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)
Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi
Abstract:
Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding
Procedia PDF Downloads 105920 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, resovist, field strength, relaxivity, signal intensity
Procedia PDF Downloads 352919 Cfd Simulation for Urban Environment for Evaluation of a Wind Energy Potential of a Building or a New Urban Planning
Authors: David Serero, Loic Couton, Jean-Denis Parisse, Robert Leroy
Abstract:
This paper presents an analysis method of airflow at the periphery of several typologies of architectural volumes. To understand the complexity of the urban environment on the airflows in the city, we compared three sites at different architectural scale. The research sets a method to identify the optimal location for the installation of wind turbines on the edges of a building and to achieve an improvement in the performance of energy extracted by precise localization of an accelerating wing called “aero foil”. The objective is to define principles for the installation of wind turbines and natural ventilation design of buildings. Instead of theoretical winds analysis, we combined numerical aeraulic simulations using STAR CCM + software with wind data, over long periods of time (greater than 1 year). If airflows computer fluid analysis (CFD) simulation of buildings are current, we have calibrated a virtual wind tunnel with wind data using in situ anemometers (to establish localized cartography of urban winds). We can then develop a complete volumetric model of the behavior of the wind on a roof area, or an entire urban island. With this method, we can categorize: - the different types of wind in urban areas and identify the minimum and maximum wind spectrum, - select the type of harvesting devices - fixing to the roof of a building, - the altimetry of the device in relation to the levels of the roofs - The potential nuisances around. This study is carried out from the recovery of a geolocated data flow, and the connection of this information with the technical specifications of wind turbines, their energy performance and their speed of engagement. Thanks to this method, we can thus define the characteristics of wind turbines to maximize their performance in urban sites and in a turbulent airflow regime. We also study the installation of a wind accelerator associated with buildings. The “aerofoils which are integrated are improvement to control the speed of the air, to orientate it on the wind turbine, to accelerate it and to hide, thanks to its profile, the device on the roof of the building.Keywords: wind energy harvesting, wind turbine selection, urban wind potential analysis, CFD simulation for architectural design
Procedia PDF Downloads 151918 The Evolution of Deformation in the Southern-Central Tunisian Atlas: Parameters and Modelling
Authors: Mohamed Sadok Bensalem, Soulef Amamria, Khaled Lazzez, Mohamed Ghanmi
Abstract:
The southern-central Tunisian Atlas presents a typical example of external zone. It occupies a particular position in the North African chains: firstly, it is the eastern limit of atlassicstructures; secondly, it is the edges between the belts structures to the north and the stable Saharan platform in the south. The evolution of deformation studyis based on several methods such as classical or numerical methods. The principals parameters controlling the genesis of folds in the southern central Tunisian Atlas are; the reactivation of pre-existing faults during later compressive phase, the evolution of decollement level, and the relation between thin and thick-skinned. One of the more principal characters of the southern-central Tunisian Atlas is the variation of belts structures directions determined by: NE-SW direction named the attlassic direction in Tunisia, the NW-SE direction carried along the Gafsa fault (the oriental limit of southern atlassic accident), and the E-W direction defined in the southern Tunisian Atlas. This variation of direction is the result of an important variation of deformation during different tectonics phases. A classical modeling of the Jebel ElKebar anticline, based on faults throw of the pre-existing faults and its reactivation during compressive phases, shows the importance of extensional deformation, particular during Aptian-Albian period, comparing with that of later compression (Alpine phases). A numerical modeling, based on the software Rampe E.M. 1.5.0, applied on the anticline of Jebel Orbata confirms the interpretation of “fault related fold” with decollement level within the Triassic successions. The other important parameter of evolution of deformation is the vertical migration of decollement level; indeed, more than the decollement level is in the recent series, most that the deformation is accentuated. The evolution of deformation is marked the development of duplex structure in Jebel AtTaghli (eastern limit of Jebel Orbata). Consequently, the evolution of deformation is proportional to the depth of the decollement level, the most important deformation is in the higher successions; thus is associated to the thin-skinned deformation; the decollement level permit the passive transfer of deformation in the cover.Keywords: evolution of deformation, pre-existing faults, decollement level, thin-skinned
Procedia PDF Downloads 132917 Seismic Response of Structure Using a Three Degree of Freedom Shake Table
Authors: Ketan N. Bajad, Manisha V. Waghmare
Abstract:
Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed
Procedia PDF Downloads 142916 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability
Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa
Abstract:
COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.Keywords: self-learning module, academic performance, statistics and probability, normal distribution
Procedia PDF Downloads 115915 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building
Authors: A. Schuchter, M. Promegger
Abstract:
The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.Keywords: flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning
Procedia PDF Downloads 121914 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security
Authors: Dawd Ahmed, Venkatesh Uddameri
Abstract:
Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis
Procedia PDF Downloads 143913 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt
Authors: Abdallah M. Fayed
Abstract:
The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen
Procedia PDF Downloads 404912 One or More Building Information Modeling Managers in France: The Confusion of the Kind
Authors: S. Blanchard, D. Beladjine, K. Beddiar
Abstract:
Since 2015, the arrival of BIM in the building sector in France has turned the corporation world upside down. Not only constructive practices have been impacted, but also the uses and the men who have undergone important changes. Thus, the new collaborative mode generated by the BIM and the digital model has challenged the supremacy of some construction actors because the process involves working together taking into account the needs of other contributors. New BIM tools have emerged and actors in the act of building must take ownership of them. It is in this context that under the impetus of a European directive and the French government's encouragement of new missions and job profiles have. Moreover, concurrent engineering requires that each actor can advance at the same time as the others, at the whim of the information that reaches him, and the information he has to transmit. However, in the French legal system around public procurement, things are not planned in this direction. Also, a consequent evolution must take place to adapt to the methodology. The new missions generated by the BIM in France require a good mastery of the tools and the process. Also, to meet the objectives of the BIM approach, it is possible to define a typical job profile around the BIM, adapted to the various sectors concerned. The multitude of job offers using the same terms with very different objectives and the complexity of the proposed missions motivated by our approach. In order to reinforce exchanges with professionals or specialists, we carried out a statistical study to answer this problem. Five topics are discussed around the business area: the BIM in the company, the function (business), software used and BIM missions practiced (39 items). About 1400 professionals were interviewed. These people work in companies (micro businesses, SMEs, and Groups) of construction, engineering offices or, architectural agencies. 77% of respondents have the status of employees. All participants are graduated in their trade, the majority having level 1. Most people have less than a year of experience in BIM, but some have 10 years. The results of our survey help to understand why it is not possible to define a single type of BIM Manager. Indeed, the specificities of the companies are so numerous and complex and the missions so varied, that there is not a single model for a function. On the other hand, it was possible to define 3 main professions around the BIM (Manager, Coordinator and Modeler) and 3 main missions for the BIM Manager (deployment of the method, assistance to project management and management of a project).Keywords: BIM manager, BIM modeler, BIM coordinator, project management
Procedia PDF Downloads 164911 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 126910 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System
Authors: Hassan Qandil
Abstract:
Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar
Procedia PDF Downloads 155909 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada
Authors: Simran Kaur, Paul J. Van Geel
Abstract:
A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization
Procedia PDF Downloads 133908 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network
Procedia PDF Downloads 226907 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health
Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo
Abstract:
The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining
Procedia PDF Downloads 57906 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 137905 A Method To Assess Collaboration Using Perception of Risk from the Architectural Engineering Construction Industry
Authors: Sujesh F. Sujan, Steve W. Jones, Arto Kiviniemi
Abstract:
The use of Building Information Modelling (BIM) in the Architectural-Engineering-Construction (AEC) industry is a form of systemic innovation. Unlike incremental innovation, (such as the technological development of CAD from hand based drawings to 2D electronically printed drawings) any form of systemic innovation in Project-Based Inter-Organisational Networks requires complete collaboration and results in numerous benefits if adopted and utilised properly. Proper use of BIM involves people collaborating with the use of interoperable BIM compliant tools. The AEC industry globally has been known for its adversarial and fragmented nature where firms take advantage of one another to increase their own profitability. Due to the industry’s nature, getting people to collaborate by unifying their goals is critical to successful BIM adoption. However, this form of innovation is often being forced artificially in the old ways of working which do not suit collaboration. This may be one of the reasons for its low global use even though the technology was developed more than 20 years ago. Therefore, there is a need to develop a metric/method to support and allow industry players to gain confidence in their investment into BIM software and workflow methods. This paper departs from defining systemic risk as a risk that affects all the project participants at a given stage of a project and defines categories of systemic risks. The need to generalise is to allow method applicability to any industry where the category will be the same, but the example of the risk will depend on the industry the study is done in. The method proposed seeks to use individual perception of an example of systemic risk as a key parameter. The significance of this study lies in relating the variance of individual perception of systemic risk to how much the team is collaborating. The method bases its notions on the claim that a more unified range of individual perceptions would mean a higher probability that the team is collaborating better. Since contracts and procurement devise how a project team operates, the method could also break the methodological barrier of highly subjective findings that case studies inflict, which has limited the possibility of generalising between global industries. Since human nature applies in all industries, the authors’ intuition is that perception can be a valuable parameter to study collaboration which is essential especially in projects that utilise systemic innovation such as BIM.Keywords: building information modelling, perception of risk, systemic innovation, team collaboration
Procedia PDF Downloads 186904 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates
Authors: Takashi Mitsuishi
Abstract:
Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation
Procedia PDF Downloads 365903 Modelling for Roof Failure Analysis in an Underground Cave
Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández
Abstract:
Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring
Procedia PDF Downloads 116902 Assessment of Oral and Dental Health Status of Pregnant Women in Malaga, Spain
Authors: Nepton Kiani
Abstract:
Dental decay is one of the most common chronic diseases worldwide and imposes significant costs annually on people and healthcare systems. Addressing this issue is among the important programs of the World Health Organization in the field of oral and dental disease prevention and health promotion. In this context, oral and dental health in vulnerable groups, especially pregnant women, is of greater importance due to the health maintenance of the mother and fetus. The aim of this study is to investigate the DMFT index and various factors affecting it in order to identify different factors influencing the process of dental decay and to take an effective step in reducing the progression of this disease, control, and prevention. In this cross-sectional descriptive study, 120 pregnant women attending Nepton Policlinica clinic in Malaga, Spain, were evaluated for the DMFT index and oral and dental hygiene. In this regard, interviews, precise observations, and data collection were used. Subsequently, data analysis was performed using SPSS software and employing correlation tests, Kruskal-Wallis, and Mann-Whitney tests. The DMFT index for pregnant women in three age groups 22-26, 27- 31, and 32-36 years was respectively 2.8, 4.5, and 5.6. The results of logistic regression analysis showed that demographic variables (age, education, job, economic status) and the frequency of brushing and flossing lead to preventive behavior up to 49.58 percent (P<0.05). Generally, the results indicated that oral and dental care during pregnancy is poor. Only a small number of pregnant women regularly used toothbrush and dental floss or visited the dentist regularly. On the other hand, poor performance in adopting oral and dental care was more observed in pregnant women with lower economic and educational status. The present study showed that raising the level of awareness and education on oral and dental health in pregnant women is essential. In this field, it is necessary to focus on conducting educational-care courses at the level of healthcare centers for midwives, healthcare personnel, and at the community level for families, to prevent and perform dental treatments before the pregnancy periodKeywords: Malaga, oral and dental health, pregnant women, Spain
Procedia PDF Downloads 59901 Evolution of Deformation in the Southern Central Tunisian Atlas: Parameters and Modelling
Authors: Mohamed Sadok Bensalem, Soulef Amamria, Khaled Lazzez, Mohamed Ghanmi
Abstract:
The southern-central Tunisian Atlas presents a typical example of an external zone. It occupies a particular position in the North African chains: firstly, it is the eastern limit of atlassic structures; secondly, it is the edges between the belts structures to the north and the stable Saharan platform in the south. The evolution of deformation study is based on several methods, such as classical or numerical methods. The principals parameters controlling the genesis of folds in the southern central Tunisian Atlas are; the reactivation of pre-existing faults during the later compressive phase, the evolution of decollement level, and the relation between thin and thick-skinned. One of the more principal characters of the southern-central Tunisian Atlas is the variation of belts structures directions determined by: NE-SW direction, named the attlassic direction in Tunisia, the NW-SE direction carried along the Gafsa fault (the oriental limit of southern atlassic accident), and the E-W direction defined in the southern Tunisian Atlas. This variation of direction is the result of important variation of deformation during different tectonics phases. A classical modelling of the Jebel ElKebar anticline, based on faults throw of the pre-existing faults and its reactivation during compressive phases, shows the importance of extensional deformation, particular during Aptian-Albian period, comparing with that of later compression (Alpine phases). A numerical modelling, based on the software Rampe E.M. 1.5.0, applied on the anticline of Jebel Orbata confirms the interpretation of “fault related fold” with decollement level within the Triassic successions. The other important parameter of evolution of deformation is the vertical migration of decollement level; indeed, more than the decollement level is in the recent series, most that the deformation is accentuated. The evolution of deformation is marked the development of duplex structure in Jebel At Taghli (eastern limit of Jebel Orbata). Consequently, the evolution of deformation is proportional to the depth of the decollement level, the most important deformation is in the higher successions; thus, is associated to the thin-skinned deformation; the decollement level permit the passive transfer of deformation in the cover.Keywords: evolution of deformation, pre-existing faults, decollement level, thin-skinned
Procedia PDF Downloads 126900 Histological and Morphometric Studies of the Liver of Goats Aborted
Authors: Toumi Farah, Charallah Salima
Abstract:
In the Algerian Sahara, goat farming is predominant, and it’s associated with other types of breeding, particularly camel and sheep; it also constitutes a significant proportion of breeding exclusively goat. This Saharan goat is a small ruminant with a black dress with white’s spots, hanging ears, and a coat more or less long. It is known for its hardiness and resistance to adverse conditions of arid zones and its perfect ecophysiological adaptation to harsh environmental conditions. However, pregnancy alterations, particularly abortion, degrade its productivity and cause economic losses, having both direct and indirect effects on animal production, like the costs of veterinary interventions and the reconstitution of livestock. The purpose of this work is to study the histological aspect of the liver of goats’ aborted living under nomadic herds in the region of Béni-Abbès (30° 7' N, 2° 10 'O). The organs were collected in physiological serum, rinsed, and then fixed with formaldehyde (37°, diluted at 10%). After that, these samples were processed for a topographic study. The morphometric study of the liver was performed by using an image analysis and processing software "Image J"; the various measurements obtained are intended to specify the supposed stage of development according to the body weight. The histological structure of the liver shows that the hepatic parenchyma consists of vascular conjunctive spaces surrounded by Glisson’s capsule. The sinusoids and hepatic portal vein are full of red blood cells, representing sinusoidal congestion and a thrombosed vein. At high magnification, the blood vessels show the presence of vascular thrombosis and haemorrhage in some areas of the hepatic parenchyma. Morphometric analysis shows that the number of liver parenchymal cells and the diameter of liver vessels vary according to the stage of development. The results obtained will provide details of the anatomical and cellular elements that can be used in the diagnosis of early or late abortion and late embryonic death. It would be interesting to find, by immunohistochemistry, some inflammatory markers useful for monitoring the progress of pregnancy and bioindicators of fetomaternal distress.Keywords: aborting goat, arid zone, liver, histopathology
Procedia PDF Downloads 100899 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System
Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich
Abstract:
The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.Keywords: automated vehicle, driver behavior, human factors, human-machine system
Procedia PDF Downloads 147898 Improving the Growth Performance of Beetal Goat Kids Weaned at Various Stages with Various Levels of Dietary Protein in Starter Ration under High Input Feeding System
Authors: Ishaq Kashif, Muhammad Younas, Muhammad Riaz, Mubarak Ali
Abstract:
Poor feeding management during pre-weaning period is one of the factors resulting in compromised growth of Beetal kids fattened for meat purpose. The main reason for this anomaly may be less milk offered to kids and non-serious efforts for its management. This study was planned to find the most appropriate protein level suiting the age of the weaning while shifting animals to high input feeding system. Total of 42 Beetal male kids having 30 (±10), 60 (±10) and 90 (±10) days of age were selected with 16 in each age group. They were designated as G30, G60 and G90, respectively. The weights of animals were; 8±2 kg (G30), 12±2 kg (G60) and 16±2 kg (G90), respectively. All animals were weaned by introducing the total mix feed gradually and withdrawing the milk during the adjustment period of two weeks. The pelleted starter ration (total mix feed) with three various dietary protein levels designated as R1 (16% CP), R2 (20% CP) and R3 (26% CP) were introduced. The control group was reared on the fodder (Maize). The starter rations were iso-caloric and were offered for six-week duration. All animals were exposed to treatment using two-factor factorial (3×3) plus control treatment arrangement under completely randomized design. The data were collected on average daily feed intake (ADFI), average daily gain (ADG), gain to intake ratio, Klieber ratio (KR), body measurements and blood metabolites of kids. The data was analyzed using aov function of R-software. The statistical analysis showed that starter feed protein levels and age of weaning had significant interaction for ADG (P < 0.001), KR (P < 0.001), ADFI (P < 0.05) and blood urea nitrogen (P < 0.05) while serum creatinine and feed conversion had non-significant interaction. The trend analysis revealed that ADG had significant quadratic interaction (P < 0.05) within protein levels and age of weaning. It was found that animals weaned at 30 or 60 days, on R2 diet had better ADG (46.8 gm/day and 87.06 gm/day, respectively) weaned at 60 days of age. The animals weaned at 90 days had best ADG (127 gm/day) with R1. It is concluded that animal weaned at 30 or 40 days required 20% CP for better growth performance while animal at 90 days showed better performance with 16% CP.Keywords: average daily gain, starter protein levels, weaning age, gain to intake ratio
Procedia PDF Downloads 249