Search results for: resource management algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14436

Search results for: resource management algorithm

13926 Classifying and Analysis 8-Bit to 8-Bit S-Boxes Characteristic Using S-Box Evaluation Characteristic

Authors: Muhammad Luqman, Yusuf Kurniawan

Abstract:

S-Boxes is one of the linear parts of the cryptographic algorithm. The existence of S-Box in the cryptographic algorithm is needed to maintain non-linearity of the algorithm. Nowadays, modern cryptographic algorithms use an S-Box as a part of algorithm process. Despite the fact that several cryptographic algorithms today reuse theoretically secure and carefully constructed S-Boxes, there is an evaluation characteristic that can measure security properties of S-Boxes and hence the corresponding primitives. Analysis of an S-Box usually is done using manual mathematics calculation. Several S-Boxes are presented as a Truth Table without any mathematical background algorithm. Then, it’s rather difficult to determine the strength of Truth Table S-Box without a mathematical algorithm. A comprehensive analysis should be applied to the Truth Table S-Box to determine the characteristic. Several important characteristics should be owned by the S-Boxes, they are Nonlinearity, Balancedness, Algebraic degree, LAT, DAT, differential delta uniformity, correlation immunity and global avalanche criterion. Then, a comprehensive tool will be present to automatically calculate the characteristics of S-Boxes and determine the strength of S-Box. Comprehensive analysis is done on a deterministic process to produce a sequence of S-Boxes characteristic and give advice for a better S-Box construction.

Keywords: cryptographic properties, Truth Table S-Boxes, S-Boxes characteristic, deterministic process

Procedia PDF Downloads 362
13925 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 66
13924 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number

Authors: N. Dahraoui, M. Boulakroune, D. Benatia

Abstract:

In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov-Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.

Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage

Procedia PDF Downloads 418
13923 Description of the Non-Iterative Learning Algorithm of Artificial Neuron

Authors: B. S. Akhmetov, S. T. Akhmetova, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin

Abstract:

The problem of training of a network of artificial neurons in biometric appendices is that this process has to be completely automatic, i.e. the person operator should not participate in it. Therefore, this article discusses the issues of training the network of artificial neurons and the description of the non-iterative learning algorithm of artificial neuron.

Keywords: artificial neuron, biometrics, biometrical applications, learning of neuron, non-iterative algorithm

Procedia PDF Downloads 494
13922 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 474
13921 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: battery storage buffer, charging station, electric vehicle, experimental analysis, management algorithm, switches control

Procedia PDF Downloads 165
13920 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers

Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen

Abstract:

In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.

Keywords: centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA

Procedia PDF Downloads 392
13919 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method

Authors: Satyendra Pratap Singh, S. P. Singh

Abstract:

This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.

Keywords: gravitational search algorithm (GSA), law of motion, law of gravity, observability, phasor measurement unit

Procedia PDF Downloads 507
13918 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 270
13917 Developing Human Resources through Inclusive Education: A Study of Effectiveness of Government Policies in India

Authors: Sanjay Kumar Srivastava, Rajesh Srivastava

Abstract:

Human resource is the key point of success of any economy. From the past few decades, policies started to move in the route of expanding inclusive education with effective involvement of government.Governments of developing nations are generating policies for educational upliftment. Applying educational policies, the motive of the government is to maintain and develop the effective human resource within a society. The attention of the government includes primary education to higher education. It also involves professional training programmes related to every discipline. The aim of this paper is to find out the government policies in terms of expenditure and achievements for inclusive education to develop human resources in developing countries. A case of Indian experience has been taken into consideration. This approach generates a picture as to how India is enriching its educational system for human resource development and this research study will be useful for the policy makers to determine the appropriate level of overall spending of government and achievements in the education system for human resource development. Analytical research methodology has been adopted.

Keywords: government policies, inclusive education, National Educational Policy, NCERT

Procedia PDF Downloads 322
13916 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 506
13915 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks

Authors: Jai Prakash Prasad, Suresh Chandra Mohan

Abstract:

Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.

Keywords: energy efficient, network lifetime, sensor networks, wireless communication

Procedia PDF Downloads 469
13914 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF

Procedia PDF Downloads 166
13913 Design of Middleware for Mobile Group Control in Physical Proximity

Authors: Moon-Tak Oh, Kyung-Min Park, Tae-Eun Yoon, Hoon Choi, Chil-Woo Lee

Abstract:

This paper is about middle-ware which enables group-user applications on mobile devices in physical proximity to interact with other devices without intervention of a central server. Requirements of the middle-ware are identified from service usage scenarios, and the functional architecture of the middle-ware is specified. These requirements include group management, synchronization, and resource management. Group Management needs to provide various capabilities to such applications with respect to managing multiple users (e.g., creation of groups, discovery of group or individual users, member join/leave, election of a group manager and service-group association) using D2D communication technology. We designed the middle-ware for the above requirements on the Android platform.

Keywords: group user, middleware, mobile service, physical proximity

Procedia PDF Downloads 506
13912 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle

Authors: Mejri Achref

Abstract:

This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.

Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy

Procedia PDF Downloads 178
13911 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: diversification search, intensification search, optimal weighting, particle swarm optimization

Procedia PDF Downloads 581
13910 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining

Procedia PDF Downloads 458
13909 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique

Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V

Abstract:

This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.

Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index

Procedia PDF Downloads 149
13908 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System

Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes

Abstract:

The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.

Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models

Procedia PDF Downloads 81
13907 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh

Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun

Abstract:

Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.

Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization

Procedia PDF Downloads 183
13906 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 147
13905 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping

Procedia PDF Downloads 243
13904 Pricing Effects on Equitable Distribution of Forest Products and Livelihood Improvement in Nepalese Community Forestry

Authors: Laxuman Thakuri

Abstract:

Despite the large number of in-depth case studies focused on policy analysis, institutional arrangement, and collective action of common property resource management; how the local institutions take the pricing decision of forest products in community forest management and what kinds of effects produce it, the answers of these questions are largely silent among the policy-makers and researchers alike. The study examined how the local institutions take the pricing decision of forest products in the lowland community forestry of Nepal and how the decisions affect to equitable distribution of benefits and livelihood improvement which are also objectives of Nepalese community forestry. The study assumes that forest products pricing decisions have multiple effects on equitable distribution and livelihood improvement in the areas having heterogeneous socio-economic conditions. The dissertation was carried out at four community forests of lowland, Nepal that has characteristics of high value species, matured-experience of community forest management and better record-keeping system of forest products production, pricing and distribution. The questionnaire survey, individual to group discussions and direct field observation were applied for data collection from the field, and Lorenz curve, gini-coefficient, χ²-text, and SWOT (Strong, Weak, Opportunity, and Threat) analysis were performed for data analysis and results interpretation. The dissertation demonstrates that the low pricing strategy of high-value forest products was supposed crucial to increase the access of socio-economically weak households, and to and control over the important forest products such as timber, but found counter productive as the strategy increased the access of socio-economically better-off households at higher rate. In addition, the strategy contradicts to collect a large-scale community fund and carry out livelihood improvement activities as per the community forestry objectives. The crucial part of the study is despite the fact of low pricing strategy; the timber alone contributed large part of community fund collection. The results revealed close relation between pricing decisions and livelihood objectives. The action research result shows that positive price discrimination can slightly reduce the prevailing inequality and increase the fund. However, it lacks to harness the full price of forest products and collects a large-scale community fund. For broader outcomes of common property resource management in terms of resource sustainability, equity, and livelihood opportunity, the study suggests local institutions to harness the full price of resource products with respect to the local market.

Keywords: community, equitable, forest, livelihood, socioeconomic, Nepal

Procedia PDF Downloads 536
13903 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications

Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe

Abstract:

This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.

Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation

Procedia PDF Downloads 103
13902 Comparison of Parallel CUDA and OpenMP Implementations of Memetic Algorithms for Solving Optimization Problems

Authors: Jason Digalakis, John Cotronis

Abstract:

Memetic algorithms (MAs) are useful for solving optimization problems. It is quite difficult to search the search space of the optimization problem with large dimensions. There is a challenge to use all the cores of the system. In this study, a sequential implementation of the memetic algorithm is converted into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason, CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the memetic algorithm. For this purpose, fourteen benchmark functions are selected as test problems. The obtained results indicate that our approach leads to speedups up to five thousand times higher compared to one CPU thread while maintaining a reasonable results quality. This clearly shows that GPUs have the potential to acceleration of MAs and allow them to solve much more complex tasks.

Keywords: memetic algorithm, CUDA, GPU-based memetic algorithm, open multi processing, multimodal functions, unimodal functions, non-linear optimization problems

Procedia PDF Downloads 101
13901 Creation of S-Box in Blowfish Using AES

Authors: C. Rekha, G. N. Krishnamurthy

Abstract:

This paper attempts to develop a different approach for key scheduling algorithm which uses both Blowfish and AES algorithms. The main drawback of Blowfish algorithm is, it takes more time to create the S-box entries. To overcome this, we are replacing process of S-box creation in blowfish, by using key dependent S-box creation from AES without affecting the basic operation of blowfish. The method proposed in this paper uses good features of blowfish as well as AES and also this paper demonstrates the performance of blowfish and new algorithm by considering different aspects of security namely Encryption Quality, Key Sensitivity, and Correlation of horizontally adjacent pixels in an encrypted image.

Keywords: AES, blowfish, correlation coefficient, encryption quality, key sensitivity, s-box

Procedia PDF Downloads 226
13900 Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future.

Keywords: climate change, groundwater, management strategies, tropical karst island, Rote Island, Indonesia

Procedia PDF Downloads 155
13899 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 143
13898 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: coarsening, mesh clustering, shape approximation, mesh simplification

Procedia PDF Downloads 380
13897 Water Scarcity in the Gomti Nagar Area under the Impact of Climate Changes and Assessment for Groundwater Management

Authors: Rajkumar Ghosh

Abstract:

Climate change has led to decreased water availability in the Gomti Nagar area of Uttar Pradesh, India. Climate change has reduced the amount of precipitation and increased the rate of evaporation. The region is heavily reliant on surface water sources (Gomti river, Sharda Canal) and groundwater. Efficient management of groundwater resources is crucial for addressing water shortages. These may include: Exploring alternative water sources, such as wastewater recycling and desalination, can help augment water supply and reduce dependency on rainfall-dependent sources. Promoting the use of water-efficient technologies in industries, agriculture, and water-efficient infrastructure in urban areas can contribute to reducing water demand and optimizing water use. Incorporating climate change considerations into urban planning and infrastructure development can help ensure water security in the face of future climate uncertainties. Addressing water scarcity in the Gomti Nagar area requires a multi-pronged approach that combines sustainable groundwater management practices, climate change adaptation strategies, and integrated water resource management. By implementing these measures, the region can work towards ensuring a more sustainable and reliable water supply in the context of climate change. Water is the most important natural resource for the existence of living beings in the Earth's ecosystem. On Earth, 1.2 percent of the water is drinkable, but only 0.3 percent is usable by people. Water scarcity is a growing concern in India due to the impact of climate change and over-exploitation of water resources. Excess groundwater withdrawal causes regular declines in groundwater level. Due to city boundary expansion and growing urbanization, the recharge point for groundwater tables is decreasing. Rainwater infiltration into the subsoil is also reduced by unplanned, uneven settlements in urban change.

Keywords: climate change, water scarcity, groundwater, rainfall, water supply

Procedia PDF Downloads 83