Search results for: drift flow model
14673 Corpus-Based Model of Key Concepts Selection for the Master English Language Course "Government Relations"
Authors: Elena Pozdnyakova
Abstract:
“Government Relations” is a field of knowledge presently taught at the majority of universities around the globe. English as the default language can become the language of teaching since the issues discussed are both global and national in character. However for this field of knowledge key concepts and their word representations in English don’t often coincide with those in other languages. International master’s degree students abroad as well as students, taught the course in English at their national universities, are exposed to difficulties, connected with correct conceptualizing of terminology of GR in British and American academic traditions. The study was carried out during the GR English language course elaboration (pilot research: 2013 -2015) at Moscow State Institute of Foreign Relations (University), Russian Federation. Within this period, English language instructors designed and elaborated the three-semester course of GR. Methodologically the course design was based on elaboration model with the special focus on conceptual elaboration sequence and theoretical elaboration sequence. The course designers faced difficulties in concept selection and theoretical elaboration sequence. To improve the results and eliminate the problems with concept selection, a new, corpus-based approach was worked out. The computer-based tool WordSmith 6.0 was used with the aim to build a model of key concept selection. The corpus of GR English texts consisted of 1 million words (the study corpus). The approach was based on measuring effect size, i.e. the percent difference of the frequency of a word in the study corpus when compared to that in the reference corpus. The results obtained proved significant improvement in the process of concept selection. The corpus-based model also facilitated theoretical elaboration of teaching materials.Keywords: corpus-based study, English as the default language, key concepts, measuring effect size, model of key concept selection
Procedia PDF Downloads 30614672 Soil Loss Assessment at Steep Slope: A Case Study at the Guthrie Corridor Expressway, Selangor, Malaysia
Authors: Rabiul Islam
Abstract:
The study was in order to assess soil erosion at plot scale Universal Soil Loss Equation (USLE) erosion model and Geographic Information System (GIS) technique have been used for the study 8 plots in Guthrie Corridor Expressway, Selangor, Malaysia. The USLE model estimates an average soil loss soil integrating several factors such as rainfall erosivity factor(R ), Soil erodibility factor (K), slope length and steepness factor (LS), vegetation cover factor as well as conservation practice factor (C &P) and Results shows that the four plots have very low rates of soil loss, i.e. NLDNM, NDNM, PLDM, and NDM having an average soil loss of 0.059, 0.106, 0.386 and 0.372 ton/ha/ year, respectively. The NBNM, PLDNM and NLDM plots had a relatively higher rate of soil loss, with an average of 0.678, 0.757 and 0.493ton/ha/year. Whereas, the NBM is one of the highest rate of soil loss from 0.842 ton/ha/year to maximum 16.466 ton/ha/year. The NBM plot was located at bare the land; hence the magnitude of C factor(C=0.15) was the highest one.Keywords: USLE model, GIS, Guthrie Corridor Expressway (GCE), Malaysia
Procedia PDF Downloads 52914671 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion
Procedia PDF Downloads 19714670 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market
Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro
Abstract:
Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model
Procedia PDF Downloads 24214669 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data
Authors: Natalia Feruleva
Abstract:
The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data
Procedia PDF Downloads 11914668 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate
Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori
Abstract:
Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission
Procedia PDF Downloads 7514667 Hybrid Model for Measuring the Hedge Strategy in Exchange Risk in Information Technology Industry
Authors: Yi-Hsien Wang, Fu-Ju Yang, Hwa-Rong Shen, Rui-Lin Tseng
Abstract:
The business is notably related to the market risk according to the increase of liberalization of financial markets. Hence, the company usually utilized high financial leverage of derivatives to hedge the risk. When the company choose different hedging instruments to face a variety of exchange rate risk, we employ the Multinomial Logistic-AHP to analyze the impact of various derivatives. Hence, the research summarized the literature on relevant factors affecting managers selected exchange rate hedging instruments, using Multinomial Logistic Model and and further integrate AHP. Using Experts’ Questionnaires can test multi-level selection and hedging effect of different hedging instruments in order to calculate the hedging instruments and the multi-level factors of weights to understand the gap between the empirical results and practical operation. Finally, the Multinomial Logistic-AHP Model will sort the weights to analyze. The research findings can be a basis reference for investors in decision-making.Keywords: exchange rate risk, derivatives, hedge, multinomial logistic-AHP
Procedia PDF Downloads 44214666 Kinematics and Dynamics Analysis of Crank-Piston System of a High-Power, Nine-Cylinder Aircraft Engine
Authors: Michal Biały, Konrad Pietrykowski, Rafal Sochaczewski
Abstract:
The kinematics and dynamics analysis of crank-piston system of aircraft engine. The object of the study was the high power aircraft engine ASz 62-IR. This engine is produced by a Polish company WSK "PZL-KALISZ" S.A.". All analyzes were performed numerically using CAD and CAE environment. Three-dimensional model of the crank-piston system was developed based on real engine located in the Laboratory of Centre of Innovation and Advanced Technologies of Lublin University of Technology. During the development of the model, the technique of reverse engineering - 3D scanning was used. ASz 62-IR engine is characterized by a radial type of crank-piston system. In this system the cylinders are arranged radially around the circle. This crank-piston system consists of a main connecting rod and eight additional connecting rods. In addition, three-dimensional model consists of a piston pins, pistons and piston rings. As a result of the specific engine design, characteristics of the piston individual movement are slightly different from each other. But the model assumes that they are the same during the analysis. Three-dimensional model of the engine was implemented into the MSC Adams software. The environment of MSC Adams allows for multibody simulation of the dynamic phenomena. This determines the state parameters of the moving elements, among which the load or force distribution on each kinematic node can be distinguished. Materials and characteristic materials parameters were adopted on the basis of commonly used materials for engine parts. The mass values of individual elements were adopted on the basis of real engine parts. The piston gas forces were replaced by calculation of pressure variations recorded during engine tests on the engine test bench. The research the changes of forces acting in the individual kinematic pairs of crank-piston system. The model allows to determine the load on the crankshaft main bearings. This gives the possibility for the main supports forces analysis The model allows for testing and simulation of kinematics and dynamics of a radial aircraft engine. This is the first stage of the work, which aims to numerical simulation of vibration of multi-cylinder aircraft engine. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: aircraft engine, CAD, CAE, dynamics, kinematics, MSC Adams, numerical simulation
Procedia PDF Downloads 38714665 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 9314664 Econophysical Approach on Predictability of Financial Crisis: The 2001 Crisis of Turkey and Argentina Case
Authors: Arzu K. Kamberli, Tolga Ulusoy
Abstract:
Technological developments and the resulting global communication have made the 21st century when large capitals are moved from one end to the other via a button. As a result, the flow of capital inflows has accelerated, and capital inflow has brought with it crisis-related infectiousness. Considering the irrational human behavior, the financial crisis in the world under the influence of the whole world has turned into the basic problem of the countries and increased the interest of the researchers in the reasons of the crisis and the period in which they lived. Therefore, the complex nature of the financial crises and its linearly unexplained structure have also been included in the new discipline, econophysics. As it is known, although financial crises have prediction mechanisms, there is no definite information. In this context, in this study, using the concept of electric field from the electrostatic part of physics, an early econophysical approach for global financial crises was studied. The aim is to define a model that can take place before the financial crises, identify financial fragility at an earlier stage and help public and private sector members, policy makers and economists with an econophysical approach. 2001 Turkey crisis has been assessed with data from Turkish Central Bank which is covered between 1992 to 2007, and for 2001 Argentina crisis, data was taken from IMF and the Central Bank of Argentina from 1997 to 2007. As an econophysical method, an analogy is used between the Gauss's law used in the calculation of the electric field and the forecasting of the financial crisis. The concept of Φ (Financial Flux) has been adopted for the pre-warning of the crisis by taking advantage of this analogy, which is based on currency movements and money mobility. For the first time used in this study Φ (Financial Flux) calculations obtained by the formula were analyzed by Matlab software, and in this context, in 2001 Turkey and Argentina Crisis for Φ (Financial Flux) crisis of values has been confirmed to give pre-warning.Keywords: econophysics, financial crisis, Gauss's Law, physics
Procedia PDF Downloads 15314663 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project
Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende
Abstract:
Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport
Procedia PDF Downloads 2014662 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation
Procedia PDF Downloads 25314661 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia
Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha
Abstract:
In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping
Procedia PDF Downloads 32914660 Parametric Studies of Ethylene Dichloride Purification Process
Authors: Sh. Arzani, H. Kazemi Esfeh, Y. Galeh Zadeh, V. Akbari
Abstract:
Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease.Keywords: ethylene dichloride, purification, edc, simulation
Procedia PDF Downloads 31614659 Community Benefitting through Tourism: DASTA-Thailand Model
Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul
Abstract:
Designated Areas for Sustainable Tourism Administration (DASTA) is a public organization, dedicating to sustainable tourism development in 6 designated areas in Thailand. This paper provides rich reflections from a decade of DASTA, formulating an advanced model to deepen our understanding of 2 key intertwining issues; 1) what are the new landscapes of actors for community based tourism and 2) who are the benefactors and beneficiaries of tourism development within the community? An action research approach was used, enabling the process and evidence-based cases to be better captured. The aim is to build theoretical foundation through 13 communities/cases, which have engaged in community based tourism pilot projects. Drawing from emic and qualitative research, specific and contextual phenomenon provides succinct patterns of ‘Community Benefitting through Tourism (CbtT)’ model. The re-definition of the 2 key issues helps shape the interlinking of actors; practicalities of inclusive tourism and inter-sectoral framework and its value chain will also be set forth. In tourism sector, community members could be active primarily on the supply side as employees, entrepreneurs and local heritage experts. CbtT when well defined stimulates the entire value chain of local economy while promoting social innovation through positive dialogue with wider actors. Collaboration with a new set of actors who are from the tourism-related businesses and non-tourism related businesses create better impacts on mutual benefits.Keywords: community based tourism, community benefitting through tourism -CbtT DASTA model, sustainable tourism in thailand, value chain and inclusive business
Procedia PDF Downloads 29814658 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 6514657 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software
Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather
Abstract:
As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software
Procedia PDF Downloads 27414656 The Impact of Treatment of Latent Tuberculosis on the Incidence: The Case of Algeria
Authors: Schehrazad Selmane
Abstract:
We present a deterministic model which describes the dynamics of tuberculosis in Algerian population where the vaccination program with BCG is in place since 1969 and where the WHO recommendations regarding the DOTS (directly observed treatment, short course) strategy are in application. The impact of an intervention program, targeting recently infected people among all close contacts of active cases and their treatment to prevent endogenous reactivation, on the incidence of tuberculosis, is investigated. We showed that a widespread treatment of latently infected individuals for some years is recommended to shift from higher to lower equilibrium state and thereafter relaxation is recommended.Keywords: deterministic model, reproduction number, stability, tuberculosis
Procedia PDF Downloads 32814655 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.Keywords: air pollution, linear programming, mining, optimization, treatment technologies
Procedia PDF Downloads 20814654 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels
Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira
Abstract:
Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel
Procedia PDF Downloads 46914653 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 814652 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity
Authors: Zi-Yan Chao
Abstract:
With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity
Procedia PDF Downloads 2214651 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction
Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian
Abstract:
Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.Keywords: marijuana, youth, integrative model of behavioral prediction, Iran
Procedia PDF Downloads 55414650 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 60414649 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia PDF Downloads 18014648 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego
Abstract:
In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador
Procedia PDF Downloads 26914647 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 25914646 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model
Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard
Abstract:
Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.Keywords: bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESAR-LCPC
Procedia PDF Downloads 31014645 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies
Authors: Getachew Tilahun, Oluwole Makinde, David Malonza
Abstract:
We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation
Procedia PDF Downloads 32614644 BIASS in the Estimation of Covariance Matrices and Optimality Criteria
Authors: Juan M. Rodriguez-Diaz
Abstract:
The precision of parameter estimators in the Gaussian linear model is traditionally accounted by the variance-covariance matrix of the asymptotic distribution. However, this measure can underestimate the true variance, specially for small samples. Traditionally, optimal design theory pays attention to this variance through its relationship with the model's information matrix. For this reason it seems convenient, at least in some cases, adapt the optimality criteria in order to get the best designs for the actual variance structure, otherwise the loss in efficiency of the designs obtained with the traditional approach may be very important.Keywords: correlated observations, information matrix, optimality criteria, variance-covariance matrix
Procedia PDF Downloads 443