Search results for: forced vital capacity
1098 Human Capital Discourse and Higher Education Policy
Authors: Tien-Hui Chiang
Abstract:
Human capital discourse encourages many countries to expand the capacity of HEIs. Along with this expansion, the higher education system is redefined as a free market and in turn it is privatized and commercialized. However, the state’s role in education is to balance social justice and capital accumulation. This role is further regulated by a specific form of neoliberalism constituted by social contexts. These correlations call for exploring the influence of human capital discourse on interwoven issues, such as the state’s role in education, higher education policy, and employability. Method: According to the perspective of neoliberal governmentality, answers to the above four research questions are likely to be embedded within discourses in documents related to higher education policies. Consequently, this study adopts a qualitative approach by analyzing official documents, including government reports, official statistics, circulars and official statements. Documents were collected and subjected to content analysis, with a particular focus on the period from 2005 to 2021. The technique of content analysis was applied to decode keywords and core concepts of these documents. Findings: Neoliberalism is exerted through human capital discourse in China particularly in the changes in higher education policies moving from quantitative expansion to quality control via employment or employability. Such changes highlight that the principle of “n”eoliberalism is more suitable for illustrating the practice of free market logic in different social contexts. The modifications of neoliberalism adopted by the Chinese government reflect that the state’s mission is to secure social security or the common good, so that public managerialism - in the form of programs for employment, internship and entrepreneurship - is adopted in the name of the public interest and the collective mission. Public managerialism now is not only targeted towards social institutions but the population more generally, incarnated here by college graduates. Its practice is not only to renovate organizational cultures but to activate people’s commitment to national development.Keywords: employability, higher education expansion, neoliberalism, human capital discourse
Procedia PDF Downloads 791097 Solubility of Carbon Dioxide in Methoxy and Nitrile-Functionalized Ionic Liquids
Authors: D. A. Bruzon, G. Tapang, I. S. Martinez
Abstract:
Global warming and climate change are significant environmental concerns, which require immediate global action in carbon emission mitigation. The capture, sequestration, and conversion of carbon dioxide to other products such as methane or ethanol are ways to control excessive emissions. Ionic liquids have shown great potential among the materials studied as carbon capture solvents and catalysts in the reduction of CO2. In this study, ionic liquids comprising of a methoxy (-OCH3) and cyano (-CN) functionalized imidazolium cation, [MOBMIM] and [CNBMIM] respectively, paired with tris(pentafluoroethyl)trifluorophosphate [FAP] anion were evaluated as effective capture solvents, and organocatalysts in the reduction of CO2. An in-situ electrochemical set-up, which can measure controlled amounts of CO2 both in the gas and in the ionic liquid phase, was used. Initially, reduction potentials of CO2 in the CO2-saturated ionic liquids containing the internal standard cobaltocene were determined using cyclic voltammetry. Chronoamperometric transients were obtained at potentials slightly less negative than the reduction potentials of CO2 in each ionic liquid. The time-dependent current response was measured under a controlled atmosphere. Reduction potentials of CO2 in methoxy and cyano-functionalized [FAP] ionic liquids were observed to occur at ca. -1.0 V (vs. Cc+/Cc), which was significantly lower compared to the non-functionalized analog [PMIM][FAP], with an observed reduction potential of CO2 at -1.6 V (vs. Cc+/Cc). This decrease in the potential required for CO2 reduction in the functionalized ionic liquids shows that the functional groups methoxy and cyano effectively decreased the free energy of formation of the radical anion CO2●⁻, suggesting that these electrolytes may be used as organocatalysts in the reduction of the greenhouse gas. However, upon analyzing the solubility of the gas in each ionic liquid, [PMIM][FAP] showed the highest absorption capacity, at 4.81 mM under saturated conditions, compared to [MOBMIM][FAP] at 1.86 mM, and [CNBMIM][FAP] at 0.76 mM. Also, calculated Henry’s constant determined from the concentration-pressure graph of each functionalized ionic liquid shows that the groups -OCH3 and -CN attached terminal to a C4 alkyl chain do not significantly improve CO2 solubility.Keywords: carbon capture, CO2 reduction, electrochemistry, ionic liquids
Procedia PDF Downloads 4041096 Comparative Analysis of Mechanical Properties of Paddy Rice for Different Variety-Moisture Content Interactions
Authors: Johnson Opoku-Asante, Emmanuel Bobobee, Joseph Akowuah, Eric Amoah Asante
Abstract:
In recent years, the issue of postharvest losses has become a serious concern in Sub-Saharan Africa. Postharvest technology development and adaptation need urgent attention, particularly for small and medium-scale rice farmers in Africa. However, to better develop any postharvest technology, knowledge of the mechanical properties of different varieties of paddy rice is vital. There is also the issue of the development of new rice cultivars. The objectives of this research are to (1) determine the mechanical properties of the selected paddy rice varieties at varying moisture content. (2) conduct a comparative analysis of the mechanical properties of selected rice paddy for different variety-moisture content interactions. (3) determine the significant statistical differences between the mean values of the various variety-moisture content interactions The mechanical properties of AGRA rice, CRI-Amankwatia, CRI-Enapa and CRI-Dartey, four local varieties developed by Crop Research Institute of Ghana are compared at 11.5%, 13.0% and 16.5% dry basis moisture content. The mechanical properties measured are Sphericity, Aspect ratio, Grain mass, 1000 Grain mass, Bulk Density, True Density, Porosity and Angle of Repose. Samples were collected from the Kwadaso Agric College of the CRI in Kumasi. The samples were threshed manually and winnowed before conducting the experiment. The moisture content was determined on a dry basis using the Moistex Screw-Type Digital Grain Moisture Meter. Other equipment used for data collection were venire calipers and Citizen electronic scale. A 4×3 factorial arrangement was used in a completely randomized design in three replications. Tukey's HSD comparisons test was conducted during data analysis to compare all possible pairwise combinations of the various varieties’ moisture content interaction. From the results, it was concluded that Sphericity recorded 0.391 mm³ to 0.377 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5%, respectively, whereas Aspect Ratio recorded 0.298 mm³ to 0.269 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5% respectively. For grain mass, AGRA rice at 13.0% also recorded 0.0312 g as the highest score and CRI-Enapa at 13.0% obtained 0.0237 as the lowest score. For the GM1000, it was observed that it ranges from 29.33 g for CRI-Amankwatia at 16.5% moisture content to 22.54 g for CRI-Enapa at 16.5% interactions. Bulk Density ranged from 654.0 kg/m³ to 422.9 kg/m³ for CRI-Amankwatia at 16.5% and CRI-Enapa at 11.5% as the highest and lowest recordings, respectively. It was also observed that the true Density ranges from 1685.8 kg/m3 for AGRA rice at 13.0% moisture content to 1352.5 kg/m³ for CRI-Enapa at 16.5% interactions. In the case of porosity, CRI-Enapa at 11.5% received the highest score of 70.83% and CRI-Amankwatia at 16.5 received the lowest score of 55.88%. Finally, in the case of Angle of Repose, CRI-Amankwatia at 16.5% recorded the highest score of 47.3o and CRI-Enapa at 11.5% recorded the least score of 34.27o. In all cases, the difference in mean value was less than the LSD. This indicates that there were no significant statistical differences between their mean values, indicating that technologies developed and adapted for one variety can equally be used for all the other varieties.Keywords: angle of repose, aspect ratio, bulk density, porosity, sphericity, mechanical properties
Procedia PDF Downloads 1041095 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials
Authors: Shamsulhaq Amin
Abstract:
Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.Keywords: permanent deformation, unbound granular materials, load cycles, stress level
Procedia PDF Downloads 431094 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage
Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani
Abstract:
Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis
Procedia PDF Downloads 831093 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic
Authors: Miroslav Dumbrovsky
Abstract:
The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.Keywords: soil degradation, land consolidation, soil erosion, soil conservation
Procedia PDF Downloads 3571092 Remote Radiation Mapping Based on UAV Formation
Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov
Abstract:
High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation
Procedia PDF Downloads 1011091 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle
Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.
Abstract:
In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.
Procedia PDF Downloads 751090 Effective Affordable Housing Finance in Developing Economies: An Integration of Demand and Supply Solutions
Authors: Timothy Akinwande, Eddie Hui, Karien Dekker
Abstract:
Housing the urban poor remains a persistent challenge, despite evident research attention over many years. It is, therefore, pertinent to investigate affordable housing provision challenges with novel approaches. For innovative solutions to affordable housing constraints, it is apposite to thoroughly examine housing solutions vis a vis the key elements of the housing supply value chain (HSVC), which are housing finance, housing construction and land acquisition. A pragmatic analysis will examine affordable housing solutions from demand and supply perspectives to arrive at consolidated solutions from bilateral viewpoints. This study thoroughly examined informal housing finance strategies of the urban poor and diligently investigated expert opinion on affordable housing finance solutions. The research questions were: (1) What mutual grounds exist between informal housing finance solutions of the urban poor and housing expert solutions to affordable housing finance constraints in developing economies? (2) What are effective approaches to affordable housing finance in developing economies from an integrated demand - supply perspective? Semi-structured interviews were conducted in the 5 largest slums of Lagos, Nigeria, with 40 informal settlers for demand-oriented solutions, while focus group discussion and in-depth interviews were conducted with 12 housing experts in Nigeria for supply-oriented solutions. Following a rigorous thematic, content and descriptive analyses of data using NVivo and Excel, findings ascertained mutual solutions from both demand and supply standpoints that can be consolidated into more effective affordable housing finance solutions in Nigeria. Deliberate finance models that recognise and include the finance realities of the urban poor was found to be the most significant supply-side housing finance solution, representing 25.4% of total expert responses. Findings also show that 100% of sampled urban poor engage in vocations where they earn little irregular income or zero income, limiting their housing finance capacities and creditworthiness. Survey revealed that the urban poor are involved in community savings and employ microfinance institutions within the informal settlements to tackle their housing finance predicaments. These are informal finance models of the urban poor, revealing common grounds between demand and supply solutions for affordable housing financing. Effective, affordable housing approach will be to modify, institutionalise and incorporate the informal finance strategies of the urban poor into deliberate government policies. This consolidation of solutions from demand and supply perspectives can eliminate the persistent misalliance between affordable housing demand and affordable housing supply. This study provides insights into mutual housing solutions from demand and supply perspectives, and findings are informative for effective, affordable housing provision approaches in developing countries. This study is novel in consolidating affordable housing solutions from demand and supply viewpoints, especially in relation to housing finance as a key component of HSVC. The framework for effective, affordable housing finance in developing economies from a consolidated viewpoint generated in this study is significant for the achievement of sustainable development goals, especially goal 11 for sustainable, resilient and inclusive cities. Findings are vital for future housing studies.Keywords: affordable housing, affordable housing finance, developing economies, effective affordable housing, housing policy, urban poor, sustainable development goal, sustainable affordable housing
Procedia PDF Downloads 711089 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate
Procedia PDF Downloads 1801088 Quantifying the Impact of Intermittent Signal Priority given to BRT on Ridership and Climate-A Case Study of Ahmadabad
Authors: Smita Chaudhary
Abstract:
Traffic in India are observed uncontrolled, and are characterized by chaotic (not follows the lane discipline) traffic situation. Bus Rapid Transit (BRT) has emerged as a viable option to enhance transportation capacity and provide increased levels of mobility and accessibility. At present in Ahmadabad there are as many intersections which face the congestion and delay at signalized intersection due to transit (BRT) lanes. Most of the intersection in spite of being signalized is operated manually due to the conflict between BRT buses and heterogeneous traffic. Though BRTS in Ahmadabad has an exclusive lane of its own but with this comes certain limitations which Ahmadabad is facing right now. At many intersections in Ahmadabad due to these conflicts, interference, and congestion both heterogeneous traffic as well as transit buses suffer traffic delays of remarkable 3-4 minutes at each intersection which has a become an issue of great concern. There is no provision of BRT bus priority due to which existing signals have their least role to play in managing the traffic that ultimately call for manual operation. There is an immense decrement in the daily ridership of BRTS because people are finding this transit mode no more time saving in their routine, there is an immense fall in ridership ultimately leading to increased number of private vehicles, idling of vehicles at intersection cause air and noise pollution. In order to bring back these commuters’ transit facilities need to be improvised. Classified volume count survey, travel time delay survey was conducted and revised signal design was done for whole study stretch having three intersections and one roundabout, later one intersection was simulated in order to see the effect of giving priority to BRT on side street queue length and travel time for heterogeneous traffic. This paper aims at suggesting the recommendations in signal cycle, introduction of intermittent priority for transit buses, simulation of intersection in study stretch with proposed signal cycle using VISSIM in order to make this transit amenity feasible and attracting for commuters in Ahmadabad.Keywords: BRT, priority, Ridership, Signal, VISSIM
Procedia PDF Downloads 4421087 The Implication of Islamic Finance and Banking for the Sustainable Development in Bangladesh
Authors: Khan Md. Abdus Subhan, Rabeya Bushra
Abstract:
Bangladesh has already seen significant growth in Islamic banking and finance, contributing to the rapid expansion of this sector in the global banking and finance industry. The objective of this study is to analyse the Islamic finance and banking industry's ability to contribute to sustainable development in Bangladesh. It aims to assess the current state, potential, and limitations of Islamic banking and finance in the country. Bangladesh has significant growth potential for Islamic banking and finance. However, addressing several challenges is imperative. These challenges include the absence of a well-developed infrastructure for Islamic banking and finance, a lack of a solid legal framework, limited attention from the central bank, the absence of an Islamic capital market, and a shortage of experts in Sharia law as well as public awareness. Bangladesh, a nation characterized by a primarily Muslim populace, has acknowledged the importance of Islamic finance and banking in promoting sustainable development. Islamic banking principles advocate for ethical practices, risk sharing, and the avoidance of interest-based transactions. This article examines the impact of Islamic finance and banking on promoting sustainable development in Bangladesh and emphasizes its capacity to tackle socio-economic difficulties. The Islamic banking sector, as a trailblazer in funding sustainable development, has the potential to play a significant role in facilitating the shift toward a circular economy. According to Shari'ah rules and the Sustainable Development Goals (SDGs), Islamic finance principles will help change the linear economy into a circular one. They will also provide a strong framework and a lot of funding sources. This study aims to offer crucial recommendations and techniques for the successful implementation of Islamic finance institutions in Bangladesh. The study will use quantitative research methodology, collecting data from secondary sources. This research offers a thorough understanding of the reasoning for the payment of Zakat and its socio-economic importance. Furthermore, the study provides significant insights that could assist Bangladeshi policymakers and governments in implementing Islamic financing systems.Keywords: sustainable development, Islamic fintech, Islamic banking, Bangladesh
Procedia PDF Downloads 471086 State and Benefit: Delivering the First State of the Bays Report for Victoria
Authors: Scott Rawlings
Abstract:
Victoria’s first State of the Bays report is an historic baseline study of the health of Port Phillip Bay and Western Port. The report includes 50 assessments of 36 indicators across a broad array of topics from the nitrogen cycle and water quality to key marine species and habitats. This paper discusses the processes for determining and assessing the indicators and comments on future priorities identified to maintain and improve the health of these water ways. Victoria’s population is now at six million, and growing at a rate of over 100,000 people per year - the highest increase in Australia – and the population of greater Melbourne is over four million. Port Phillip Bay and Western Port are vital marine assets at the centre of this growth and will require adaptive strategies if they are to remain in good condition and continue to deliver environmental, economic and social benefits. In 2014, it was in recognition of these pressures that the incoming Victorian Government committed to reporting on the state of the bays every five years. The inaugural State of the Bays report was issued by the independent Victorian Commissioner for Environmental Sustainability. The report brought together what is known about both bays, based on existing research. It was a baseline on which future reports will build and, over time, include more of Victoria’s marine environment. Port Phillip Bay and Western Port generally demonstrate healthy systems. Specific threats linked to population growth are a significant pressure. Impacts are more significant where human activity is more intense and where nutrients are transported to the bays around the mouths of creeks and drainage systems. The transport of high loads of nutrients and pollutants to the bays from peak rainfall events is likely to increase with climate change – as will sea level rise. Marine pests are also a threat. More than 100 introduced marine species have become established in Port Phillip Bay and can compete with native species, alter habitat, reduce important fish stocks and potentially disrupt nitrogen cycling processes. This study confirmed that our data collection regime is better within the Marine Protected Areas of Port Phillip Bay than in other parts. The State of the Bays report is a positive and practical example of what can be achieved through collaboration and cooperation between environmental reporters, Government agencies, academic institutions, data custodians, and NGOs. The State of the Bays 2016 provides an important foundation by identifying knowledge gaps and research priorities for future studies and reports on the bays. It builds a strong evidence base to effectively manage the bays and support an adaptive management framework. The Report proposes a set of indicators for future reporting that will support a step-change in our approach to monitoring and managing the bays – a shift from reporting only on what we do know, to reporting on what we need to know.Keywords: coastal science, marine science, Port Phillip Bay, state of the environment, Western Port
Procedia PDF Downloads 2101085 Shale Gas and Oil Resource Assessment in Middle and Lower Indus Basin of Pakistan
Authors: Amjad Ali Khan, Muhammad Ishaq Saqi, Kashif Ali
Abstract:
The focus of hydrocarbon exploration in Pakistan has been primarily on conventional hydrocarbon resources. Directorate General Petroleum Concessions (DGPC) has taken the lead on the assessment of indigenous unconventional oil and gas resources, which has resulted in a ‘Shale Oil/Gas Resource Assessment Study’ conducted with the help of USAID. This was critically required in the energy-starved Pakistan, where the gap between indigenous oil & gas production and demand continues to widen for a long time. Exploration & exploitation of indigenous unconventional resources of Pakistan have become vital to meet our energy demand and reduction of oil and gas import bill of the country. This study has attempted to bridge a critical gap in geological information about the potential of shale gas & oil in Pakistan in the four formations, i.e., Sembar, Lower Goru, Ranikot and Ghazij in the Middle and Lower Indus Basins, which were selected for the study as for resource assessment for shale gas & oil. The primary objective of the study was to estimate and establish shale oil/gas resource assessment of the study area by carrying out extensive geological analysis of exploration, appraisal and development wells drilled in the Middle and Lower Indus Basins, along with identification of fairway(s) and sweet spots in the study area. The Study covers the Lower parts of the Middle Indus basins located in Sindh, southern Punjab & eastern parts of the Baluchistan provinces, with a total sedimentary area of 271,795 km2. Initially, 1611 wells were reviewed, including 1324 wells drilled through different shale formations. Based on the availability of required technical data, a detailed petrophysical analysis of 124 wells (21 Confidential & 103 in the public domain) has been conducted for the shale gas/oil potential of the above-referred formations. The core & cuttings samples of 32 wells and 33 geochemical reports of prospective Shale Formations were available, which were analyzed to calibrate the results of petrophysical analysis with petrographic/ laboratory analyses to increase the credibility of the Shale Gas Resource assessment. This study has identified the most prospective intervals, mainly in Sembar and Lower Goru Formations, for shale gas/oil exploration in the Middle and Lower Indus Basins of Pakistan. The study recommends seven (07) sweet spots for undertaking pilot projects, which will enable to evaluate of the actual production capability and production sustainability of shale oil/gas reservoirs of Pakistan for formulating future strategies to explore and exploit shale/oil resources of Pakistan including fiscal incentives required for developing shale oil/gas resources of Pakistan. Some E&P Companies are being persuaded to make a consortium for undertaking pilot projects that have shown their willingness to participate in the pilot project at appropriate times. The location for undertaking the pilot project has been finalized as a result of a series of technical sessions by geoscientists of the potential consortium members after the review and evaluation of available studies.Keywords: conventional resources, petrographic analysis, petrophysical analysis, unconventional resources, shale gas & oil, sweet spots
Procedia PDF Downloads 511084 Socio-Economic Impact of Covid-19 in Ethiopia
Authors: Kebron Abich Asnake
Abstract:
The outbreak of COVID-19 has had far-reaching socio-economic consequences globally, and Ethiopia is no exception. This abstract provides a summary of a research study on the socio-economic impact of COVID-19 in Ethiopia. The study analyzes the health impact, economic repercussions, social consequences, government response measures, and opportunities for post-crisis recovery. In terms of health impact, the research explores the spread and transmission of the virus, the capacity and response of the healthcare system, and the mortality rate, with a focus on vulnerable populations. The economic impact analysis entails investigating the contraction of the GDP, employment and income loss, disruption in key sectors such as agriculture, tourism, and manufacturing, and the specific implications for small and medium-sized enterprises (SMEs), foreign direct investment, and remittances. The social impact section looks at the disruptions in education and the digital divide, food security and nutrition challenges, increased poverty and inequality, gender-based violence, and mental health issues. The research also examines the measures taken by the Ethiopian government, including health and safety regulations, economic stimulus packages, social protection programs, and support for vulnerable populations. Furthermore, the study outlines long-term recovery prospects, social cohesion, and community resilience challenges. It highlights the need to strengthen the healthcare system and finds a balance between health and economic priorities. The research concludes by presenting recommendations for policy-makers and stakeholders, emphasizing opportunities for post-crisis recovery such as diversification of the economy, enhanced healthcare infrastructure, investment in digital infrastructure and technology, and support for domestic tourism and local industries. This research provides valuable insights into the socio-economic impact of COVID-19 in Ethiopia, offering a comprehensive analysis of the challenges faced and potential pathways towards recovery.Keywords: impact, covid, ethiopia, health
Procedia PDF Downloads 841083 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery
Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen
Abstract:
The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates
Procedia PDF Downloads 551082 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading
Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke
Abstract:
In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading
Procedia PDF Downloads 1471081 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation
Authors: Alaa Hamed Salama, Rehab Nabil Shamma
Abstract:
Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization
Procedia PDF Downloads 4491080 The Onset of Ironing during Casing Expansion
Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers
Abstract:
Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.Keywords: casing expansion, cement, formation, metal forming, plasticity, well design
Procedia PDF Downloads 1811079 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: language skills, implementing, listening skill, attention, smart aids
Procedia PDF Downloads 461078 Model Based Design and Development of Horticultural Produce Crate from Bamboo
Authors: Sisay Wondmagegn Molla, Mulugeta Admasu Delele, Tadelle Nigusu Mekonen
Abstract:
It is common to observe quality deterioration and mechanical injury of horticulture products as a result of suboptimal design and handling of the packaging systems. Society uses the old and primitive way of handling horticulture products, which is produced through trial and error This method is known to have many limitations on quality, environmental pollution, labor and cost. Ethiopia stands first in bamboo resources in Africa, which is 67 % of the African and 7 % of the world's bamboo resources. The purpose of this project was to design and develop bamboo-based ventilated horticultural produce crates using validated computational fluid dynamics (CFD). The model was used to predict the airflow and temperature distribution inside the loaded crate. The study included: sizing, collection of the thermo-physical properties, and designing and developing a CFD model of the bamboo-based ventilated horticultural crate. The designed crate (40×30×25cm) had a capacity of about 18 kg, and cold air temperature (130C) was used for cooling the fruit. Airflow in the loaded crate is far from uniform. There is a relatively high-velocity flow at the top, near inlet and near outlet sections, and a relatively low airflow near the center of the loaded crate. The predicted velocity variation within the bulk of the produce was relatively large, it was in the range of 0.04-7m/s. The vented produce package contributed the highest cooling airflow resistance. Similar to the airflow, the cooling characteristics of the product were not uniform. There was a difference in the cooling rate of the produce in the airflow direction and from the top to the bottom section of the loaded crate. The products that were located near the inlet side and top of the bulk showed a faster cooling rate than the rest of the bulk. The result showed that the produced volume average temperature was 17.9°C after a cooling period of 3 hr. It was reduced by 12.05°C. The result showed the potential of the CFD modeling approach in developing the bamboo-based design of horticultural produce crates in terms of airflow and heat transfer characteristics.Keywords: bamboo, modeling, cooling, horticultural, packaging
Procedia PDF Downloads 261077 Influence of Interpersonal Communication on Family Planning Practices among Rural Women in South East Nigeria
Authors: Chinwe Okpoko, Vivian Atasie
Abstract:
One of the leading causes of death amongst women of child-bearing age in southeast Nigeria is pregnancy. Women in the reproductive age group die at a higher rate than men of the same age bracket. Furthermore, most maternal deaths occur among poor women who live in rural communities, and who generally fall within the low socio-economic group in society. Failure of policy makers and the media to create the strategic awareness and communication that conform with the sensibilities of this group account, in part, for the persistence of this malaise. Family planning (FP) is an essential component of safe motherhood, which is designed to ensure that women receive high-quality care to achieve an optimum level of health of mother and infant. The aim is to control the number of children a woman can give birth to and prevent maternal and child mortality and morbidity. This is what sustainable development goal (SDG) health target of World Health Organization (WHO) also strives to achieve. FP programmes reduce exposure to the risks of child-bearing. Indeed, most maternal deaths in the developing world can be prevented by fully investing simultaneously in FP and maternal and new-born care. Given the intrinsic value of communication in health care delivery, it is vital to adopt the most efficacious means of awareness creation and communication amongst rural women in FP. In a country where over 50% of her population resides in rural areas with attendant low-level profile standard of living, the need to communicate health information like FP through indigenous channels becomes pertinent. Interpersonal communication amongst family, friends, religious groups and other associations, is an efficacious means of communicating social issues in rural Africa. Communication in informal settings identifies with the values and social context of the recipients. This study therefore sought to determine the place of interpersonal communication on the knowledge of rural women on FP and how it influences uptake of FP. Descriptive survey design was used in the study, with interviewer administered questionnaire constituting the instrument for data collection. The questionnaire was administered on 385 women from rural communities in southeast Nigeria. The results show that majority (58.5%) of the respondents agreed that interpersonal communication helps women understand how to plan their family size. Many rural women (82%) prefer the short term natural method to the more effective modern contraceptive methods (38.1%). Husbands’ approval of FP, as indicated in the Mean response of 2.56, is a major factor that accounts for the adoption of FP messages among rural women. Socio-demographic data also reveal that educational attainment and/or exposure influenced women’s acceptance or otherwise of FP messages. The study, therefore, recommends amongst others, the targeting of husbands in subsequent FP communication interventions, since they play major role on contraceptive usage.Keywords: family planning, interpersonal communication, interpersonal interaction, traditional communication
Procedia PDF Downloads 1321076 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation
Procedia PDF Downloads 731075 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G
Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo
Abstract:
Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS
Procedia PDF Downloads 2581074 Comparison of the Chest X-Ray and Computerized Tomography Scans Requested from the Emergency Department
Authors: Sahabettin Mete, Abdullah C. Hocagil, Hilal Hocagil, Volkan Ulker, Hasan C. Taskin
Abstract:
Objectives and Goals: An emergency department is a place where people can come for a multitude of reasons 24 hours a day. As it is an easy, accessible place, thanks to self-sacrificing people who work in emergency departments. But the workload and overcrowding of emergency departments are increasing day by day. Under these circumstances, it is important to choose a quick, easily accessible and effective test for diagnosis. This results in laboratory and imaging tests being more than 40% of all emergency department costs. Despite all of the technological advances in imaging methods and available computerized tomography (CT), chest X-ray, the older imaging method, has not lost its appeal and effectiveness for nearly all emergency physicians. Progress in imaging methods are very convenient, but physicians should consider the radiation dose, cost, and effectiveness, as well as imaging methods to be carefully selected and used. The aim of the study was to investigate the effectiveness of chest X-ray in immediate diagnosis against the advancing technology by comparing chest X-ray and chest CT scan results of the patients in the emergency department. Methods: Patients who applied to Bulent Ecevit University Faculty of Medicine’s emergency department were investigated retrospectively in between 1 September 2014 and 28 February 2015. Data were obtained via MIAMED (Clear Canvas Image Server v6.2, Toronto, Canada), information management system which patients’ files are saved electronically in the clinic, and were retrospectively scanned. The study included 199 patients who were 18 or older, had both chest X-ray and chest CT imaging. Chest X-ray images were evaluated by the emergency medicine senior assistant in the emergency department, and the findings were saved to the study form. CT findings were obtained from already reported data by radiology department in the clinic. Chest X-ray was evaluated with seven questions in terms of technique and dose adequacy. Patients’ age, gender, application complaints, comorbid diseases, vital signs, physical examination findings, diagnosis, chest X-ray findings and chest CT findings were evaluated. Data saved and statistical analyses have made via using SPSS 19.0 for Windows. And the value of p < 0.05 were accepted statistically significant. Results: 199 patients were included in the study. In 38,2% (n=76) of all patients were diagnosed with pneumonia and it was the most common diagnosis. The chest X-ray imaging technique was appropriate in patients with the rate of 31% (n=62) of all patients. There was not any statistically significant difference (p > 0.05) between both imaging methods (chest X-ray and chest CT) in terms of determining the rates of displacement of the trachea, pneumothorax, parenchymal consolidation, increased cardiothoracic ratio, lymphadenopathy, diaphragmatic hernia, free air levels in the abdomen (in sections including the image), pleural thickening, parenchymal cyst, parenchymal mass, parenchymal cavity, parenchymal atelectasis and bone fractures. Conclusions: When imaging findings, showing cases that needed to be quickly diagnosed, were investigated, chest X-ray and chest CT findings were matched at a high rate in patients with an appropriate imaging technique. However, chest X-rays, evaluated in the emergency department, were frequently taken with an inappropriate technique.Keywords: chest x-ray, chest computerized tomography, chest imaging, emergency department
Procedia PDF Downloads 1931073 Investigation of Alumina Membrane Coated Titanium Implants on Osseointegration
Authors: Pinar Erturk, Sevde Altuntas, Fatih Buyukserin
Abstract:
In order to obtain an effective integration between an implant and a bone, implant surfaces should have similar properties to bone tissue surfaces. Especially mimicry of the chemical, mechanical and topographic properties of the implant to the bone is crucial for fast and effective osseointegration. Titanium-based biomaterials are more preferred in clinical use, and there are studies of coating these implants with oxide layers that have chemical/nanotopographic properties stimulating cell interactions for enhanced osseointegration. There are low success rates of current implantations, especially in craniofacial implant applications, which are large and vital zones, and the oxide layer coating increases bone-implant integration providing long-lasting implants without requiring revision surgery. Our aim in this study is to examine bone-cell behavior on titanium implants with an aluminum oxide layer (AAO) on effective osseointegration potential in the deformation of large zones with difficult spontaneous healing. In our study, aluminum layer coated titanium surfaces were anodized in sulfuric, phosphoric, and oxalic acid, which are the most common used AAO anodization electrolytes. After morphologic, chemical, and mechanical tests on AAO coated Ti substrates, viability, adhesion, and mineralization of adult bone cells on these substrates were analyzed. Besides with atomic layer deposition (ALD) as a sensitive and conformal technique, these surfaces were coated with pure alumina (5 nm); thus, cell studies were performed on ALD-coated nanoporous oxide layers with suppressed ionic content too. Lastly, in order to investigate the effect of the topography on the cell behavior, flat non-porous alumina layers on silicon wafers formed by ALD were compared with the porous ones. Cell viability ratio was similar between anodized surfaces, but pure alumina coated titanium and anodized surfaces showed a higher viability ratio compared to bare titanium and bare anodized ones. Alumina coated titanium surfaces, which anodized in phosphoric acid, showed significantly different mineralization ratios after 21 days over other bare titanium and titanium surfaces which anodized in other electrolytes. Bare titanium was the second surface that had the highest mineralization ratio. Otherwise, titanium, which is anodized in oxalic acid electrolyte, demonstrated the lowest mineralization. No significant difference was shown between bare titanium and anodized surfaces except AAO titanium surface anodized in phosphoric acid. Currently, osteogenic activities of these cells on the genetic level are investigated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis results of RUNX-2, VEGF, OPG, and osteopontin genes. Also, as a result of the activities of the genes mentioned before, Western Blot will be used for protein detection. Acknowledgment: The project is supported by The Scientific and Technological Research Council of Turkey.Keywords: alumina, craniofacial implant, MG-63 cell line, osseointegration, oxalic acid, phosphoric acid, sulphuric acid, titanium
Procedia PDF Downloads 1311072 The Impact of Regulation of Energy Prices on Public Trust in Europe during Energy Crisis: A Cross-Sectional Study in the Aftermath of the Russia-Ukraine Conflict
Authors: Sempiga Olivier, Dominika Latusek-Jurczak
Abstract:
The conflict in Ukraine has had far-reaching economic consequences, not only for the countries directly involved in it but also for their trading partners and allies, and on the global economy in general. Different European Union (EU) countries, being some of Ukraine and Russia's major trading partners, have also felt the impact of the conflict on their economy. In a special way, the energy sector has suffered the most due to the fact that Russia is a huge exporter of gas and other energy sources on which rely European countries. Energy is a locomotive of the economy and once energy prices skyrocket there is a spill over effects in other areas causing different commodities’ prices to rise thereby affecting people’s social economic lifestyles. To minimise the impact energy crisis’ socio-political and economic consequences, the EU and countries have tightened their regulatory mechanisms to stop some energy firms exploit the crisis at the expense of the vulnerable mass. The key question is to what extent these regulatory instruments put in place during the energy crisis times have an affect on citizen trust in the governing institutions. The question is of paramount importance after years of declining trust in the EU and in most countries in Europe. Earlier research have analysed how wars or global political risks relate to citizen trust in government and organizations but very few empirical research have examined the relationship between regulatory instruments during the time of crisis on citizen trust in government and institutions. Using data from INSEE (the French National Institute of Statistics and Economic Studies) and European Social Survey (ESS), it carry out a multilinear regression analysis and investigate the impact of regulation both from the EU and different countries on energy prices on citizen trust. To understand the dynamics between regulatory actions during crises and citizen trust, this study draws on the theoretical framework of institutional trust and regulatory legitimacy. Institutional trust theory posits that citizens’ trust in government and institutions is influenced by perceptions of fairness, transparency, and efficacy in governance. Regulatory legitimacy, a related concept, suggests that regulatory measures, especially in response to crises, are more effective when perceived as just, necessary, and in the public interest. Results of this cross sectional study show that regulatory frameworks strongly affect the levels of trust, the association varying from strong to moderate depending on countries and period. This study contributes to the understanding of the vital relationship between regulatory measures implemented during crises and citizen trust in government institutions. By identifying the conditions under which trust is fostered or eroded, the findings provide policymakers with valuable insights into effective strategies for enhancing public confidence, ultimately guiding interventions that can mitigate the socio-political impacts of future energy crises.Keywords: energy crisis, price, regulation, russia-Ukraine conflict, trust
Procedia PDF Downloads 111071 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal
Authors: Nagendra P. Luitel, Mark J. D. Jordans
Abstract:
Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.Keywords: mental health, Nepal, primary care, treatment gap
Procedia PDF Downloads 2951070 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 231069 Interrogation of the Role of First Year Student Experiences in Student Success at a University of Technology in South Africa
Authors: Livingstone Makondo
Abstract:
This ongoing research explores what could be the components of a comprehensive First-Year Student Experience (FYSE) at the Durban University of Technology (DUT) and the preferred implementation modalities. In light of the Siyaphumelela project, this interrogation is premised on the need to glean data for the institution that could be used to ascertain the role of FYSE towards enhancing student success. The research proceeds by examining prevalent models from other South African Universities and beyond in its quest to get at pragmatic comprehensive FYSE programme for DUT. As DUT is a student centered institution and amidst the ever shrinking economy, this research would aid higher education practitioners to ascertain if the hard earned finances are being channelled to a worthy academic venture. This research seeks to get inputs from a) students who participated in FYSE and are now in second and third years at DUT b) students who are currently participating in FYSE c) former and present Tutors d) departmental coordinators e) academics and support staff working with the participating students. This exploratory approach is preferred since 2010 DUT has grappled with how to implement an integrated institution-wide FYSE. This findings of this research could provide the much-needed data to ascertain if the current FYSE package is pivotal towards attainment of DUT Strategic Focus Area 1: Building sustainable student communities of living and learning. The ideal is to have DUT FYSE programme become an institution-wide programme that lays the foundation for consolidated and focused student development programmes for subsequent undergraduate and postgraduate levels of study. Also, armed with data from this research, DUT could develop the capacity and systems to ensure that all students get diverse on-time support to enhance their retention and academic success in their tertiary studies. In essence, the preferred FYSE curriculum woven around DUT graduate attributes should contribute towards the reduction in the first-year students’ dropout rates and subsequently in undergraduate studies. Therefore, this on-going research will feed into Siyaphumelela project and would help position 2018-2020 FYSE initiatives at DUT.Keywords: challenges, comprehensive, dropout, transition
Procedia PDF Downloads 161