Search results for: proton irradiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 731

Search results for: proton irradiation

221 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System

Authors: Maryam Hamlehdar, Guillermo A. Narsilio

Abstract:

To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.

Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling

Procedia PDF Downloads 38
220 Chrysin-Loaded PLGA-PEG Nanoparticles Designed for Enhanced Inhibitory Effect on the Breast Cancer Cell Line

Authors: Faraz Zarghami, Elham Anari, Nosratollah Zarghami, Yones Pilehvar-Soltanahmadi, Abolfazl Akbarzadeh, Sepideh Jalilzadeh-Tabrizi

Abstract:

The development of nanotherapy has presented a new method of drug delivery targeted directly to the neoplasmic tissues, to maximize the action with fewer dose requirements. In the past two decades, poly(lactic-co-glycolic acid) (PLGA) has frequently been investigated by many researchers and is a popular polymeric candidate, due to its biocompatibility and biodegradability, exhibition of a wide range of erosion times, tunable mechanical properties, and most notably, because it is a FDA-approved polymer. Chrysin is a natural flavonoid which has been reported to have some significant biological effects on the processes of chemical defense, nitrogen fixation, inflammation, and oxidation. However, the low solubility in water decreases its bioavailability and consequently disrupts the biomedical benefits. Being loaded with PLGA-PEG increases chrysin solubility and drug tolerance, and decreases the discordant effects of the drug. The well-structured chrysin efficiently accumulates in the breast cancer cell line (T47D). In the present study, the structure and chrysin loading were delineated using proton nuclear magnetic resonance (HNMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and the in vitro cytotoxicity of pure and nanochrysin was studied by the MTT assay. Next, the RNA was exploited and the cytotoxic effects of chrysin were studied by real-time PCR. In conclusion, the nanochrysin therapy developed is a novel method that could increase cytotoxicity to cancer cells without damaging the normal cells, and would be promising in breast cancer therapy.

Keywords: MTT assay, chrysin, flavonoids, nanotherapy

Procedia PDF Downloads 232
219 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study

Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad

Abstract:

Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.

Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite

Procedia PDF Downloads 529
218 Quaternized PPO/PSF Anion Exchange Membranes Doped with ZnO-Nanoparticles for Fuel Cell Application

Authors: P. F. Msomi, P. T. Nonjola, P. G. Ndungu, J. Ramontja

Abstract:

In view of the projected global energy demand and increasing levels of greenhouse gases and pollutants issues have inspired an intense search for alternative new energy technologies, which will provide clean, low cost and environmentally friendly solutions to meet the end user requirements. Alkaline anion exchange membrane fuel cells (AAEMFC) have been recognized as ideal candidates for the generation of such clean energy for future stationary and mobile applications due to their many advantages. The key component of the AAEMFC is the anion exchange membrane (AEM). In this report, a series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anionic exchange membranes (AEM) were successfully fabricated and characterized for alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. The characteristic properties of the QPPO/PSF and QPPO/PSF-ZnO blend membrane were investigated with X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and contact angle (CA). To confirm successful quaternisation, FT-IR spectroscopy and proton nuclear magnetic resonance (1H NMR) were used. Other properties such as ion exchange capacity (IEC), water uptake, contact angle and ion conductivity (IC) were also undertaken to check if the prepared nanocomposite materials are suitable for fuel cell application. The membrane intrinsic properties were found to be enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a highest IEC of 3.72 mmol/g and a 30-fold IC increase of the nanocomposite due to its lower methanol permeability. The above results indicate that QPPO/PSF-ZnO is a good candidate for AAEMFC application.

Keywords: anion exchange membrane, fuel cell, zinc oxide nanoparticle, nanocomposite

Procedia PDF Downloads 395
217 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions

Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes

Abstract:

Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.

Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture

Procedia PDF Downloads 256
216 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.

Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results

Procedia PDF Downloads 535
215 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 57
214 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films

Authors: N. Kaneva, A. Bojinova, K. Papazova

Abstract:

Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.

Keywords: ZnO thin films, sol-gel, photocatalysis, aging time

Procedia PDF Downloads 357
213 Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal

Abstract:

Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ.

Keywords: Doxorubicin, auto dock, in silco, in vitro

Procedia PDF Downloads 396
212 Free Radical Dosimetry for Ultrasound in Terephthalic Acid Solutions Containing Gold Nanoparticles

Authors: Ahmad Shanei, Mohammad Mahdi Shanei

Abstract:

When a liquid is irradiated with high intensities (> 1 W) and low frequencies (≤ 1 MHz) ultrasound, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. The existence of particles in liquid provide nucleation sites for cavitation bubbles and lead to decrease the ultrasonic intensity threshold needed for cavitation onset. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing 30 nm gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a range of condition in medical ultrasound fields.

Keywords: acoustic cavitation, gold nanoparticle, chemical dosimetry, terephthalic acid

Procedia PDF Downloads 448
211 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor

Authors: Michael Bach

Abstract:

Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.

Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength

Procedia PDF Downloads 168
210 Renewable and Functional Biopolymers Using Green Chemistry

Authors: Aman Ullah

Abstract:

The use of renewable resources in supplementing and/or replacing traditional petrochemical products, through green chemistry, is becoming the focus of research. The utilization of oils can play a primitive role towards sustainable development due to their large scale availability, built-in-functionality, biodegradability and no net CO2 production. Microwaves, being clean, green and environmentally friendly, are emerging as an alternative source for product development. Solvent free conversion of fatty acid methyl esters (FAME's) derived from canola oil and waste cooking oil under microwave irradiation demonstrated dramatically enhanced rates. The microwave-assisted reactions lead to the most valuable terminal olefins with enhanced yields, purities and dramatic shortening of reaction times. Various monomers/chemicals were prepared in high yield in very short time. The complete conversions were observed at temperatures as low as 40 ºC within less than five minutes. The products were characterized by GC-MS, GC-FID and NMR. The monomers were separated and polymerized into different polymers including biopolyesthers, biopolyesters, biopolyamides and biopolyolefins. The polymers were characterized in details for their structural, thermal, mechanical and viscoelastic properties. The ability for complete conversion of oils under solvent free conditions and synthesis of different biopolymers is undoubtedly an attractive concept from both an academic and an industrial point of view.

Keywords: monomers, biopolymers, green chemistry, bioplastics, biomaterials

Procedia PDF Downloads 81
209 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: nanoscale materials, silver sulfide nanoparticles, nonlinear absorption, nonlinear scattering, optical limiting

Procedia PDF Downloads 368
208 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology

Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa

Abstract:

A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.

Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC

Procedia PDF Downloads 384
207 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate

Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal

Abstract:

During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.

Keywords: acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, uv-curing

Procedia PDF Downloads 237
206 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 157
205 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may be particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radio biological mechanism. The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed. The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: radiobiological mechanism, chemical phase, DSB formation, Petri nets

Procedia PDF Downloads 290
204 Preliminary dosimetric Evaluation of a New Therapeutic 177LU Complex for Human Based on Biodistribution Data in Rats

Authors: H. Yousefnia, S. Zolghadri, A. Golabi Dezfuli

Abstract:

Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown to stop DNA synthesis in CCRF-CEM and Ehrlich ascites cells leading to a cell cycle arrest in G0/G1. One other important property of the phenanthroline nucleus is its ability to act as a triplet-state photosensitizer especially in complexes with lanthanides. In Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by irradiation of a natural Lu2O3 target at a thermal neutron flux of approximately 4 × 1013 n/cm2•s. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. The 177Lu-PL3 complex can prepare with high radiochemical yield (> 99 %) at optimized conditions. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectivley. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Keywords: internal dosimetry, Lutetium-177, radar, animals

Procedia PDF Downloads 354
203 Estimation of Lungs Physiological Motion for Patient Undergoing External Lung Irradiation

Authors: Yousif Mohamed Y. Abdallah

Abstract:

This is an experimental study deals with detection, measurement and analysis of the periodic physiological organ motion during external beam radiotherapy; to improve the accuracy of the radiation field placement, and to reduce the exposure of healthy tissue during radiation treatments. The importance of this study is to detect the maximum path of the mobile structures during radiotherapy delivery, to define the planning target volume (PTV) and irradiated volume during both inspiration and expiration period and to verify the target volume. In addition to its role to highlight the importance of the application of Intense Guided Radiotherapy (IGRT) methods in the field of radiotherapy. The results showed (body contour was equally (3.17 + 0.23 mm), for left lung displacement reading (2.56 + 0.99 mm) and right lung is (2.42 + 0.77 mm) which the radiation oncologist to take suitable countermeasures in case of significant errors. In addition, the use of the image registration technique for automatic position control is predicted potential motion. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, individualized assessment of tumor mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a single CT scan with a margin of 10 mm is clearly inappropriate.

Keywords: respiratory motion, external beam radiotherapy, image processing, lung

Procedia PDF Downloads 514
202 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst

Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha

Abstract:

Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.

Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂

Procedia PDF Downloads 118
201 Relative Depth Dose Profile and Peak Scatter Factors Measurement for Co-60 Teletherapy Machine Using Chemical Dosimetry

Authors: O. Moussous, T. Medjadj

Abstract:

The suitability of a Fricke dosimeter for the measurement of a relative depth dose profile and the peak scatter factors was studied. The measurements were carried out in the secondary standard dosimetry laboratory at CRNA Algiers using a collimated 60Co gamma source teletherapy machine. The measurements were performed for different field sizes at the phantom front face, at a fixed source-to-phantom distance of 80 cm. The dose measurements were performed by first placing the dosimeters free-in-air at the distance-source-detector (DSD) of 80.5 cm from the source. Additional measurements were made with the phantom in place. The water phantom type Med-Tec 40x40x40 cm for vertical beam was used in this work as scattering martial. The phantom was placed on the irradiation bench of the cobalt unit at the SSD of 80 cm from the beam focus and the centre of the field coincided with the geometric centre of the dosimeters placed at the depth in water of 5 mm Relative depth dose profile and Peak scatter factors measurements were carried out using our Fricke system. This was intercompared with similar measurements by ionization chamber under identical conditions. There is a good agreement between the relative percentage depth–dose profiles and the PSF values measured by both systems using a water phantom.

Keywords: Fricke dosimeter, depth–dose profiles, peak scatter factors, DSD

Procedia PDF Downloads 233
200 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells

Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós

Abstract:

Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.

Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution

Procedia PDF Downloads 270
199 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 130
198 Solving Transient Conduction and Radiation using Finite Volume Method

Authors: Ashok K. Satapathy, Prerana Nashine

Abstract:

Radiative heat transfer in participating medium was anticipated using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient energy equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric.

Keywords: participating media, finite volume method, radiation coupled with conduction, heat transfer

Procedia PDF Downloads 360
197 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials

Authors: M. Muneer, Waseem Raza

Abstract:

Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.

Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials

Procedia PDF Downloads 416
196 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 59
195 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 290
194 Microwave and Ultrasound Assisted Extraction of Pectin from Mandarin and Lemon Peel: Comparisons between Sources and Methods

Authors: Pınar Karbuz, A. Seyhun Kıpcak, Mehmet B. Piskin, Emek Derun, Nurcan Tugrul

Abstract:

Pectin is a complex colloidal polysaccharide, found on the cell walls of all young plants such as fruit and vegetables. It acts as a thickening, stabilizing and gelling agent in foods. Pectin was extracted from mandarin and lemon peels using ultrasound and microwave assisted extraction methods to compare with these two different sources and methods of pectin production. In this work, the effect of microwave power (360, 600 W) and irradiation time (1, 2, 3 min) on the yield of extracted pectin from mandarin and lemon peels for microwave assisted extraction (MAE) were investigated. For ultrasound assisted extraction (UAE), parameters were determined as temperature (60, 75 °C) and sonication time (15, 30, 45 min) and hydrochloric acid (HCl) was used as an extracting agent for both extraction methods. The highest yields of extracted pectin from lemon peels were found to be 8.16 % (w/w) for 75 °C, 45 min by UAE and 8.58 % (w/w) for 360 W, 1 min by MAE. Additionally, the highest yields of extracted pectin from mandarin peels were found to be 11.29 % (w/w) for 75 °C, 45 min by UAE and 16.44 % (w/w) for 600 W, 1 min by MAE. The results showed that the use of microwave assisted extraction promoted a better yield when compared to the two extraction methods. On the other hand, according to the results of experiments, mandarin peels contain more pectin than lemon peels when the compared to the pectin product values of two sources. Therefore, these results suggested that MAE could be used as an efficient and rapid method for extraction of pectin and mandarin peels should be preferred as sources of pectin production compared to lemon peels.

Keywords: mandarin peel, lemon peel, pectin, ultrasound, microwave, extraction

Procedia PDF Downloads 217
193 Optimum Switch Temperature for Phase Change Materials in Buildings

Authors: El Hadi Bouguerra, Nouredine Retiel

Abstract:

To avoid or at least to attenuate the global warming, it is essential to reduce the energy consumption of the buildings where the biggest potential of savings exists. The impending danger can come from the increase in the needs of air conditioning not only because of the climate warming but also the fast equipping of emerging or developing countries. Passive solutions exist and others are in promising development and therefore, must be applied wherever it is possible. Even if they do not always avoid the resort to an active cooling (mechanical), they allow lowering the load at an acceptable level which can be possibly taken in relay by the renewable energies. These solutions have the advantage to be relatively less expensive and especially adaptable to the existing housing. However, it is the internal convection resistance that controls the heat exchange between the phase change materials (PCM) and the indoor temperature because of the very low heat coefficients of natural convection. Therefore, it is reasonable to link the switch temperature Tm to the temperature of the substrate (walls and ceiling) because conduction heat transfer is dominant. In this case, external conditions (heat sources such as solar irradiation and ambient temperatures) and conductivities of envelope constituents are the most important factors. The walls are not at the same temperature year round; therefore, it is difficult to set a unique switch temperature for the whole season, making the average values a key parameter. With this work, the authors’ aim is to see which parameters influence the optimum switch temperature of a PCM and additionally, if a better selection of PCMs relating to their optimum temperature can enhance their energetic performances.

Keywords: low energy building, energy conservation, phase change materials, PCM

Procedia PDF Downloads 233
192 Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material.

Keywords: antioxidant property, chitosan, ferulic acid, grafting

Procedia PDF Downloads 430