Search results for: threshold detecting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1541

Search results for: threshold detecting

1031 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System

Authors: Y. Kourd, D. Lefebvre

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.

Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis

Procedia PDF Downloads 625
1030 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data

Authors: Shinji Kawakura, Ryosuke Shibasaki

Abstract:

We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.

Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis

Procedia PDF Downloads 394
1029 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134
1028 An Analysis of Heavy Metal Pollution by Shisham (Dalbergia sissoo) in Different Cities of Pakistan

Authors: Shumaila Shakoor

Abstract:

The levels of metal pollution (Pb, Cd, Cu, Zn) were investigated in the leaves of Dalbergia sisso in urban areas of the Sahiwal and Faisalabad City. For this purpose, three habitats were selected for sampling (roads, residential areas and parks). High concentration of metal was found in roadside samples as compared to residential areas and parks. In Sahiwal city the mean concentration of Copper (7.68µgg-¹) Zinc (43.55µgg-¹) and lead (4.79µgg-¹) were detected. Similarly, concentration of Cu, Zn, Pb and Cd in leaves of Faisalabad city ranged from 14.4-11.3µgg-¹, 49.7-49.5µgg-¹,138.7-47.1µgg-¹. Highest concentration of heavy metals was detected in Faisalabad as compared to Sahiwal city and level of heavy metals was below the threshold limits, therefore, the concentration of heavy metals was not high in Dalbergia sissoo.

Keywords: cadmium, copper, lead, zinc

Procedia PDF Downloads 258
1027 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 398
1026 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 508
1025 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
1024 Institutional Capacity and Corruption: Evidence from Brazil

Authors: Dalson Figueiredo, Enivaldo Rocha, Ranulfo Paranhos, José Alexandre

Abstract:

This paper analyzes the effects of institutional capacity on corruption. Methodologically, the research design combines both descriptive and multivariate statistics to examine two original datasets based on secondary data. In particular, we employ a principal component model to estimate an indicator of institutional capacity for both state audit institutions and subnational judiciary courts. Then, we estimate the effect of institutional capacity on two dependent variables: (1) incidence of administrative irregularities and (2) time elapsed to judge corruption cases. The preliminary results using ordinary least squares, negative binomial and Tobit models suggest the same conclusions: higher the institutional audit capacity, higher is the probability of detecting a corruption case. On the other hand, higher the institutional capacity of state judiciary, the lower is the time to judge corruption cases.

Keywords: institutional capacity, corruption, state level institutions, evidence from Brazil

Procedia PDF Downloads 372
1023 Ultrasonographic Study of Normal Scapula in Horse

Authors: Mohamad Saeed Ahrari-Khafi, Abutorab Tabatabai-Naini, Niloofar Ajvadi

Abstract:

Scapular fracture is not common in horses, due to the proper protection of scapular muscles. However, if it happens, it can cause lameness in horses. Because of the overlapping of the scapula on the contralateral scapula and the thorax, usually radiography cannot be helpful in evaluation, except in small amount of its ventral part. Although ultrasonography is mainly used for diagnosis of soft tissue injuries, it also can be used for evaluation of bone surface abnormalities. This study was intended to document the normal ultrasonographic appearance of the equine scapula. Right forelimb of six horses was used. To facilitate the image assessment, a zoning system was developed. Ultrasonography was performed by using a 5-11 MHz linear array transducer. Ultrasonographic anatomy of scapula in different parts and planes was imaged and documented, hoping to help practitioners to diagnose fractures and injuries. Results showed that ultrasonography is capable to depict different parts of the scapula and regional muscles, and can be used for detecting fractures and other abnormalities.

Keywords: horse, scapula, scapular fracture, ultrasonography

Procedia PDF Downloads 305
1022 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image

Authors: Leping Chen, Daoxiang An, Xiaotao Huang

Abstract:

Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.

Keywords: circular SAR, vehicle detection, automatic, imaging

Procedia PDF Downloads 367
1021 Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field

Authors: Brahim Mahfoud

Abstract:

A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.

Keywords: magnetic field, manufacturing, silicon melt, thermocapillary

Procedia PDF Downloads 84
1020 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 636
1019 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity

Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz

Abstract:

The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.

Keywords: irrigation, matric potential, rice, water scarcity

Procedia PDF Downloads 198
1018 A New Full Adder Cell for High Performance Low Power Applications

Authors: Mahdiar Hosseighadiry, Farnaz Fotovatikhah, Razali Ismail, Mohsen Khaledian, Mehdi Saeidemanesh

Abstract:

In this paper, a new low-power high-performance full adder is presented based on a new design method. The proposed method relies on pass gate design and provides full-swing circuits with minimum number of transistors. The method has been applied on SUM, COUT and XOR-XNOR modules resulting on rail-to-rail intermediate and output signals with no feedback transistors. The presented full adder cell has been simulated in 45 and 32 nm CMOS technologies using HSPICE considering parasitic capacitance and compared to several well-known designs from literature. In addition, the proposed cell has been extensively evaluated with different output loads, supply voltages, temperatures, threshold voltages, and operating frequencies. Results show that it functions properly under all mentioned conditions and exhibits less PDP compared to other design styles.

Keywords: full adders, low-power, high-performance, VLSI design

Procedia PDF Downloads 388
1017 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss

Procedia PDF Downloads 199
1016 Scouring Rate Pattern/Monitoring at Coastal and Offshore Structures

Authors: Ahmad Saifullah Mazlan, Hossein Basser, Shatirah Akib

Abstract:

Scouring pattern evaluation and measuring its depth around coastal and offshore structures is very essential issue to assure the safety of the structures as well as providing needed design parameters. Scouring is known as one of the important phenomena which threatens the safety of infrastructures. Several countermeasures have been developed to control scouring by protecting the structures against water flow attack directly or indirectly by changing the water flow pattern. Recently, monitoring methods for estimating water flow pattern and scour depth are studied to track the safety of structures. Since most of studies regarding scouring is related to monitoring scouring around piers in rivers therefore it is necessary to develop researches investigating scouring around piers in coastal and offshore areas. This paper describes a review of monitoring methods may be used for detecting scour depth around piers in coastal and offshore structures.

Keywords: scour, monitoring, pier, coastal, offshore

Procedia PDF Downloads 644
1015 Nonlinear Model Predictive Control for Biodiesel Production via Transesterification

Authors: Juliette Harper, Yu Yang

Abstract:

Biofuels have gained significant attention recently due to the new regulations and agreements regarding fossil fuels and greenhouse gases being made by countries around the globe. One of the most common types of biofuels is biodiesel, primarily made via the transesterification reaction. We model this nonlinear process in MATLAB using the standard kinetic equations. Then, a nonlinear Model predictive control (NMPC) was developed to regulate this process due to its capability to handle process constraints. The feeding flow uncertainty and kinetic disturbances are further incorporated in the model to capture the real-world operating conditions. The simulation results will show that the proposed NMPC can guarantee the final composition of fatty acid methyl esters (FAME) above the target threshold with a high chance by adjusting the process temperature and flowrate. This research will allow further understanding of NMPC under uncertainties and how to design the computational strategy for larger process with more variables.

Keywords: NMPC, biodiesel, uncertainties, nonlinear, MATLAB

Procedia PDF Downloads 97
1014 Saliency Detection Using a Background Probability Model

Authors: Junling Li, Fang Meng, Yichun Zhang

Abstract:

Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.

Keywords: visual saliency, background probability, boundary knowledge, background priors

Procedia PDF Downloads 429
1013 Hyper Presidentialism and First Year of the Turkish Type of Presidentialism

Authors: Ahmet Ekinci

Abstract:

The new government system of Turkey can be described as hyper-presidentialism, this is because the president then becomes the arbiter of all powers. In another word, the power to enact decrees, appoint bureaucrats and judicial officials into offices, and the power to dissolve a parliament belongs solely to the president. As a strong presidency fuse with a disciplined party system as well as concurrent elections and 10 percent electoral threshold, the president possibly poses a great danger to the separation of powers. Additionally, with regards to the presidential term, the president constitutionally holds the power to be elected only for two terms in Turkey. However, Erdoğan and his supporters believe that the 2017 constitutional amendments that changed the system of government have reset the agenda. Thus, the 2017 amendments offered Erdoğan a secret opportunity to join the presidential election race for a third and even a fourth term.

Keywords: hyper-presidentialism, Turkish presidentialism, presidential decree, concurrent election, Erdogan’s term limit, Turkish government system

Procedia PDF Downloads 139
1012 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 117
1011 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
1010 Early Return to Play in Football Player after ACL Injury: A Case Report

Authors: Nicola Milani, Carla Bellissimo, Davide Pogliana, Davide Panzin, Luca Garlaschelli, Giulia Facchinetti, Claudia Casson, Luca Marazzina, Andrea Sartori, Simone Rivaroli, Jeff Konin

Abstract:

The patient is a 26 year-old male amateur football player from Milan, Italy; (81kg; 185cm; BMI 23.6 kg/m²). He sustained a non-contact anterior cruciate ligament tear to his right knee in June 2021. In September 2021, his right knee ligament was reconstructed using a semitendinosus graft. The injury occurred during a football match on natural grass with typical shoes on a warm day (32 degrees celsius). Playing as a defender he sustained the injury during a change of direction, where the foot was fixated on the grass. He felt pain and was unable to continue playing the match. The surgeon approved his rehabilitation to begin two weeks post-operative. The initial physiotherapist assessment determined performing two training sessions per day within the first three months. In the first three weeks, the pain was 4/10 on Numerical Rating Scale (NRS), no swelling, a range of motion was 0-110°, with difficulty fully extending his knee and minimal quadriceps activation. Crutches were discontinued at four weeks with improved walking. Active exercise, electrostimulator, physical therapy, massages, osteopathy, and passive motion were initiated. At week 6, he completed his first functional movement screen; the score was 16/21 with no pain and no swelling. At week 8, the isokinetic test showed a 23% differential deficit between the two legs in maximum strength (at 90°/s). At week 10, he improved to 15% of injury-induced deficit which suggested he was ready to start running. At week 12, the athlete sustained his first threshold test. At week 16, he performed his first return to sports movement assessment, which revealed a 10% stronger difference between the legs. At week 16, he had his second threshold test. At week 17, his first on-field test revealed a 5% differential deficit between the two legs in the hop test. At week 18, isokinetic test demonstrates that the uninjured leg was 7% stronger than the recovering leg in maximum strength (at 90°/s). At week 20, his second on-field test revealed a 2% difference in hop test; at week 21, his third isokinetic test demonstrated a difference of 5% in maximum strength (at 90°/s). At week 21, he performed his second return to sports movement assessment which revealed a 2% difference between the limbs. Since it was the end of the championship, the team asked him to partake in the playoffs; moreover the player was very motivated to participate in the playoffs also because he was the captain of the team. Together with the player and the team, we decided to let him play even though we were aware of a heightened risk of injury than what is reported in the literature because of two factors: biological recovery times and the results of the tests we performed. In the decision making process about the athlete’s recovery time, it is important to balance the information available from the literature with the desires of the patient to avoid frustration.

Keywords: ACL, football, rehabilitation, return to play

Procedia PDF Downloads 119
1009 Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer

Authors: Marwa I. Shabayek, Ola A. Said, Hanan A. Attaia, Heba A. Awida

Abstract:

Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20), and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specifcity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%.

Keywords: angiogenin, bladder cancer, clusterin, cytology

Procedia PDF Downloads 297
1008 Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems

Authors: Abdulla Almulla, Wafaa Mahdi

Abstract:

Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages.

Keywords: building materials, NORMs, HNBRA, radionuclides, activity concentrations, expert systems

Procedia PDF Downloads 169
1007 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
1006 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W

Authors: Manish Kumar Rajak, Sanjay Gupta

Abstract:

Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.

Keywords: mesh networks, MANET, packet count, threshold, throughput

Procedia PDF Downloads 474
1005 Detecting Characters as Objects Towards Character Recognition on Licence Plates

Authors: Alden Boby, Dane Brown, James Connan

Abstract:

Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.

Keywords: computer vision, character recognition, licence plate recognition, object detection

Procedia PDF Downloads 121
1004 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 231
1003 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

Authors: Jinming Ma, Tianbing Xia, Janusz Getta

Abstract:

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Keywords: mobile internet, advertisement, anti-fraud, fuzzy set theory

Procedia PDF Downloads 181
1002 ICanny: CNN Modulation Recognition Algorithm

Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng

Abstract:

Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.

Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm

Procedia PDF Downloads 191