Search results for: social learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15631

Search results for: social learning

10201 Enabling Affirmative Futures: Making Use of Virtual Spaces and New Social Technologies in Co-Production Research with Marginalised Young People

Authors: Kirsty Liddiard

Abstract:

In this paper, we detail the politics and practicalities of co-produced disability research with disabled young people with life-limiting and life-threatening impairments in our ESRC funded project, Life, Death, Disability and the Human: Living Life to the Fullest. We centre our Co-Researcher Collective of disabled young people who, through virtual research methods and social technologies, are co-leading this innovative project exploring the lives, hopes, desires and ambitions of young disabled people living short(er) lives. Co-production is an established approach; however, our co-researchers have led us to develop inclusive and transformative research practices that engage with online social research methods in innovative ways. Through this discussion, we demarcate the Academy and ‘research process’ as potentially deeply ableist spaces that propogate the normative researcher as non-disabled; someone integrated into the Academy and insecure employment; and who enacts normative modes of leadership. We use our experiences of co-production in Living Life to the Fullest, then, to show that research – as a discipline, a set of politics, and scholarly practice – must be transformed in order to enable new inclusive research futures that support meaningful co-production with marginalised young people. In conclusion, as we detail our experiences, we aim to encourage disability studies researchers and others to adopt virtual environments and social technologies when researching with and for the lives of disabled people.

Keywords: co-production, illness, youth, technology

Procedia PDF Downloads 160
10200 Learning Chinese Suprasegmentals for a Better Communicative Performance

Authors: Qi Wang

Abstract:

Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.

Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)

Procedia PDF Downloads 439
10199 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project

Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra

Abstract:

Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.

Keywords: service industry, customer service, machine learning, decision making, information platform

Procedia PDF Downloads 625
10198 Psycho-Social Predictors of Health-Related Quality of Life among Persons Living with Benign Prostatic Hyperplasia in Ibadan, Nigeria

Authors: A. C. Obosi, H. O. Osinowo, L. I. Okeke

Abstract:

Benign prostatic hyperplasia (BPH) is one among other prostate diseases with an increasing public health concern. The prevalence and increased psychological distress of BPH among men negatively impact on their health-related quality of life (HRQoL). Although several biomedical factors have been implicated in poor HRQoL among people with BPH, there is a dearth of research on the psychosocial factors predicting HRQoL among them especially in developing climes. This study, therefore, examined the psychosocial (knowledge, perceived stigma, depression, anxiety, perceived social support and illness acceptance) predictors of health-related quality of life among persons living with BPH in Ibadan, Nigeria. Biopsychosocial model and Health-related Quality of life guided this study which utilized ex-post facto design. Eighty-seven males living with BPH were purposively selected and actively participated in the study. Participants’ mean age was 61.77 ± 15.80 years. A standardized questionnaire comprising Socio-demographics and measures of health-related quality of life (α = 0.47); knowledge (α = 0.72); psychological distress (α = 0.95); perceived social support (α = 0.96) and Illness acceptance (α = 0.89) scales was utilized in the study. Data were content analysed, while bivariate correlation, hierarchical multiple regression and t-test for independent samples were computed at p < 0.05. Results revealed that 42.5% of the respondents reported poor HRQoL. Furthermore, age, length of illness, perceived stigma, depression, anxiety, knowledge, perceived social support and illness acceptance jointly predicted HRQoL significantly (R2=0.33, F(9,75)=4.05) and accounted for 33% variance in the total observed variance on HRQoL, while Illness acceptance (β=0.43), anxiety (β=-0.54), and perceived social support (β=0.16) had significant independent contributions to the observed variance on HRQoL. Illness acceptance, knowledge, perceived social support and psychological distress such as anxiety, depression and perceived stigma are important predictors of HRQoL. Therefore, it was recommended that urgent psychological intervention targeted at improving the quality of life of these persons be undertaken.

Keywords: benign prostatic hyperplasia, Health-related quality of life, prostate disorders, psychosocial factors

Procedia PDF Downloads 223
10197 Automatic Detection Of Diabetic Retinopathy

Authors: Zaoui Ismahene, Bahri Sidi Mohamed, Abbassa Nadira

Abstract:

Diabetic Retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes. Early diagnosis is crucial for effective treatment, yet current diagnostic methods rely heavily on manual analysis of retinal images, which can be time-consuming and prone to subjectivity. This research proposes an automated system for the detection of DR using Jacobi wavelet-based feature extraction combined with Support Vector Machines (SVM) for classification. The integration of wavelet analysis with machine learning techniques aims to improve the accuracy, efficiency, and reliability of DR diagnosis. In this study, retinal images are preprocessed through normalization, resizing, and noise reduction to enhance the quality of the images. The Jacobi wavelet transform is then applied to extract both global and local features, effectively capturing subtle variations in retinal images that are indicative of DR. These extracted features are fed into an SVM classifier, known for its robustness in handling high-dimensional data and its ability to achieve high classification accuracy. The SVM classifier is optimized using parameter tuning to improve performance. The proposed methodology is evaluated using a comprehensive dataset of retinal images, encompassing a range of DR severity levels. The results show that the proposed system outperforms traditional wavelet-based methods, demonstrating significantly higher accuracy, sensitivity, and specificity in detecting DR. By leveraging the discriminative power of Jacobi wavelet features and the robustness of SVM, the system provides a promising solution for the automatic detection of DR, which could assist ophthalmologists in early diagnosis and intervention, ultimately improving patient outcomes. This research highlights the potential of combining wavelet-based image processing with machine learning for advancing automated medical diagnostics.

Keywords: iabetic retinopathy (DR), Jacobi wavelets, machine learning, feature extraction, classification

Procedia PDF Downloads 12
10196 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method

Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi

Abstract:

The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.

Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)

Procedia PDF Downloads 265
10195 Understanding Human Trafficking in Benin City: Implications for Social Work Intervention

Authors: Tracy B. E. Omorogiuwa

Abstract:

Human trafficking also known as modern-day slavery can be seen as an effort by some privileged and criminally minded persons to take advantage of vulnerable individuals for their economic gains. Some factors; poverty, unemployment, poor educational opportunities, ignorance and traditional attitudes are attributed as causes and psychological, sexual, moral and health problems as impacts of human trafficking. This study examines the phenomenon of human trafficking in Benin City, one of the cities in Nigeria, situated as a source of trafficked persons for exploitation in Europe and African countries. Even though the Nigerian government and Non-governmental organizations have made considerable efforts in the past to reduce the incidence of human trafficking, the result has been an adjustment in the personality of the trafficked persons rather than professional measures to combat the issue. Hence, the study adopts the focused group discussions as a method for data collection; to sort the opinions of community members towards the understanding of the phenomenon. In addition, this paper provides social work implications to address the issue of human trafficking in the Benin City, Nigeria.

Keywords: human trafficking, trafficking in persons, modern-day slavery, social work implication

Procedia PDF Downloads 189
10194 Iranian Students’ and Teachers’ Perceptions of Effective Foreign Language Teaching

Authors: Mehrnoush Tajnia, Simin Sadeghi-Saeb

Abstract:

Students and teachers have different perceptions of effectiveness of instruction. Comparing students’ and teachers’ beliefs and finding the mismatches between them can increase L2 students’ satisfaction. Few studies have taken into account the beliefs of both students and teachers on different aspects of pedagogy and the effect of learners’ level of education and contexts on effective foreign language teacher practices. Therefore, the present study was conducted to compare students’ and teachers’ perceptions on effective foreign language teaching. A sample of 303 learners and 54 instructors from different private language institutes and universities participated in the study. A questionnaire was developed to elicit participants’ beliefs on effective foreign language teaching and learning. The analysis of the results revealed that: a) there is significant difference between the students’ beliefs about effective teacher practices and teachers’ belief, b) Class level influences students’ perception of effective foreign language teacher, d) There is a significant difference of opinion between those learners who study foreign languages at university and those who study foreign language in private institutes with respect to effective teacher practices. The present paper concludes that finding the gap between students’ and teachers’ beliefs would help both of the groups to enhance their learning and teaching.

Keywords: effective teacher, effective teaching, students’ beliefs, teachers’ beliefs

Procedia PDF Downloads 321
10193 Predictors of School Drop out among High School Students

Authors: Osman Zorbaz, Selen Demirtas-Zorbaz, Ozlem Ulas

Abstract:

The factors that cause adolescents to drop out school were several. One of the frameworks about school dropout focuses on the contextual factors around the adolescents whereas the other one focuses on individual factors. It can be said that both factors are important equally. In this study, both adolescent’s individual factors (anti-social behaviors, academic success) and contextual factors (parent academic involvement, parent academic support, number of siblings, living with parent) were examined in the term of school dropout. The study sample consisted of 346 high school students in the public schools in Ankara who continued their education in 2015-2016 academic year. One hundred eighty-five the students (53.5%) were girls and 161 (46.5%) were boys. In addition to this 118 of them were in ninth grade, 122 of them in tenth grade and 106 of them were in eleventh grade. Multiple regression and one-way ANOVA statistical methods were used. First, it was examined if the data meet the assumptions and conditions that are required for regression analysis. After controlling the assumptions, regression analysis was conducted. Parent academic involvement, parent academic support, number of siblings, anti-social behaviors, academic success variables were taken into the regression model and it was seen that parent academic involvement (t=-3.023, p < .01), anti-social behaviors (t=7.038, p < .001), and academic success (t=-3.718, p < .001) predicted school dropout whereas parent academic support (t=-1.403, p > .05) and number of siblings (t=-1.908, p > .05) didn’t. The model explained 30% of the variance (R=.557, R2=.300, F5,345=30.626, p < .001). In addition to this the variance, results showed there was no significant difference on high school students school dropout levels according to living with parents or not (F2;345=1.183, p > .05). Results discussed in the light of the literature and suggestion were made. As a result, academic involvement, academic success and anti-social behaviors will be considered as an important factors for preventing school drop-out.

Keywords: adolescents, anti-social behavior, parent academic involvement, parent academic support, school dropout

Procedia PDF Downloads 290
10192 Diversity and Inclusion in Focus: Cultivating a Sense of Belonging in Higher Education

Authors: Naziema Jappie

Abstract:

South Africa is a diverse nation but with many challenges. The fundamental changes in the political, economic and educational domains in South Africa in the late 1990s affected the South African community profoundly. In higher education, experiences of discrimination and bias are detrimental to the sense of belonging of staff and students. It is therefore important to cultivate an appreciation of diversity and inclusion. To bridge common understandings with the reality of racial inequality, we must understand the ways in which senior and executive leadership at universities think about social justice issues relating to diversity and inclusion and contextualize these within the current post-democracy landscape. The position and status of social justice issues and initiatives in South African higher education is a slow process. The focus is to highlight how and to what extent initiatives or practices around campus diversity and inclusion have been considered and made part of the mainstream intellectual and academic conversations in South Africa. This involves an examination of the social and epistemological conditions of possibility for meaningful research and curriculum practices, staff and student recruitment, and student access and success in addressing the challenges posed by social diversity on campuses. Methodology: In this study, university senior and executive leadership were interviewed about their perceptions and advancement of social justice and examine the buffering effects of diverse and inclusive peer interactions and institutional commitment on the relationship between discrimination–bias and sense of belonging for staff and students at the institutions. The paper further explores diversity and inclusion initiatives at the three institutions using a Critical Race Theory approach in conjunction with a literature review on social justice with a special focus on diversity and inclusion. Findings: This paper draws on research findings that demonstrate the need to address social justice issues of diversity and inclusion in the SA higher education context. The reason for this is so that university leaders can live out their experiences and values as they work to transform students into being accountable and responsible. Documents were selected for review with the intent of illustrating how diversity and inclusion work being done across an institution can shape the experiences of previously disadvantaged persons at these institutions. The research has highlighted the need for institutional leaders to embody their own mission and vision as they frame social justice issues for the campus community. Finally, the paper provides recommendations to institutions for strengthening high-level diversity and inclusion programs/initiatives among staff, students and administrators. The conclusion stresses the importance of addressing the historical and current policies and practices that either facilitate or negate the goals of social justice, encouraging these privileged institutions to create internal committees or task forces that focus on racial and ethnic disparities in the institution.

Keywords: diversity, higher education, inclusion, social justice

Procedia PDF Downloads 124
10191 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 172
10190 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 77
10189 Anthropological Basis of Arguments in Plato’s Protagoras

Authors: Zahra Nouri Sangedehy

Abstract:

There are two anthropologies considered in Protagoras. The first of them (Protagoras) considers the appearance of man, like all other beings, as the result of a natural evolution without a predetermined plan and aim. Not only the human's corporeal existence is the result of evolution and natural choices, but also his moral and social life can be explained in the light of this factor. In this anthropology, the moral and political laws derive from the contract and the people's majority agreement of society to survive. Society and socio-political institutions are the reason for the education and training (paidia) of virtues in general. The second anthropology is Socrates's, which is not clearly projected and is hidden behind his arguments. In this way, man's moral and social life is intrinsic. Man is intrinsically a moral and social being. Socrates intends to criticize the theory of the contractual nature of ethics by demonstrating the unity of virtues on the one hand and the identity of virtue and knowledge, and the problem of the teaching of virtues based on intrinsic and a priori knowledge of human beings, on the other hand, albeit with a new kind of education and training, which will replace the Sophists' education. Therefore, ethics will have undoubted foundations, and human beings will be defined again.

Keywords: Protagoras, techne, arête, paidia

Procedia PDF Downloads 97
10188 Professional Working Conditions, Mental Health And Mobility In The Hungarian Social Sector Preliminary Findings From A Multi-method Study

Authors: Ágnes Győri, Éva Perpék, Zsófia Bauer, Zsuzsanna Elek

Abstract:

The aim of the research (funded by Hungarian national grant, NFKI- FK 138315) is to examine the professional mobility, mental health and work environment of social workers with a complex approach. Previous international and Hungarian research has pointed out that those working in the helping professions are strongly exposed to the risk of emotional-mental-physical exhaustion due to stress. Mental and physical strain, as well as lack of coping (can) cause health problems, but its role in career change and high labor turnover has also been proven. Even though satisfaction with working conditions of those employed in the human service sector in the context of the stress burden has been researched extensively, there is a lack of large-sample international and Hungarian domestic studies exploring the effects of profession-specific conditions. Nor has it been examined how the specific features of the social profession and mental health affect the career mobility of the professionals concerned. In our research, these factors and their correlations are analyzed by means of mixed methodology, utilizing the benefits of netnographic big data analysis and a sector-specific quantitative survey. The netnographic analysis of open web content generated inside and outside the social profession offers a holistic overview of the influencing factors related to mental health and the work environment of social workers. On the one hand, the topics and topoi emerging in the external discourse concerning the sector are examined, and on the other hand, focus on mentions and streams of comments regarding the profession, burnout, stress, coping, as well as labor turnover and career changes among social professionals. The analysis focuses on new trends and changes in discourse that have emerged during and after the pandemic. In addition to the online conversation analysis, a survey of social professionals with a specific focus has been conducted. The questionnaire is based on input from the first two research phases. The applied approach underlines that the mobility paths of social professionals can only be understood if, apart from the general working conditions, the specific features of social work and the effects of certain aspects of mental health (emotional-mental-physical strain, resilience) are taken into account as well. In this paper, the preliminary results from this innovative methodological mix are presented, with the aim of highlighting new opportunities and dimensions in the research on social work. A gap in existing research is aimed to be filled both on a methodological and empirical level, and the Hungarian domestic findings can create a feasible and relevant framework for a further international investigation and cross-cultural comparative analysis. Said results can contribute to the foundation of organizational and policy-level interventions, targeted programs whereby the risk of burnout and the rate of career abandonment can be reduced. Exploring different aspects of resilience and mapping personality strengths can be a starting point for stress-management, motivation-building, and personality-development training for social professionals.

Keywords: burnout, mixed methods, netnography, professional mobility, social work

Procedia PDF Downloads 146
10187 Inclusive Education in Jordanian Double-Shift Schools: Attitudes of Teacher and Students

Authors: David Ross Cameron

Abstract:

In an attempt to alleviate the educational planning problem, double-shift schools have been created throughout various regions in Jordan, namely communities closer to the Syrian border, where a large portion of the refugee population settled, allowing Jordanians to attend the morning-shift and Syrians to attend the afternoon-shift. Subsequently, overcrowded classrooms have added a significant amount of stress on school facilities and teacher capacities. Established national policies and the implementation of inclusive educational practices have been jeopardized. In particular, teachers’ and student’s attitudes of the importance of inclusive education provisions in the classroom have deteriorated. To have a more comprehensive understanding of the current situation and possible plan for intervention, a focus study was carried out at a double-shift Jordanian/Syrian girls’ public school in Irbid, Jordan. Interviews and surveys of 29 students with physical, learning, emotional and behavioral disabilities, 33 students without any special needs and nine teachers were included with a mixed-method social research approach to highlight the current attitudes that students and teachers held and factors that contributed to shaping their inclinations and beliefs of inclusive education.

Keywords: capacity building, development, double-shift, Irbid, inclusive education, Jordan, pedagogy, planning, policy, refugee, special education, special needs, vulnerable population

Procedia PDF Downloads 260
10186 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 181
10185 Using Deep Learning in Lyme Disease Diagnosis

Authors: Teja Koduru

Abstract:

Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.

Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash

Procedia PDF Downloads 246
10184 Trafficking of Women in International Migration: Issues and Major Challenges in Present Scenario

Authors: Neha Singh, Anshuman Rana

Abstract:

Gender-Based Violence (GBV) is a violation of human rights and a form of discrimination which reinforces inequalities between men and women. It is defined as violence that is directed against a person on the basis of gender. There has been increased attention to human trafficking that has exposed to illegal migration. Trafficking is complex, but it generally takes place due to “push and pull factors”. India is both a source as well as a transit country for trafficking. Women are bought and sold with impunity and trafficked to other countries. They are forced to work as sex worker, forced labour and other practices of slavery. Trafficked victims often suffer from serious abuse and physical exhaustion. The effects of violence on women vary widely. GBV typically has physical, psychological and social effects. They face unwanted pregnancies, miscarriages, high rate of infertility and sexually transmitted disease. The social exclusion of women is so great that it constitutes a new form of apartheid. Women are considered as lesser value and deprived of their fundamental rights. Violation of human rights and fundamental freedom such as- trafficking of women, girls for sex trade, forced prostitution and sex tourism have become the focus of internationally organized crimes. My paper will analyse the impact of violence on society as well. Law alone cannot change the scenario and problem of gender-biasness. The whole issue of gender violence needs social awakening and change in attitude of masses, so that due respect and equal status is given to women.

Keywords: gender-based violence, trafficking, migration, violence impact, social exclusion, law enforcement

Procedia PDF Downloads 286
10183 From Clients to Colleagues: Supporting the Professional Development of Survivor Social Work Students

Authors: Stephanie Jo Marchese

Abstract:

This oral presentation is a reflective piece regarding current social work teaching methods that value and devalue the lived experiences of survivor students. This presentation grounds the term ‘survivor’ in feminist frameworks. A survivor-defined approach to feminist advocacy assumes an individual’s agency, considers each case and needs independent of generalizations, and provides resources and support to empower victims. Feminist ideologies are ripe arenas to update and influence the rapport-building schools of social work have with these students. Survivor-based frameworks are rooted in nuanced understandings of intersectional realities, staunchly combat both conscious and unconscious deficit lenses wielded against victims, elevate lived experiences to the realm of experiential expertise, and offer alternatives to traditional power structures and knowledge exchanges. Actively importing a survivor framework into the methodology of social work teaching breaks open barriers many survivor students have faced in institutional settings, this author included. The profession of social work is at an important crux of change, both in the United States and globally. The United States is currently undergoing a radical change in its citizenry and outlier communities have taken to the streets again in opposition to their othered-ness. New waves of students are entering this field, emboldened by their survival of personal and systemic oppressions- heavily influenced by third-wave feminism, critical race theory, queer theory, among other post-structuralist ideologies. Traditional models of sociological and psychological studies are actively being challenged. The profession of social work was not founded on the diagnosis of disorders but rather a grassroots-level activism that heralded and demanded resources for oppressed communities. Institutional and classroom acceptance and celebration of survivor narratives can catapult the resurgence of these values needed in the profession’s service-delivery models and put social workers back in the driver's seat of social change (a combined advocacy and policy perspective), moving away from outsider-based intervention models. Survivor students should be viewed as agents of change, not solely former victims and clients. The ideas of this presentation proposal are supported through various qualitative interviews, as well as reviews of ‘best practices’ in the field of education that incorporate feminist methods of inclusion and empowerment. Curriculum and policy recommendations are also offered.

Keywords: deficit lens bias, empowerment theory, feminist praxis, inclusive teaching models, strengths-based approaches, social work teaching methods

Procedia PDF Downloads 292
10182 Representation of Islamophobia on Social Media: Facebook Comments Analysis

Authors: Nadia Syed

Abstract:

The digital age has inevitably changed the way in which hate crime is committed. The cyber world has become a highly effective means for individuals and groups to be targeted, harmed, and marginalized , largely through online medium. Facebook has become one of the fastest growing social media platforms. At the end of 2013, Facebook had 1,23bn monthly active users and 757 million daily users who log onto Facebook. Within this online space, there are also an increasing number of online virtual communities, and hate groups who are using this freedom to share a violent, Islamophobic and racist description which attempts to create a aggressive virtual environment. This paper is a research on the rise of Islamophobia and the role of media in spreading it. This paper focusing on how the media especially Facebook is portraying Islam as the religion which promotes violence and ultimately playing a significant role in the global rise of Islamophobia against Muslims. It is important to analyse these ‘new’ communities by monitoring the activities they conduct, because the material they post, potentially can have a harmful impact on community cohesion within society. Additionally, as a result of recent figures that shows an increase in online anti-Muslim abuse, there is a pertinent need to address the issue about Islamophobia on social media. On the whole, this study found Muslims being demonized and vilified online which had manifested through negative attitudes, discrimination, stereotypes, physical threats and online harassment which all had the potential to incite violence or prejudicial action because it disparages and intimidates a protected individual or group.

Keywords: Islamophobia, online, social media, facebook, internet, extremism

Procedia PDF Downloads 98
10181 Housing Security System and Household Entrepreneurship: Evidence from China

Authors: Wangshi Yong, Wei Shi, Jing Zou, Qiang Li, Yilin Tian

Abstract:

With the advancement of the reform of China’s housing security system, the impact is becoming increasingly profound. This paper explores the relationship between the housing security system and household entrepreneurship on the 2017 China Household Finance Survey (CHFS) and conducts a large number of robustness checks, including PSM and IV estimation. The results show that the assistance of the housing security system will significantly promote family entrepreneurship, increasing the probability of entrepreneurship by 2%. Its internal mechanism is mainly achieved by relaxing liquidity constraints and increasing household social capital. However, the risk preference effect has not existed. Heterogeneity analysis shows that the positive impact of the housing security system on family entrepreneurship is mainly reflected in areas with high housing prices and incomes, as well as households with long-term security and social or commercial insurance. Meanwhile, it also verifies that the positive externalities of the housing security system will also positively affect active entrepreneurial motivation, entrepreneurial intensity, and entrepreneurial innovation.

Keywords: the housing security system, household entrepreneurship, social capital, liquidity constraints, risk preference

Procedia PDF Downloads 88
10180 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company

Authors: Shanshan Zhou, Massimo Battaglia

Abstract:

Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.

Keywords: community identity, disaster, identity, organizational learning

Procedia PDF Downloads 737
10179 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 86
10178 The Impact on the Composition of Survey Refusals΄ Demographic Profile When Implementing Different Classifications

Authors: Eva Tsouparopoulou, Maria Symeonaki

Abstract:

The internationally documented declining survey response rates of the last two decades are mainly attributed to refusals. In fieldwork, a refusal may be obtained not only from the respondent himself/herself, but from other sources on the respondent’s behalf, such as other household members, apartment building residents or administrator(s), and neighborhood residents. In this paper, we investigate how the composition of the demographic profile of survey refusals changes when different classifications are implemented and the classification issues arising from that. The analysis is based on the 2002-2018 European Social Survey (ESS) datasets for Belgium, Germany, and United Kingdom. For these three countries, the size of selected sample units coded as a type of refusal for all nine under investigation rounds was large enough to meet the purposes of the analysis. The results indicate the existence of four different possible classifications that can be implemented and the significance of choosing the one that strengthens the contrasts of the different types of respondents' demographic profiles. Since the foundation of social quantitative research lies in the triptych of definition, classification, and measurement, this study aims to identify the multiplicity of the definition of survey refusals as a methodological tool for the continually growing research on non-response.

Keywords: non-response, refusals, European social survey, classification

Procedia PDF Downloads 90
10177 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 180
10176 Vulnerability of the Rural Self-Constructed Housing with Social Programs and His Economic Impact in the South-East of Mexico

Authors: Castillo-Acevedo J, Mena-Rivero R, Silva-Poot H

Abstract:

In Mexico, as largely of the developing countries, the rural housing is a study object, since the diversity of constructive idiosyncrasies for locality, involves various factors that make it vulnerable; an important aspect of study is the progressive deterioration that is seen in the rural housing. Various social programs, contribute financial resources in the field of housing to provide support for families living in rural areas, however, they do not provide a coordination with the self-construction that is usually the way in which is built in these areas. The present study, exposes the physical situation and an economic assessment that presents the rural self-constructed housing in three rural communities in the south of the state of Quintana Roo, Mexico, which were built with funding from federal social programs. The information compilation was carried out in a period of seven months in which there was used the intentional sampling of typical cases, where the object study was the housing constructed with supports of the program “Rural Housing” between the year 2009 and 2014. Instruments were used as the interview, ballot papers of observation, ballot papers of technical verification and various measuring equipment laboratory for the classification of pathologies; for the determination of some pathologies constructive Mexican standards were applied how NMX-C-192-ONNCCE, NMX-C-111-ONNCCE, NMX-C-404-ONNCCE and finally used the software of Opus CMS ® with the help of tables of the National Consumer Price Index (CPI) for update of costs and wages according to the line of being applied in Mexico, were used for an economic valuation. The results show 11 different constructive pathologies and exposes greater presence with the 22.50% to the segregation of the concrete; the economic assessment shows that 80% of self-constructed housing, exceed the cost of construction it would have compared to a similar dwelling built by a construction company; It is also exposed to the 46.10% of the universe of study represent economic losses in materials to the social activities by houses not built. The system of self-construction used by the social programs, affect to some extent the program objectives applied in underserved areas, as implicit and additional costs affect the economic capacity of beneficiaries who invest time and effort in an activity that are not specialists, which this research provides foundations for sustainable alternatives or possibly eliminate the practice of self-construction of implemented social programs in marginalized rural communities in the south of state of Quintana Roo, Mexico.

Keywords: economic valuation, pathologies constructive, rural housing, social programs

Procedia PDF Downloads 533
10175 Image Making: The Spectacle of Photography and Text in Obituary Programs as Contemporary Practice of Social Visibility in Southern Nigeria

Authors: Soiduate Ogoye-Atanga

Abstract:

During funeral ceremonies, it has become common for attendees to jostle for burial programs in some southern Nigerian towns. Beginning from ordinary typewritten text only sheets of paper in the 1980s to their current digitally formatted multicolor magazine style, burial programs continue to be collected and kept in homes where they remain as archival documents of family photo histories and as a veritable form of leveraging family status and visibility in a social economy through the inclusion of lots of choreographically arranged photographs and text. The biographical texts speak of idealized and often lofty and aestheticized accomplishments of deceased peoples, which are often corroborated by an accompanying section of tributes from first the immediate family members, and then from affiliations as well as organizations deceased people belonged, in the form of scanned letterheaded corporate tributes. Others speak of modest biographical texts when the deceased accomplished little. Usually, in majority of the cases, the display of photographs and text in these programs follow a trajectory of historical compartmentalization of the deceased, beginning from parentage to the period of youth, occupation, retirement, and old age as the case may be, which usually drives from black and white historical photographs to the color photography of today. This compartmentalization follows varied models but is designed to show the deceased in varying activities during his lifetime. The production of these programs ranges from the extremely expensive and luscious full colors of near fifty-eighty pages to bland and very simplified low-quality few-page editions in a single color and no photographs, except on the cover. Cost and quality, therefore, become determinants of varying family status and social visibility. By a critical selection of photographs and text, family members construct an idealized image of deceased people and themselves, concentrating on mutuality based on appropriate sartorial selections, socioeconomic grade, and social temperaments that are framed to corroborate the public’s perception of them. Burial magazines, therefore, serve purposes beyond their primary use; they symbolize an orchestrated social site for image-making and the validation of the social status of families, shaped by prior family histories.

Keywords: biographical texts, burial programs, compartmentalization, magazine, multicolor, photo-histories, social status

Procedia PDF Downloads 194
10174 Israeli Households Caring for Children and Adults with Intellectual and Developmental Disabilities: An Explorative Study

Authors: Ayelet Gur

Abstract:

Background: In recent years we are witnessing a welcome trend in which more children/persons with disabilities are living at home with their families and within their communities. This trend is related to various policy innovations as the UN Convention on the Rights of People with Disabilities that reflect a shift from the medical-institutional model to a human rights approach. We also witness the emergence of family centered approaches that perceive the family and not just the individual with the disability as a worthy target of policy planning, implementation and evaluation efforts. The current investigation aims to explore economic, psychological and social factors among households of families of children or adults with intellectual disabilities in Israel and to present policy recommendation. Methods: A national sample of 301 households was recruited through the education and employment settings of persons with intellectual disability. The main caregiver of the person with the disability (a parent) was interviewed. Measurements included the income and expense surveys; assets and debts questionnaire; the questionnaire on resources and stress; the social involvement questionnaire and Personal Wellbeing Index. Results: Findings indicate significant gaps in financial circumstances between households of families of children with intellectual disabilities and households of the general Israeli society. Households of families of children with intellectual disabilities report lower income and higher expenditures and loans than the general society. They experience difficulties in saving and coping with unexpected expenses. Caregivers (the parents) experience high stress, low social participation, low financial support from family, friend and non-governmental organizations and decreased well-being. They are highly dependent on social security allowances which constituted 40% of the household's income. Conclusions: Households' dependency on social security allowances may seem contradictory to the encouragement of persons with intellectual disabilities to favor independent living in light of the human rights approach to disability. New policy should aim at reducing caregivers' stress and enhance their social participation and support, with special emphasis on families of lower socio-economic status. Finally, there is a need to continue monitoring the economic and psycho-social needs of households of families of children with intellectual disabilities and other developmental disabilities.

Keywords: disability policy, family policy, intellectual and developmental disabilities, Israel, households study, parents of children with disabilities

Procedia PDF Downloads 162
10173 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques

Authors: Bhrugesh Radadiya, Jaydeep Shah

Abstract:

In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.

Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm

Procedia PDF Downloads 732
10172 Posttraumatic Stress Disorder and Associated Factors among Patients with Prostate Cancer

Authors: Meral Huri, Sedef Şahin

Abstract:

Post-traumatic stress disorder (PTSD) is characterized by psychiatric symptoms and triggered by a terrifying experience which may immediately effect cognitive, affective, behavioral and social skills of the individual. One of the most common noncutaneous cancer among men is prostate cancer. The incidence of psychological stress is quite common in men with prostate cancer. The aim of the study was to explore the PTSD frequency among prostate cancer and define the relationship between occupational participation, coping skills and level of perceived social support among patients with prostate cancer. Forty patients diagnosed with prostate cancer were included in the study. After dividing the patients into two groups ( study/ control) according to type of tumor, we recorded their characteristics and evaluations differences. We evaluated the demographic information form, Structured Clinical Interview for DSM-IV (SCID- I)- Clinical Version for PTSD, Multidimensional Scale of Perceived Social Support, Styles of Coping Inventory and Canadian Occupational Performance Measure (COPM) before and after 1 month from surgery. The mean age of the study group (n:18) was 65.85.6 years (range: 61-79 years). The mean age of the control group (n: 22) was a little bit higher than the study group with mean age 71.3±6.9 years (range: 60-85 years). There was no statistically significant difference between the groups for age and the other characteristics. According to the results of the study, statistically significant difference was found between the level of PTSD of study and the control group. 22% of study group showed PTSD while 13% of the control group showed PTSD (r: 0.02, p<0.001). The scores of study group and control group showed statistically significant difference in five sub-categories of Styles of Coping Inventory. Patients with prostate cancer showed decreased scores in optimistic, seeking social supports and self-confident approach, while increased scores in helpless and submissive sub-categories than the control group (p<0.001). The scores of Multidimensional Scale of Perceived Social Supports of study group and control group showed statistically significant difference. The total perceived social supports score of the study group was 71.34 ± 0.75 while it was 75.34 ± 0.64 for the control group. Total and the sub-category scores of study group were statistically significant lower than the control group. According to COPM, mean scores of occupational participation of study group for occupational performance were 4.32±2.24 and 7.01±1.52 for the control group, respectively). Mean Satisfaction scores were 3,22±2.31 and 7.45±1.74 for the study and control group, respectively. The patients with prostate cancer and benign prostate hyperplasia (BPH) did not show any statistically difference in activity performance (r:0.87) while patients with prostate cancer showed statistically lower scores than the patients with BPH in activity satisfaction (r:0.02, p<0.001).Psycho-social occupational therapy interventions might help to decrease the prevalence of PTSD by increasing associated factors such as the social support perception, using coping skills and activity participation of patients with prostate cancer.

Keywords: activity performance, occupational therapy, posttraumatic stress disorder, prostate cancer

Procedia PDF Downloads 148