Search results for: proximity sensors
1071 Experimental and Theoretical Analysis of the Electromagnetic Environment in the Vicinity of Two 220Kv Power Lines
Authors: Wafa Tourab, Abdessalem Babouri, Mohamed Nemamcha
Abstract:
This work presents an experimental and theoretical characterization of electromagnetic environment in the vicinity of EL-HADJAR high voltage substation located in the eastern Algerian within a very high populated zone. There have been analyses on the effects of electromagnetic fields emanating from coupled multi-lines power systems on the health of the workers and people living in proximity of substations. An experimental investigation has been conducted around a circuit of two 220Kv lines running in parallel. The experimental results are validated by a flexible code of calculus developed in the environment Matlab. The implications of the results are discussed and are in very good agreement with the ICNIRP reference levels for occupational and non-occupational exposures. In a case of study, the separation between the two structures “S” is varied to demonstrate its influence on the electric and magnetic charges quantities generated by the circuit of lines proposed. It is found that increasing S decreases the electric and magnetic fields which occur at the center of the structure then reduces the coupling between lines. We concluded that the evaluation of the spacing between the phase conductors is of paramount interest in the preparation of the line’s implantation inside the electrical posts to reduce them radiations in the environment.Keywords: low frequency, electromagnetic fields, electromagnetic coupling, high voltage power lines
Procedia PDF Downloads 3891070 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware
Authors: Subham Ghosh, Banani Basu, Marami Das
Abstract:
Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease
Procedia PDF Downloads 71069 Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis
Authors: Jeremy Bost, Matthew Brett, Jacob Flynn, Weihui Li
Abstract:
One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design.Keywords: allergy, anaphylaxis, epinephrine, injector, vital signs monitor
Procedia PDF Downloads 2521068 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation
Authors: A. Raj Kumar, S. Bilaloglu
Abstract:
Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile
Procedia PDF Downloads 2401067 Mode Choice for School Trip of Children’s Independence Mobility: A Case Study of School Proximity to Mass Transit Stations in Bangkok, Thailand
Authors: Phannarithisen Ong
Abstract:
Children's independent mobility for school trips promotes physical and mental well-being, reduces parental chauffeuring and traffic congestion, and boosts children's public confidence. However, in Thailand, despite a decade of rail mass transit development in Bangkok City, cars still queue to drop students at schools near transit stations. This worsens congestion, urging better independent mobility among children in mass transit regions. The high reliance on the private vehicle will influence the private mode in the children's adulthood. This research emphasizes mass transit use among high school students near transit systems. Through a questionnaire survey, quantitative and qualitative methods reveal key factors impacting school trip mode choice. Preliminary findings highlight children's independence as crucial. The socioeconomic, demographic, trip, and transportation traits explain private car use, even schools near mass transit stations. The outcomes of this study will shed light on urban strategic policies for improvement, advocacy, and encouragement of students using mass transit for school trips, which will help normalize the use of mass transit for such trips.Keywords: children's independence mobility, mode choice, school trips, TOD, extraneous variable, children's independency
Procedia PDF Downloads 1411066 Application of Artificial Ground-Freezing to Construct a Passenger Interchange Tunnel for the Subway Line 14 in Paris, France
Authors: G. Lancellotta, G. Di Salvo, A. Rigazio, A. Davout, V. Pastore, G. Tonoli, A. Martin, P. Jullien, R. Jagow-Klaff, R. Wernecke
Abstract:
Artificial ground freezing (AGF) technique is a well-proven soil improvement approach used worldwide to construct shafts, tunnels and many other civil structures in difficult subsoil or ambient conditions. As part of the extension of Line 14 of the Paris subway, a passenger interchange tunnel between the new station at Porte de CI ichy and the new Tribunal the Grand Instance has been successfully constructed using this technique. The paper presents the successful application of AGF by Liquid Nitrogen and Brine implemented to provide structural stability and groundwater cut-off around the passenger interchange tunnel. The working conditions were considered to be rather challenging, due to the proximity of a hundred-year-old existing service tunnel of the Line 13, and subsoil conditions on site. Laboratory tests were carried out to determine the relevant soil parameters for hydro-thermal-mechanical aspects and to implement numerical analyses. Monitoring data were used in order to check and control the development and the efficiency of the freezing process as well as to back analyze the parameters assumed for the design, both during the freezing and thawing phases.Keywords: artificial ground freezing, brine method, case history, liquid nitrogen
Procedia PDF Downloads 2251065 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 3451064 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film
Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena
Abstract:
Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film
Procedia PDF Downloads 2761063 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning
Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation
Procedia PDF Downloads 4331062 Effective Training System for Riding Posture Using Depth and Inertial Sensors
Authors: Sangseung Kang, Kyekyung Kim, Suyoung Chi
Abstract:
A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding.Keywords: posture correction, posture training, riding posture, riding simulator
Procedia PDF Downloads 4761061 Flicker Detection with Motion Tolerance for Embedded Camera
Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan
Abstract:
CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.Keywords: illumination flicker, embedded camera, rolling shutter, detection
Procedia PDF Downloads 4201060 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 2101059 Polyampholytic Resins: Advances in Ion Exchanging Properties
Authors: N. P. G. N. Chandrasekara, R. M. Pashley
Abstract:
Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.Keywords: capacity, ion exchange, polyampholytic resin, regeneration
Procedia PDF Downloads 3761058 Mobile Cloud Middleware: A New Service for Mobile Users
Authors: K. Akherfi, H. Harroud
Abstract:
Cloud Computing (CC) and Mobile Cloud Computing (MCC) have advanced rapidly the last few years. Today, MCC undergoes fast improvement and progress in terms of hardware (memory, embedded sensors, power consumption, touch screen, etc.) software (more and more sophisticated mobile applications) and transmission (higher data transmission rates achieved with different technologies such as 3Gs). This paper presents a review on the concept of CC and MCC. Then, it discusses what has been done regarding middleware in CC and MCC. Later, it shows the architecture of our proposed middleware along with its functionalities which will be provided to mobile clients in order to overcome the well-known problems (such as low battery power, slow CPU speed and, little memory etc.).Keywords: context-aware, cloud computing, middleware, mobile cloud computing
Procedia PDF Downloads 4481057 Microplastic Accumulation in Native and Invasive Sea Urchin Populations on Lipsi Island (Aegean Sea)
Authors: Ella Zahra
Abstract:
Sea urchins are keystone species in many global benthic ecosystems. The concentration of microplastics (MPs) in sea urchin organs was quantified in 120 individuals of 2 different species and from 4 sites across the Greek island Lipsi, with special interest in the differences between the native Arbacia lixula and the invasive Diadema setosum. Over 93% of MPs observed in both species were fibrous. MP abundance was found to correlate with exposure to open sea and harsh prevailing winds, irrespective of proximity to urban activities. The MP abundance in the invasive species was not found to be significantly dependent on site. Interestingly, the smaller native species contained significantly larger sized MPs than the invasive, possibly as a result of a greater feeding rate in A. lixula individuals. Sexually immature urchins may also have a higher feeding rate, giving rise to the negative correlation between gonad index and MPs per individual. The size of MPs ranged from 10µm to 24210µm, heavily skewed towards smaller particles. Few differences in colour were noted between the species and sites. MPs were detected in 100% of the samples with abundance ranging from 19.27 ± 6.77 to 26.83 ± 8.15 items per individual, or 3.55 ± 3.73 to 7.34 ± 10.51 items per gram of wet organ weight. This high value could lead to health risks in East Asia and the Mediterranean, where sea urchin is widely consumed, due to toxins adsorbed to the MPs.Keywords: microplastics, plastic pollution, invertebrate ecology, invasive marine species
Procedia PDF Downloads 1061056 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 731055 Application of Electronic Nose Systems in Medical and Food Industries
Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni
Abstract:
Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.Keywords: e-nose, low cost, odor detection, food safety
Procedia PDF Downloads 1411054 Encoded Nanospheres for the Fast Ratiometric Detection of Cystic Fibrosis
Authors: Iván Castelló, Georgiana Stoica, Emilio Palomares, Fernando Bravo
Abstract:
We present herein two colour encoded silica nanospheres (2nanoSi) for the fluorescence quantitative ratiometric determination of trypsin in humans. The system proved to be a faster (minutes) method, with two times higher sensitivity than the state-of-the-art biomarkers based sensors for cystic fibrosis (CF), allowing the quantification of trypsin concentrations in a wide range (0-350 mg/L). Furthermore, as trypsin is directly related to the development of cystic fibrosis, different human genotypes, i.e. healthy homozygotic (> 80 mg/L), CF homozygotic (< 50 mg/L), and heterozygotic (> 50 mg/L), respectively, can be determined using our 2nanoSi nanospheres.Keywords: cystic fibrosis, trypsin, quantum dots, biomarker, homozygote, heterozygote
Procedia PDF Downloads 4841053 The Green Propaganda: Paradoxes of Costa Rica as the Poster Child for Sustainable Tourism
Authors: Maria Jose Ramos Villagra
Abstract:
Since the boom of tourism in the late 80s and 90s, Costa Rica is considered as one of the leading countries for tourism. The size and geography of its territory, its low population density, and its image of being one of the most stable Latin American democracies make Costa Rica an attractive and safe target for foreign investors. Land ownership by foreign investors has increased as the natural resources in rural communities have been exhausted. When nature becomes an instrument to increase profit, it loses its communal value contributing to local communities losing their sovereignty and access to basic resources. The rural regions in proximity to the most tourist areas are often the most marginalized. The purpose of this research is to use the case of the rural community Sardinal and its struggle to protect its aquifer to investigate the economic and cultural consequences of the tourism boom in Costa Rican rural communities. The process of reclaiming the access to and the preservation of the aquifer enabled individuals to redefine their political views and their political power. The case of Sardinal broke the stereotypes about rural individuals and their ability to politically educate themselves and organize. Sardinal´s conflict brought to light the necessity of questioning the role of modern tourism as part of Costa Rica’s national identity, and as a tool for developmentKeywords: Costa Rica, tourism, rural development, economy, ecotourism, environment, water, Sardinal
Procedia PDF Downloads 4731052 The Promise of Nunca Más after Cambiemos: Representations of the 2x1 Decision of the Supreme Court and Santiago Maldonado's Disappearance in the Newspaper La Nación
Authors: Uluhan Berk Ondul
Abstract:
This article aims to shed light on the new stage of transitional justice in Argentina through examining the representations of the 2x1 decision of the Supreme Court and Santiago Maldonado’s Disappearance in the newspaper, La Nación. The two events hold the key to understanding Argentina’s journey since return to democracy as they are about the same crimes of the dictatorship, namely, the forced disappearance of civilians and the subsequent impunity that follows. In the case of a convicted torturer, The Supreme Court of Argentina ruled on 3rd of May 2017 that the days spent in preventive detention after two years should be counted double for the overall sentence. This court decision was met with severe resistance from the members of the parliament as well as the human rights movement. The second item on the list still continues and divides the country into two camps: (1) those who think that the police force has committed another act of forced disappearance in the case of activist Santiago Maldonado and (2) the others who blame the peronistas (the party and supporters of the ex-president Cristina Fernandez de Kirchner) of using this subject as a means to score political points. As a newspaper known for its proximity to the current administration, La Nación offers an insight to the direction of the country and also demonstrates how the neoliberal mindset works. The results of the study show that the transitional justice process in Argentina is far from being complete as the Promise of Nunca Más is still not a shared value but a political statement.Keywords: Argentina, Fallo 2x1, impunity, Santiago Maldonado, transitional justice
Procedia PDF Downloads 2311051 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.Keywords: local interconnect network, controller, transceiver, processor
Procedia PDF Downloads 2881050 Improving the Design of Blood Pressure and Blood Saturation Monitors
Authors: L. Parisi
Abstract:
A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.Keywords: blood pressure, blood saturation, sensors, actuators, design improvement
Procedia PDF Downloads 4551049 A Comparative Analysis of Self-help Housing and Government Mass Housing Scheme in Addressing the Challenge of Housing Access in Mararaba Area of Karu Local Government Area, Nasarawa State, Nigeria
Authors: John Abubakar
Abstract:
Access to decent housing is a global challenge. An estimated one billion people currently live in slum settlements globally. About 80 percent of these slum dwellers are in Asia and Africa. Nigeria accounts for a significant percentage of African slum dwellers because of its size. Addressing the challenge of slum settlement in Nigeria can have far reaching positive implications in Africa. A major slum settlement in Nigeria is Mararaba slum in Karu local government of Nasarawa state. The importance of this slum settlement hinges on its proximity to Abuja, Nigeria’s capital city. This study is an attempt at identifying the impact of self-help housing and government mass housing scheme in addressing the problem of housing access in Mararaba area of Karu local government, Nasarawa state. The research method used is the content analysis of existing literature. After the review of existing literature, the paper argues that self-help house is more impactful in addressing housing access in Mararaba area of Karu local government. Therefore, self-help housing should be recognized and incorporated into the housing policy of Nasarawa state. Both self-help housing and government mass housing programs are reviewed comparatively, and their strengths and weaknesses analyses.Keywords: slum settlement, informal settlement, progressive improvement, holistic planning
Procedia PDF Downloads 781048 Design and Development of Multi-Functional Intelligent Robot Arm Gripper
Authors: W. T. Asheber, L. Chyi-Yeu
Abstract:
An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.Keywords: gripper, intelligent gripper, transmissivity, vision sensor
Procedia PDF Downloads 3551047 The Didactic Transposition in Brazilian High School Physics Textbooks: A Comparative Study of Didactic Materials
Authors: Leandro Marcos Alves Vaz
Abstract:
In this article, we analyze the different approaches to the topic Magnetism of Matter in physics textbooks of Brazilian schools. For this, we compared the approach to the concepts of the magnetic characteristics of materials (diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism) in different sources of information and in different levels of education, from Higher Education to High School. In this sense, we used as reference the theory of the Didactic Transposition of Yves Chevallard, a French educational theorist, who conceived in his theory three types of knowledge – Scholarly Knowledge, Knowledge to be taught and Taught Knowledge – related to teaching practice. As a research methodology, from the reading of the works used in teacher training and those destined to basic education students, we compared the treatment of a higher education physics book, a scientific article published in a Brazilian journal of the educational area, and four high school textbooks, in order to establish in which there is a greater or lesser degree of approximation with the knowledge produced by the scholars – scholarly knowledge – or even with the knowledge to be taught (to that found in books intended for teaching). Thus, we evaluated the level of proximity of the subjects conveyed in high school and higher education, as well as the relevance that some textbook authors give to the theme.Keywords: Brazilian physics books, didactic transposition, magnetism of matter, teaching of physics
Procedia PDF Downloads 2971046 Urban Green Space Analysis Incorporated at Bodakdev, Ahmedabad City Based on the RS and GIS Techniques
Authors: Nartan Rajpriya
Abstract:
City is a multiplex ecological system made up of social, economic and natural sub systems. Green space system is the foundation of the natural system. It is also suitable part of natural productivity in the urban structure. It is dispensable for constructing a high quality human settlements and a high standard ecocity. Ahmedabad is the fastest growing city of India. Today urban green space is under strong pressure in Ahmedabad city. Due to increasing urbanization, combined with a spatial planning policy of densification, more people face the prospect of living in less green residential environments. In this research analyzes the importance of available Green Space at Bodakdev Park, Ahmedabad, using remote sensing and GIS technologies. High resolution IKONOS image and LISS IV data has been used in this project. This research answers the questions like: • Temporal changes in urban green space area. • Proximity to heavy traffic or roads or any recreational facilities. • Importance in terms of health. • Availability of quality infrastructure. • Available green space per area, per sq. km and per total population. This projects incorporates softwares like ArcGIS, Ecognition and ERDAS Imagine, GPS technologies etc. Methodology includes the field work and collection of other relevant data while preparation of land use maps using the IKONOS imagery which is corrected using GPS.Keywords: urban green space, ecocity, IKONOS, LISS IV
Procedia PDF Downloads 3861045 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device
Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri
Abstract:
The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system
Procedia PDF Downloads 891044 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4831043 Multi-Criteria Decision-Making in Ranking Drinking Water Supply Options (Case Study: Tehran City)
Authors: Mohsen Akhlaghi, Tahereh Ebrahimi
Abstract:
Considering the increasing demand for water and limited resources, there is a possibility of a water crisis in the not-so-distant future. Therefore, to prevent this crisis, other options for drinking water supply should be examined. In this regard, the application of multi-criteria decision-making methods in various aspects of water resource management and planning has always been of great interest to researchers. In this report, six options for supplying drinking water to Tehran City were considered. Then, experts' opinions were collected through matrices and questionnaires, and using the TOPSIS method, which is one of the types of multi-criteria decision-making methods, they were calculated and analyzed. In the TOPSIS method, the options were ranked by calculating their proximity to the ideal (Ci). The closer the numerical value of Ci is to one, the more desirable the option is. Based on this, the option with the optimization pattern of water consumption, with Ci = 0.9787, is the best option among the proposed options for supplying drinking water to Tehran City. The other options, in order of priority, are rainwater harvesting, wastewater reuse, increasing current water supply sources, desalination and its transfer, and transferring water from freshwater sources between basins. In conclusion, the findings of this study highlight the importance of exploring alternative drinking water supply options and utilizing multi-criteria decision-making approaches to address the potential water crisis.Keywords: multi-criteria decision, sustainable development, topsis, water supply
Procedia PDF Downloads 681042 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors
Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis
Abstract:
A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation
Procedia PDF Downloads 250