Search results for: recovery effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15880

Search results for: recovery effect

15370 Sustainability: Effect of Earthquake in Micro Hydro Sector, a Case Study of Micro Hydro Projects in Northern Part of Kavre District, Nepal

Authors: Ram Bikram Thapa, Ganesh Lama

Abstract:

The Micro Hydro is one of the successful technology in Rural Nepal. Kavre is one of the pioneer district of sustainability of Micro Hydro Projects. A total of 30 Micro Hydro projects have been constructed with producing 700 KW of energy in northern side of the Kavre district. This study shows that 67% of projects have been affected by devastating earthquake in April and May, 2015. Out of them 23% are completely damaged. Most of the structures are failure like Penstock 71%, forebay 21%, powerhouse 7% have been completely damaged and 91% Canal & 44% Intake structures have been partially damaged by the earthquake. This paper empathizes that the engineering design is the vital component for sustainability of Micro Hydro Projects. This paper recommended that technicians should be considered the safety factor of earthquake and provision of disaster recovery fund during design of Micro Hydro Projects.

Keywords: micro hydro, earthquake, structural failure, sustainability

Procedia PDF Downloads 325
15369 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 256
15368 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis

Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.

Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide

Procedia PDF Downloads 347
15367 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery

Authors: Peña A. Roland R., Lozano P. Jean P.

Abstract:

The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.

Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow

Procedia PDF Downloads 105
15366 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 267
15365 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 153
15364 Characterization and Modification of the Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. Standard, J. Hart, C. C. Sorrell

Abstract:

Yttrium stabilized tetragonal zirconium polycrystalline (Y-TZP) has been used as a dental biomaterial. The strength and toughness of zirconia can be accounted for by its toughening mechanisms, such as crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucency of Y-TZP means that it may not meet the aesthetic requirements due to its white/grey appearance in polycrystalline form. To improve optical property of the Zirconia, precise evaluation of its refractive index is of significance. Zirconia`s optical properties need to be studied more in depth. Number of studies assumed, scattered light is isotropically distributed over all angles from biological media when defining optical parameters. Nevertheless, optical behaviour of real biological material depends on angular scattering of light by anisotropy material. Therefore, the average cosine of the scattering angle (which represent recovery phase function in the scattering angular distribution) usually characterized by anisotropy material. It has been identified that yttrium anti-sites present in the space charge layer have no significant role in the absorption of light in the visible range. Addition of cation dopant to polycrystalline zirconia results in segregate to grain boundaries and grain growth. Intrinsic and extrinsic properties of ZrO2 and their effect on optical properties need to be investigated. Intrinsic properties such as chemical composition, defect structure (oxygen vacancy), phase configuration (porosity, second phase) and distribution of phase need to be studied to comprehend their effect on refraction index, absorption/reflection and scattering. Extrinsic properties such as surface structure, thickness, underlying tooth structure, cement layer (type, thickness), and light source (natural, curing, artificial) of ZrO2 need to be studied to understand their effect on colour and translucency of material. This research reviewed effect of stabilization of tetragonal zirconia on optical property of zirconia for dental application.

Keywords: optical properties, zirconia dental biomaterial, chemical composition, phase composition

Procedia PDF Downloads 380
15363 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 184
15362 Is There a Month Effect on the Deposits Interest Rates? Evidence from the Greek Banking Industry during the Period 2003-13

Authors: Konstantopoulos N., Samitas A., E. Vasileiou, Kinias I.

Abstract:

This article introduces a new view on the month effect study. Applying a Markov Switching Regime model on data from the Greek Time Deposits (TDs) market for the time span January 2003 to October 2013, we examine if there is a month effect on the Greek banking industry. The empirical findings provide convincing evidence for a new king of monthly anomaly. The explanation for the specific abnormality may be the upward deposits window dressing. Further research should be done in order to examine if the specific calendar effect exists in other countries or it is only a Greek phenomenon.

Keywords: calendar anomalies, banking crisis, month effect, Greek banking industry

Procedia PDF Downloads 346
15361 Finding the Reaction Constant between Humic Acid and Aluminum Ion by Fluorescence Quenching Effect

Authors: Wen Po Cheng, Chen Zhao Feng, Ruey Fang Yu, Lin Jia Jun, Lin Ji Ye, Chen Yuan Wei

Abstract:

Humic acid was used as the removal target for evaluating the coagulation efficiency in this study. When the coagulant ions mix with a humic acid solution, a Fluorescence quenching effect may be observed conditionally. This effect can be described by Stern-Volmer linear equation which can be used for quantifying the quenching value (Kq) of the Fluorescence quenching effect. In addition, a Complex-Formation Titration (CFT) theory was conducted and the result was used to explain the electron-neutralization capability of the coagulant (AlCl₃) at different pH. The results indicated that when pH of the ACl₃ solution was between 6 and 8, fluorescence quenching effect obviously occurred. The maximum Kq value was found to be 102,524 at pH 6. It means that the higher the Kq value is, the better complex reaction between a humic acid and aluminum salts will be. Through the Kq value study, the optimum pH can be quantified when the humic acid solution is coagulated with aluminum ions.

Keywords: humic acid, fluorescence quenching effect, complex reaction, titration

Procedia PDF Downloads 556
15360 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 265
15359 Implementation of Enhanced Recovery after Surgery (ERAS) Protocols in Laparoscopic Sleeve Gastrectomy (LSG); A Systematic Review and Meta-analysis

Authors: Misbah Nizamani, Saira Malik

Abstract:

Introduction: Bariatric surgery is the most effective treatment for patients suffering from morbid obesity. Laparoscopic sleeve gastrectomy (LSG) accounts for over 50% of total bariatric procedures. The aim of our meta-analysis is to investigate the effectiveness and safety of Enhanced Recovery After Surgery (ERAS) protocols for patients undergoing laparoscopic sleeve gastrectomy. Method: To gather data, we searched PubMed, Google Scholar, ScienceDirect, and Cochrane Central. Eligible studies were randomized controlled trials and cohort studies involving adult patients (≥18 years) undergoing bariatric surgeries, i.e., Laparoscopic sleeve gastrectomy. Outcome measures included LOS, postoperative narcotic usage, postoperative pain score, postoperative nausea and vomiting, postoperative complications and mortality, emergency department visits and readmission rates. RevMan version 5.4 was used to analyze outcomes. Results: Three RCTs and three cohorts with 1522 patients were included in this study. ERAS group and control group were compared for eight outcomes. LOS was reduced significantly in the intervention group (p=0.00001), readmission rates had borderline differences (p=0.35) and higher postoperative complications in the control group, but the result was non-significant (p=0.68), whereas postoperative pain score was significantly reduced (p=0.005). Total MME requirements became significant after performing sensitivity analysis (p= 0.0004). Postoperative mortality could not be analyzed on account of invalid data showing 0% mortality in two cohort studies. Conclusion: This systemic review indicated the effectiveness of the application of ERAS protocols in LSG in reducing the length of stay, post-operative pain and total MME requirements postoperatively, indicating the feasibility and assurance of its application.

Keywords: eras protocol, sleeve gastrectomy, bariatric surgery, enhanced recovery after surgery

Procedia PDF Downloads 24
15358 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver

Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen

Abstract:

This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).

Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network

Procedia PDF Downloads 49
15357 Effectiveness of Micania micrantha Extract on Woven Wound Dressing Materials

Authors: Md. Lutfor Rahman, Shaikh Md. Mominul Alam

Abstract:

Sometimes it causes external bleeding when human skin gets seriously injured. Natural source-based blood-clotting bandages are rarely used. The available chemically treated blood clotting materials sometimes show adverse effects and are not effective in quick recovery. Considering these facts, a new blood clotting woven wound dressing product has been developed which is a combination of Micania micrantha extract with woven fabric by absorption process. This product can be represented as an important addition to medical textiles. To develop a dressing material, Micania micrantha leaf juice was applied on bleached woven fabric, followed by sun drying. The effectiveness of this woven sample was tested on volunteers. It was observed that Micania micrantha containing woven sample has a tremendous effect over conventional wound dressing materials. This result is a milestone for the textile and medical sector.

Keywords: blood clotting, Micania micrantha, medical textiles, woven fabric

Procedia PDF Downloads 110
15356 The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song Yan Li, Zihan Gu, Li Shaopeng

Abstract:

In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, foam life, foam scanning

Procedia PDF Downloads 123
15355 Unlocking the Language of Dreams: Interpreting Trauma and Healing in Psychotherapy

Authors: Mehravar Javid

Abstract:

This article delves straight into the fascinating role of dream interpretation in psychotherapy, particularly in the context of trauma and healing. By applying a detailed case study of a 19-year-old Iranian woman who has been undergoing therapy, it can explore to what extent her vivid and symbolic dreams – featuring mermaids, hanging fetuses, and themes of control and domination – serve as a reflection of her innermost fears, unresolved traumas, and struggles with identity and sexuality. Another fact to be highlighted is that the dreams, rich in metaphor and symbolism, offer a unique outlook into the patient's subconscious mind, revealing layers of her psychological state that might otherwise remain obscured and vague. On the other hand, the article examines how the therapist navigates these dreamscapes by utilizing them as a tool to understand and address the patient's deep-seated emotional conflicts, traumatic experiences, and identity issues. By analyzing these dreams, we can demonstrate how such dreams can be a crucial part of the healing process, providing insights that facilitate emotional recovery and self-discovery. This discovery underscores the significance of dreams in psychotherapy, highlighting their potential as a powerful medium for unraveling the complexities of the human psyche and aiding in the journey toward mental health and recovery.

Keywords: dream, interpreting, trauma, healing

Procedia PDF Downloads 50
15354 Impact of Chemical Flooding on Displacement Efficiency in Shallow Carbonate Marine Reservoir (Case Study)

Authors: Tarek Duzan, Walid Eddib

Abstract:

The marine shallow carbonate reservoir (G- Eocene) is one of the biggest mature water drive reservoir of Waha Oil Company. The cumulative oil produced up to date is about to eighty percent of the booked original oil in place at ninety five percent of Water cut. However, the company believes that there is a good amount of remaining oil left need to be recovered. Many laboratory studies have been conducted to see the possibility drain the commercial oil left behind using two types of gases, namely, carbone dioxide and enriched hydrocarbon gas injection. The conclusions of those cases were inconclusive Technically and Economically. Therefore, the company has decided to verify another Tertiary Recovery (EOR) technique that may be applied to the interested reservoir. A global screening criteria and quick Laboratory chemical tests have been conducted by using many types of chemical injection into real rock samples. The outcomes were unique economically and provide a significant increase in the commercial oil left. Finally, the company has started conducting a sector pilot plan before proceeding with a full plan. There are many wellbores available to use in a potential field Enhanced Oil Recovery.

Keywords: chemical lab. test, ASP, rock types, oil samples, and global screening criteria

Procedia PDF Downloads 120
15353 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 131
15352 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 246
15351 Empirical Investigation of Bullwhip Effect with Sensitivity Analysis in Supply Chain

Authors: Shoaib Yousaf

Abstract:

The main purpose of this research is to the empirical investigation of the bullwhip effect under sensitivity analysis in the two-tier supply chain. The simulation modeling technique has been applied in this research as a research methodology to see the sensitivity analysis of the bullwhip effect in the rice industry of Pakistan. The research comprises two case studies that have been chosen as a sample. The results of this research have confirmed that reduction in production delay reduces the bullwhip effect, which conforms to the time compressing paradigm and the significance of the reduction in production delay to lessen demand amplification. The result of this research also indicates that by increasing the value of time to adjust inventory decreases the bullwhip effect. Furthermore, by decreasing the value of alpha increases the damping effect of the exponential smoother, it is not surprising that it also reduces the bullwhip effect. Moreover, by reducing the value of time to work in progress also reduces the bullwhip effect. This research will help practitioners and operation managers to reduces the major costs of their products in three ways. They can reduce their i) inventory levels, ii) better utilize their capacity and iii) improve their forecasting techniques. However, this study is based on two tier supply chain, while in reality the supply chain has got many tiers. Hence, future work will be extended across more than two-tier supply chains.

Keywords: bullwhip effect, rice industry, supply chain dynamics, simulation, sensitivity analysis

Procedia PDF Downloads 116
15350 Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System

Authors: Elena Vinogradova, Aleksei Pleshakov, Aleksei Yakovlev

Abstract:

During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle.

Keywords: optimal angle, optimization, supersonic air intake, total pressure recovery coefficient

Procedia PDF Downloads 218
15349 Optimization of Gold Adsorption from Aqua-Regia Gold Leachate Using Baggase Nanoparticles

Authors: Oluwasanmi Teniola, Abraham Adeleke, Ademola Ibitoye, Moshood Shitu

Abstract:

To establish an economical and efficient process for the recovery of gold metal from refractory gold ore obtained from Esperando axis of Osun state Nigeria, the adsorption of gold (III) from aqua reqia leached solution of the ore using bagasse nanoparticles has been studied under various experimental variables using batch technique. The extraction percentage of gold (III) on the prepared bagasse nanoparticles was determined from its distribution coefficients as a function of solution pH, contact time, adsorbent, adsorbate concentrations, and temperature. The rate of adsorption of gold (III) on the prepared bagasse nanoparticles is dependent on pH, metal concentration, amount of adsorbate, stirring rate, and temperature. The adsorption data obtained fit into the Langmuir and Freundlich equations. Three different temperatures were used to determine the thermodynamic parameters of the adsorption of gold (III) on bagasse nanoparticles. The heat of adsorption was measured to be a positive value ΔHo = +51.23kJ/mol, which serves as an indication that the adsorption of gold (III) on bagasse nanoparticles is endothermic. Also, the negative value of ΔGo = -0.6205 kJ/mol at 318K shows the spontaneity of the process. As the temperature was increased, the value of ΔGo becomes more negative, indicating that an increase in temperature favors the adsorption process. With the application of optimal adsorption variables, the adsorption capacity of gold was 0.78 mg/g of the adsorbent, out of which 0.70 mg of gold was desorbed with 0.1 % thiourea solution.

Keywords: adsorption, bagasse, extraction, nanoparticles, recovery

Procedia PDF Downloads 130
15348 Thermal and Dielectric Breakdown Criterium for Low Voltage Switching Devices

Authors: Thomas Merciris, Mathieu Masquere, Yann Cressault, Pascale Petit

Abstract:

The goal of an alternative current (AC) switching device is to allow the arc (created during the opening phase of the contacts) to extinguish at the current zero. The plasma temperature rate of cooling down, the electrical characteristic of the arc (current-voltage), and the rise rate of the transient recovery voltage (TRV) are critical parameters which influence the performance of a switching device. To simulate the thermal extinction of the arc and to obtain qualitative data on the processes responsible for this phenomenon, a 1D MHD fluid model in the air was developed and coupled to an external electric circuit. After thermal extinction, the dielectric strength of the hot air (< 4kK) was then estimated by the Bolsig+ software and the critical electric fields method with the temperature obtained by the MHD simulation. The influence of copper Cu and silver Ag vapors was investigated on the thermal and dielectric part of the simulation with various current forms (100A to 1kA). Finally, those values of dielectric strength have been compared to the experimental values obtained in the case of two separating silver contacts. The preliminary results seem to indicate the dielectric strength after multiples hundreds of microseconds is the same order of magnitude as experimentally found.

Keywords: MHD simulation, dielectric recovery, Bolsig+, silver vapors, copper vapors, breakers, electric arc

Procedia PDF Downloads 82
15347 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 23
15346 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 125
15345 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 179
15344 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder

Authors: Fu-Chien Hung, Chi‐Wen Liang

Abstract:

Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.

Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis

Procedia PDF Downloads 439
15343 Can Bone Resorption Reduce with Nanocalcium Particles in Astronauts?

Authors: Ravi Teja Mandapaka, Prasanna Kumar Kukkamalla

Abstract:

Poor absorption of calcium, elevated levels in serum and loss of bone are major problems of astronauts during space travel. Supplementation of calcium could not reveal this problem. In normal condition only 33% of calcium is absorbed from dietary sources. In this paper effect of space environment on calcium metabolism was discussed. Many surprising study findings were found during literature survey. Clinical trials on ovariectomized mice showed that reduction of calcium particles to nano level make them more absorbable and bioavailable. Control of bone loss in astronauts in critical important In Fortification of milk with nana calcium particles showed reduces urinary pyridinoline, deoxypyridinoline levels. Dietary calcium and supplementation do not show much retention of calcium in zero gravity environment where absorption is limited. So, the fortification of foods with nano calcium particles seemed beneficial for astronauts during and after space travel in their speedy recovery.

Keywords: nano calcium, astronauts, fortification, supplementation

Procedia PDF Downloads 468
15342 A Review on Nuclear Desalination Technology

Authors: Aiswarya C. L, Swatantra Pratap Singh

Abstract:

In recent years, most desalination plants have been powered by fossil fuels, and to a lesser extent, by green energy. Greenhouse gases emitted by fossil-fuelled plants significantly impact the global climate. So scientists are forced to develop a powerful energy source to protect the environment with greater sustainability due to climate change issues. Nuclear energy can supply much more fresh water than what is currently available. Furthermore, it is more affordable and does not emit any greenhouse gases. This review compares conventional desalination plants with nuclear-powered desalination plants in terms of cost, energy consumption, water recovery, and environmental issues. On the basis of the review conducted, nuclear desalination has been demonstrated to be technically feasible and economically competitive with a variety of fossil fuels, renewable energy sources, and waste heat sources. Nuclear sources have been criticized due to their lack of safety. But studies show, if we were able to handle the issue with care, the problems could be eliminated. Here we're looking at the Seawater Reverse Osmosis Plant (SWROP) at Kudankulam Nuclear Power Plant in Tamil Nadu, India and review the further possibility of implementing nuclear desalination technology in other states of India.

Keywords: energy consumption, environmental impacts, nuclear desalination, water recovery

Procedia PDF Downloads 189
15341 Improvement of Antibacterial Activity for Ceftazidime by Partially Purified Tannase from Penicillium expansum

Authors: Sahira N. Muslim, Alaa N. Mohammed, Saba Saadoon Khazaal, Batool Kadham Salman, Israa M. S. AL-Kadmy, Sraa N. Muslim, Ahmed S. Dwaish, Sawsan Mohammed Kareem, Sarah N. Aziz, Ruaa A. Jasim

Abstract:

Tannase has wide applications in food, beverage, brewing, cosmetics and chemical industries and one of the major applications of tannase is the production of gallic acid. Gallic acid is used for manufacturing of trimethoprim. In the present study, a local fungal strain of Penicillium expansum A4 isolated from spoilt apple samples gave the highest production level of tannase. Tannase was partially purified with a recovery yield of 92.52% and 6.32 fold of purification by precipitation using ammonium sulfate at 50% saturation. Tannase led to increased antimicrobial activity of ceftazidime against Pseudomonas aeruginosa and S. aureus and had a synergism effect at low concentrations of ceftazidime, and thus, tannase may be a useful adjuvant agent for the treatment of many bacterial infections in combination with ceftazidime.

Keywords: ceftazidime, Penicillium expansum, tannase, antimicrobial activity

Procedia PDF Downloads 709