Search results for: gouy phase shift
260 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications
Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy
Abstract:
Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr
Procedia PDF Downloads 513259 Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test
Authors: Alinka Molnár-Tóth, Tímea Tánczos, Regina Barna, Katalin Jakab, Péter Klivényi
Abstract:
Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase.Keywords: communication disorders, diagnostic toolkit, neurorehabilitation, semantic knowlegde
Procedia PDF Downloads 103258 Rotterdam in Transition: A Design Case for a Low-Carbon Transport Node in Lombardijen
Authors: Halina Veloso e Zarate, Manuela Triggianese
Abstract:
The urban challenges posed by rapid population growth, climate adaptation, and sustainable living have compelled Dutch cities to reimagine their built environment and transportation systems. As a pivotal contributor to CO₂ emissions, the transportation sector in the Netherlands demands innovative solutions for transitioning to low-carbon mobility. This study investigates the potential of transit oriented development (TOD) as a strategy for achieving carbon reduction and sustainable urban transformation. Focusing on the Lombardijen station area in Rotterdam, which is targeted for significant densification, this paper presents a design-oriented exploration of a low-carbon transport node. By employing a research-by-design methodology, this study delves into multifaceted factors and scales, aiming to propose future scenarios for Lombardijen. Drawing from a synthesis of existing literature, applied research, and practical insights, a robust design framework emerges. To inform this framework, governmental data concerning the built environment and material embodied carbon are harnessed. However, the restricted access to crucial datasets, such as property ownership information from the cadastre and embodied carbon data from De Nationale Milieudatabase, underscores the need for improved data accessibility, especially during the concept design phase. The findings of this research contribute fundamental insights not only to the Lombardijen case but also to TOD studies across Rotterdam's 13 nodes and similar global contexts. Spatial data related to property ownership facilitated the identification of potential densification sites, underscoring its importance for informed urban design decisions. Additionally, the paper highlights the disparity between the essential role of embodied carbon data in environmental assessments for building permits and its limited accessibility due to proprietary barriers. Although this study lays the groundwork for sustainable urbanization through TOD-based design, it acknowledges an area of future research worthy of exploration: the socio-economic dimension. Given the complex socio-economic challenges inherent in the Lombardijen area, extending beyond spatial constraints, a comprehensive approach demands integration of mobility infrastructure expansion, land-use diversification, programmatic enhancements, and climate adaptation. While the paper adopts a TOD lens, it refrains from an in-depth examination of issues concerning equity and inclusivity, opening doors for subsequent research to address these aspects crucial for holistic urban development.Keywords: Rotterdam zuid, transport oriented development, carbon emissions, low-carbon design, cross-scale design, data-supported design
Procedia PDF Downloads 84257 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes
Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov
Abstract:
Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of 5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics
Procedia PDF Downloads 282256 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks
Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska
Abstract:
Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell
Procedia PDF Downloads 162255 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme
Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara
Abstract:
In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field
Procedia PDF Downloads 261254 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications
Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris
Abstract:
With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric
Procedia PDF Downloads 85253 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating
Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon
Abstract:
Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering
Procedia PDF Downloads 253252 'Utsadhara': Rejuvenating the Dead River Edge into an Urban Activity Space along the Banks of River Hooghly
Authors: Aparna Saha, Tuhin Ahmed
Abstract:
West Bengal has a number of important rivers, each with its distinctive character and a story. Traditionally, cities have ‘divulged’ to rivers at the river edges and rivers have been an inseparable part of the urban experience. Considering the research aspect, the area is taken in Barrackpore, a small but important outgrowth of Kolkata Municipal Association, West Bengal. Barrackpore, at present, has ample inadequate public open spaces at the neighborhood level where people of different socio-cultural, economic, and religious backgrounds can come together and engage in various leisure activities, but there is no opportunity either, where people can learn about and explore the rich history of the settlement. Pertaining to these issues forms the backdrop of this research paper which has been conceptualized as a place from space that will bring people back to the river and increase community interactions and will also celebrate and commemorate towards the historical importance of the river and its edges. The entire precinct bordering the river represents the transition from pre-independence (Raj era) to Sepoy phase (Swaraj era), finally culminating into the Gandhian philosophy which is being projected into the already existing Gandhi Ghat. The ultimate aim of the paper entitled ‘Utsadhara- Rejuvenating the dead river edge into an urban activity space along the banks of river Hooghly’ is to create a socio-cultural space keeping the heritage identity intact through judicious use of the water body. Also, a balance is kept between the natural ecosystem and the cosmetic development of the surrounding open spaces. It can be duly achieved by the aforementioned methodology provided in the document, but mainly it would focus into preserving the historic ethnicity of the place by holding its character through various facts and figures as well as features. Most importantly the natural topography of the place is left intact. The second priority is given in terms of hierarchy of well connected public plazas, podiums where people from different socio-economic backgrounds irrespective of age and sex could socialize and reach towards venturing into a cordial relationship with one another. The third priority is to provide a platform for the common mass for showcasing their skills and talent through different art and craft forms which in turn would enhance their individual self and also the community as a whole through economic rise. Apart from this here some spaces are created in accordance to different age groups or class of people. The paper intends to see the river as a major multifunctional public space to attract people for different activities and re-establish the relationship of the river with the settlement. Hence, it is apprehended that the paper is not only intended to a simple riverfront conservation project but unlike others it is a place which is created for the people, by the people and of the people towards a holistic community development through a sustainable approach.Keywords: holistic community development, public activity space, river-urban precinct, urban dead space
Procedia PDF Downloads 135251 Evaluation of Mixing and Oxygen Transfer Performances for a Stirred Bioreactor Containing P. chrysogenum Broths
Authors: A. C. Blaga, A. Cârlescu, M. Turnea, A. I. Galaction, D. Caşcaval
Abstract:
The performance of an aerobic stirred bioreactor for fungal fermentation was analyzed on the basis of mixing time and oxygen mass transfer coefficient, by quantifying the influence of some specific geometrical and operational parameters of the bioreactor, as well as the rheological behavior of Penicillium chrysogenum broth (free mycelia and mycelia aggregates). The rheological properties of the fungus broth, controlled by the biomass concentration, its growth rate, and morphology strongly affect the performance of the bioreactor. Experimental data showed that for both morphological structures the accumulation of fungus biomass induces a significant increase of broths viscosity and modifies the rheological behavior. For lower P. chrysogenum concentrations (both morphological conformations), the mixing time initially increases with aeration rate, reaches a maximum value and decreases. This variation can be explained by the formation of small bubbles, due to the presence of solid phase which hinders the bubbles coalescence, the rising velocity of bubbles being reduced by the high apparent viscosity of fungus broths. By biomass accumulation, the variation of mixing time with aeration rate is gradually changed, the continuous reduction of mixing time with air input flow increase being obtained for 33.5 g/l d.w. P. chrysogenum. Owing to the superior apparent viscosity, which reduces considerably the relative contribution of mechanical agitation to the broths mixing, these phenomena are more pronounced for P. chrysogenum free mycelia. Due to the increase of broth apparent viscosity, the biomass accumulation induces two significant effects on oxygen transfer rate: the diminution of turbulence and perturbation of bubbles dispersion - coalescence equilibrium. The increase of P. chrysogenum free mycelia concentration leads to the decrease of kla values. Thus, for the considered variation domain of the main parameters taken into account, namely air superficial velocity from 8.36 10-4 to 5.02 10-3 m/s and specific power input from 100 to 500 W/m3, kla was reduced for 3.7 times for biomass concentration increase from 4 to 36.5 g/l d.w. The broth containing P. crysogenum mycelia aggregates exhibits a particular behavior from the point of view of oxygen transfer. Regardless of bioreactor operating conditions, the increase of biomass concentration leads initially to the increase of oxygen mass transfer rate, the phenomenon that can be explained by the interaction of pellets with bubbles. The results are in relation with the increase of apparent viscosity of broths corresponding to the variation of biomass concentration between the mentioned limits. Thus, the apparent viscosity of the suspension of fungus mycelia aggregates increased for 44.2 times and fungus free mycelia for 63.9 times for CX increase from 4 to 36.5 g/l d.w. By means of the experimental data, some mathematical correlations describing the influences of the considered factors on mixing time and kla have been proposed. The proposed correlations can be used in bioreactor performance evaluation, optimization, and scaling-up.Keywords: biomass concentration, mixing time, oxygen mass transfer, P. chrysogenum broth, stirred bioreactor
Procedia PDF Downloads 340250 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete
Authors: Devendra Kumar Pandey, Debabrata Chakraborty
Abstract:
The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete
Procedia PDF Downloads 305249 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training
Procedia PDF Downloads 107248 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial
Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra
Abstract:
Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke
Procedia PDF Downloads 281247 Innovation and Entrepreneurship in the South of China
Authors: Federica Marangio
Abstract:
This study looks at the triangle of knowledge: research-education-innovation as growth engine of an inclusive and sustainable society, where the research is the strategic process which allows the acquisition of knowledge, innovation appraises the knowledge acquired and the education is the enabling factor of the human capital to create entrepreneurial capital. Where does Italy and China stand in the global geography of innovation? Europe is calling on a smart, inclusive and sustainable growth through a specializing process that looks at the social and economic challenges, able to understand the characteristics of specific geographic areas. It is easily questionable why it is not as simple as it looks to come up with entrepreneurial ideas in all the geographic areas. Seen that the technology plus the human capital should be the means through which is possible to innovate and contribute to the boost of innovation culture, then the young educated people can be seen as the society changing agents and it becomes clear the importance of investigating the skills and competencies that lead to innovation. By starting innovation-based activities, other countries on an international level, are able now to be part of an healthy innovative ecosystem which is the result of a strong growth policy which enables innovation. Analyzing the geography of the innovation on a global scale, comes to light that the innovative entrepreneurship is the process which portrays the competitiveness of the regions in the knowledge-based economy as strategic process able to match intellectual capital and market opportunities. The level of innovative entrepreneurship is not only the result of the endogenous growth ability of the enterprises, but also by significant relations with other enterprises, universities, other centers of education and institutions. To obtain more innovative entrepreneurship is necessary to stimulate more synergy between all these territory actors in order to create, access and value existing and new knowledge ready to be disseminate. This study focuses on individual’s lived experience and the researcher believed that she can’t understand the human actions without understanding the meaning that they attribute to their thoughts, feelings, beliefs and so given she needed to understand the deeper perspectives captured through face-to face interaction. A case study approach will contribute to the betterment of knowledge in this field. This case study will represent a picture of the innovative ecosystem and the entrepreneurial mindset as a key ingredient of endogenous growth and a must for sustainable local and regional development and social cohesion. The case study will be realized analyzing two Chinese companies. A structured set of questions will be asked in order to gain details on what generated success or failure in the different situations with the past and at the moment of the research. Everything will be recorded not to lose important information during the transcription phase. While this work is not geared toward testing a priori hypotheses, it is nevertheless useful to examine whether the projects undertaken by the companies, were stimulated by enabling factors that, as result, enhanced or hampered the local innovation culture.Keywords: Entrepreneurship, education, geography of innovation, education.
Procedia PDF Downloads 418246 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal
Authors: Saikat Majumdar, D. C. Kalita
Abstract:
The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.Keywords: agricultural infrastructure, adoption of technology, farm income, road network
Procedia PDF Downloads 101245 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 129244 Unlocking New Room of Production in Brown Field; Integration of Geological Data Conditioned 3D Reservoir Modelling of Lower Senonian Matulla Formation, RAS Budran Field, East Central Gulf of Suez, Egypt
Authors: Nader Mohamed
Abstract:
The Late Cretaceous deposits are well developed through-out Egypt. This is due to a transgression phase associated with the subsidence caused by the neo-Tethyan rift event that took place across the northern margin of Africa, resulting in a period of dominantly marine deposits in the Gulf of Suez. The Late Cretaceous Nezzazat Group represents the Cenomanian, Turonian and clastic sediments of the Lower Senonian. The Nezzazat Group has been divided into four formations namely, from base to top, the Raha Formation, the Abu Qada Formation, the Wata Formation and the Matulla Formation. The Cenomanian Raha and the Lower Senonian Matulla formations are the most important clastic sequence in the Nezzazat Group because they provide the highest net reservoir thickness and the highest net/gross ratio. This study emphasis on Matulla formation located in the eastern part of the Gulf of Suez. The three stratigraphic surface sections (Wadi Sudr, Wadi Matulla and Gabal Nezzazat) which represent the exposed Coniacian-Santonian sediments in Sinai are used for correlating Matulla sediments of Ras Budran field. Cutting description, petrographic examination, log behaviors, biostratigraphy with outcrops are used to identify the reservoir characteristics, lithology, facies environment logs and subdivide the Matulla formation into three units. The lower unit is believed to be the main reservoir where it consists mainly of sands with shale and sandy carbonates, while the other units are mainly carbonate with some streaks of shale and sand. Reservoir modeling is an effective technique that assists in reservoir management as decisions concerning development and depletion of hydrocarbon reserves, So It was essential to model the Matulla reservoir as accurately as possible in order to better evaluate, calculate the reserves and to determine the most effective way of recovering as much of the petroleum economically as possible. All available data on Matulla formation are used to build the reservoir structure model, lithofacies, porosity, permeability and water saturation models which are the main parameters that describe the reservoirs and provide information on effective evaluation of the need to develop the oil potentiality of the reservoir. This study has shown the effectiveness of; 1) the integration of geological data to evaluate and subdivide Matulla formation into three units. 2) Lithology and facies environment interpretation which helped in defining the nature of deposition of Matulla formation. 3) The 3D reservoir modeling technology as a tool for adequate understanding of the spatial distribution of property and in addition evaluating the unlocked new reservoir areas of Matulla formation which have to be drilled to investigate and exploit the un-drained oil. 4) This study led to adding a new room of production and additional reserves to Ras Budran field. Keywords: geology, oil and gas, geoscience, sequence stratigraphy
Procedia PDF Downloads 106243 Photocatalytic Properties of Pt/Er-KTaO3
Authors: Anna Krukowska, Tomasz Klimczuk, Adriana Zaleska-Medynska
Abstract:
Photoactive materials have attracted attention due to their potential application in the degradation of environmental pollutants to non-hazardous compounds in an eco-friendly route. Among semiconductor photocatalysts, tantalates such as potassium tantalate (KTaO3) is one of the excellent functional photomaterial. However, tantalates-based materials are less active under visible-light irradiation, the enhancement in photoactivity could be improved with the modification of opto-eletronic properties of KTaO3 by doping rare earth metal (Er) and further photodeposition of noble metal nanoparticles (Pt). Inclusion of rare earth element in orthorhombic structure of tantalate can generate one high-energy photon by absorbing two or more incident low-energy photons, which convert visible-light and infrared-light into the ultraviolet-light to satisfy the requirement of KTaO3 photocatalysts. On the other hand, depositions of noble metal nanoparticles on the surface of semiconductor strongly absorb visible-light due to their surface plasmon resonance, in which their conducting electrons undergo a collective oscillation induced by electric field of visible-light. Furthermore, the high dispersion of Pt nanoparticles, which will be obtained by photodeposition process is additional important factor to improve the photocatalytic activity. The present work is aimed to study the effect of photocatalytic process of the prepared Er-doped KTaO3 and further incorporation of Pt nanoparticles by photodeposition. Moreover, the research is also studied correlations between photocatalytic activity and physico-chemical properties of obtained Pt/Er-KTaO3 samples. The Er-doped KTaO3 microcomposites were synthesized by a hydrothermal method. Then photodeposition method was used for Pt loading over Er-KTaO3. The structural and optical properties of Pt/Er-KTaO3 photocatalytic were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), volumetric adsorption method (BET), UV-Vis absorption measurement, Raman spectroscopy and luminescence spectroscopy. The photocatalytic properties of Pt/Er-KTaO3 microcomposites were investigated by degradation of phenol in aqueous phase as model pollutant under visible and ultraviolet-light irradiation. Results of this work show that all the prepared photocatalysis exhibit low BET surface area, although doping of the bare KTaO3 with rare earth element (Er) presents a slight increase in this value. The crystalline structure of Pt/Er-KTaO3 powders exhibited nearly identical positions for the main peak at about 22,8o and the XRD pattern could be assigned to an orthorhombic distorted perovskite structure. The Raman spectra of obtained semiconductors confirmed demonstrating perovskite-like structure. The optical absorption spectra of Pt nanoparticles exhibited plasmon absorption band for main peaks at about 216 and 264 nm. The addition of Pt nanoparticles increased photoactivity compared to Er-KTaO3 and pure KTaO3. Summary optical properties of KTaO3 change with its doping Er-element and further photodeposition of Pt nanoparticles.Keywords: heterogeneous photocatalytic, KTaO3 photocatalysts, Er3+ ion doping, Pt photodeposition
Procedia PDF Downloads 360242 Disability in the Course of a Chronic Disease: The Example of People Living with Multiple Sclerosis in Poland
Authors: Milena Trojanowska
Abstract:
Disability is a phenomenon for which meanings and definitions have evolved over the decades. This became the trigger to start a project to answer the question of what disability constitutes in the course of an incurable chronic disease. The chosen research group are people living with multiple sclerosis.The contextual phase of the research was participant observation at the Polish Multiple Sclerosis Society, the largest NGO in Poland supporting people living with MS and their relatives. The research techniques used in the project are (in order of implementation): group interviews with people living with MS and their relatives, narrative interviews, asynchronous technique, participant observation during events organised for people living with MS and their relatives.The researcher is currently conducting follow-up interviews, as inaccuracies in the respondents' narratives were identified during the data analysis. Interviews and supplementary research techniques were used over the four years of the research, and the researcher also benefited from experience gained from 12 years of working with NGOs (diaries, notes). The research was carried out in Poland with the participation of people living in this country only.The research has been based on grounded theory methodology in a constructivist perspectivedeveloped by Kathy Charmaz. The goal was to follow the idea that research must be reliable, original, and useful. The aim was to construct an interpretive theory that assumes temporality and the processualityof social life. TheAtlas.ti software was used to collect research material and analyse it. It is a program from the CAQDAS(Computer-Assisted Qualitative Data Analysis Software) group.Several key factors influencing the construction of a disability identity by people living with multiple sclerosis was identified:-course of interaction with significant relatives,- the expectation of identification with disability (expressed by close relatives),- economic profitability (pension, allowances),- institutional advantages (e.g. parking card),- independence and autonomy (not equated with physical condition, but access to adapted infrastructure and resources to support daily functioning),- the way a person with MS construes the meaning of disability,- physical and mental state,- medical diagnosis of illness.In addition, it has been shown that making an assumption about the experience of disability in the course of MS is a form of cognitive reductionism leading to further phenomenon such as: the expectation of the person with MS to construct a social identity as a person with a disability (e.g. giving up work), the occurrence of institutional inequalities. It can also be a determinant of the choice of a life strategy that limits social and individual functioning, even if this necessity is not influenced by the person's physical or psychological condition.The results of the research are important for the development of knowledge about the phenomenon of disability. It indicates the contextuality and complexity of the disability phenomenon, which in the light of the research is a set of different phenomenon of heterogeneous nature and multifaceted causality. This knowledge can also be useful for institutions and organisations in the non-governmental sector supporting people with disabilities and people living with multiple sclerosis.Keywords: disability, multiple sclerosis, grounded theory, poland
Procedia PDF Downloads 106241 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence
Authors: Oluwagbemi Victor Aladeokin
Abstract:
In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area
Procedia PDF Downloads 145240 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 573239 Development of a Novel Ankle-Foot Orthotic Using a User Centered Approach for Improved Satisfaction
Authors: Ahlad Neti, Elisa Arch, Martha Hall
Abstract:
Studies have shown that individuals who use Ankle-Foot-Orthoses (AFOs) have a high level of dissatisfaction regarding their current AFOs. Studies point to the focus on technical design with little attention given to the user perspective as a source of AFO designs that leave users dissatisfied. To design a new AFO that satisfies users and thereby improves their quality of life, the reasons for their dissatisfaction and their wants and needs for an improved AFO design must be identified. There has been little research into the user perspective on AFO use and desired improvements, so the relationship between AFO design and satisfaction in daily use must be assessed to develop appropriate metrics and constraints prior to designing a novel AFO. To assess the user perspective on AFO design, structured interviews were conducted with 7 individuals (average age of 64.29±8.81 years) who use AFOs. All interviews were transcribed and coded to identify common themes using Grounded Theory Method in NVivo 12. Qualitative analysis of these results identified sources of user dissatisfaction such as heaviness, bulk, and uncomfortable material and overall needs and wants for an AFO. Beyond the user perspective, certain objective factors must be considered in the construction of metrics and constraints to ensure that the AFO fulfills its medical purpose. These more objective metrics are rooted in a common medical device market and technical standards. Given the large body of research concerning these standards, these objective metrics and constraints were derived through a literature review. Through these two methods, a comprehensive list of metrics and constraints accounting for both the user perspective on AFO design and the AFO’s medical purpose was compiled. These metrics and constraints will establish the framework for designing a new AFO that carries out its medical purpose while also improving the user experience. The metrics can be categorized into several overarching areas for AFO improvement. Categories of user perspective related metrics include comfort, discreteness, aesthetics, ease of use, and compatibility with clothing. Categories of medical purpose related metrics include biomechanical functionality, durability, and affordability. These metrics were used to guide an iterative prototyping process. Six concepts were ideated and compared using system-level analysis. From these six concepts, two concepts – the piano wire model and the segmented model – were selected to move forward into prototyping. Evaluation of non-functional prototypes of the piano wire and segmented models determined that the piano wire model better fulfilled the metrics by offering increased stability, longer durability, fewer points for failure, and a strong enough core component to allow a sock to cover over the AFO while maintaining the overall structure. As such, the piano wire AFO has moved forward into the functional prototyping phase, and healthy subject testing is being designed and recruited to conduct design validation and verification.Keywords: ankle-foot orthotic, assistive technology, human centered design, medical devices
Procedia PDF Downloads 156238 Evaluation of Coupled CFD-FEA Simulation for Fire Determination
Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham
Abstract:
Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids
Procedia PDF Downloads 90237 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 146236 System-Driven Design Process for Integrated Multifunctional Movable Concepts
Authors: Oliver Bertram, Leonel Akoto Chama
Abstract:
In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process
Procedia PDF Downloads 144235 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 73234 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications
Authors: Hande Yavuz, Grégory Girard, Jinbo Bai
Abstract:
Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability
Procedia PDF Downloads 233233 Renewable Energy and Hydrogen On-Site Generation for Drip Irrigation and Agricultural Machinery
Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo, F. Javier García-Ramos
Abstract:
The energy used in agriculture is a source of global emissions of greenhouse gases. The two main types of this energy are electricity for pumping and diesel for agricultural machinery. In order to reduce these emissions, the European project LIFE REWIND addresses the supply of this demand from renewable sources. First of all, comprehensive data on energy demand and available renewable resources have been obtained in several case studies. Secondly, a set of simulations and optimizations have been performed, in search of the best configuration and sizing, both from an economic and emission reduction point of view. For this purpose, it was used software based on genetic algorithms. Thirdly, a prototype has been designed and installed, that it is being used for the validation in a real case. Finally, throughout a year of operation, various technical and economic parameters are being measured for further analysis. The prototype is not connected to the utility grid, avoiding the cost and environmental impact of a grid extension. The system includes three kinds of photovoltaic fields. One is located on a fixed structure on the terrain. Another one is floating on an irrigation raft. The last one is mounted on a two axis solar tracker. Each has its own solar inverter. The total amount of nominal power is 44 kW. A lead acid battery with 120 kWh of capacity carries out the energy storage. Three isolated inverters support a three phase, 400 V 50 Hz micro-grid, the same characteristics of the utility grid. An advanced control subsystem has been constructed, using free hardware and software. The electricity produced feeds a set of seven pumps used for purification, elevation and pressurization of water in a drip irrigation system located in a vineyard. Since the irrigation season does not include the whole year, as well as a small oversize of the generator, there is an amount of surplus energy. With this surplus, a hydrolyser produces on site hydrogen by electrolysis of water. An off-road vehicle with fuel cell feeds on that hydrogen and carries people in the vineyard. The only emission of the process is high purity water. On the one hand, the results show the technical and economic feasibility of stand-alone renewable energy systems to feed seasonal pumping. In this way, the economic costs, the environmental impacts and the landscape impacts of grid extensions are avoided. The use of diesel gensets and their associated emissions are also avoided. On the other hand, it is shown that it is possible to replace diesel in agricultural machinery, substituting it for electricity or hydrogen of 100% renewable origin and produced on the farm itself, without any external energy input. In addition, it is expected to obtain positive effects on the rural economy and employment, which will be quantified through interviews.Keywords: drip irrigation, greenhouse gases, hydrogen, renewable energy, vineyard
Procedia PDF Downloads 343232 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping
Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello
Abstract:
Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration
Procedia PDF Downloads 167231 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning
Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola
Abstract:
In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.Keywords: augmented reality, distance learning, STEM didactics, technology in education
Procedia PDF Downloads 128