Search results for: project progress prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8411

Search results for: project progress prediction

7901 Learning to Teach on the Cloud: Preservice EFL Teachers’ Online Project-Based Practicum Experience

Authors: Mei-Hui Liu

Abstract:

This paper reports 20 preservice EFL teachers’ learning-to-teach experience when they were engaged in an online project-based practicum implemented on a Cloud Platform. This 10-month study filled in the literature gap by documenting the impact of online project-based instruction on preservice EFL teachers’ professional development. Data analysis showed that the online practicum was regarded as a flexible mechanism offering chances of teaching practices without geographical barriers. Additionally, this project-based practice helped the participants integrate the theories they had learned and further foster them how to create a self-directed online learning environment. Furthermore, these preservice teachers with experiences of technology-enabled practicum showed their motivation to apply technology and online platforms into future instructional practices. Yet, this study uncovered several concerns encountered by these participants during this online field experience. The findings of this study rendered meaning and lessons for teacher educators intending to integrate online practicum into preservice training courses.

Keywords: online teaching practicum, project-based learning, teacher preparation, English language education

Procedia PDF Downloads 371
7900 Boosting Project Manager Retention: Lessons from the Volunteering Sector

Authors: Julia Wicker, Alexander Lang

Abstract:

The shortage of skilled workers is no longer unique to Europe; Australia now faces similar challenges, particularly in the field of project management. Project managers, essential to the success of a wide range of industries, frequently operate under intense stress and, as a result, may choose to leave their positions before the completion of their projects. This trend poses significant risks to project continuity, budget stability, and the long-term success of organizations. Consequently, it is crucial to explore strategies aimed at improving the retention of project managers, with a specific focus on fostering intrinsic motivation -an essential factor for achieving sustained success and commitment within project-based roles. The aim of this paper is to investigate retention strategies from other industries to identify effective practices that could be adapted to the unique challenges faced by project managers. In particular, the paper draws inspiration from the volunteer sector, an industry also heavily reliant on intrinsic motivation to drive commitment and performance. By examining how the volunteer sector sustains retention through a focus on intrinsic motivation, this paper seeks to highlight potential parallels and offer actionable insights for improving the retention of project managers. The paper includes an overview of the current landscape of retention challenges in project management, highlighting key factors that contribute to early departures and their impacts on organizations. This is followed by an analysis of interviews conducted with both active volunteers and those who have left their roles, leading to the development of a model that categorizes different types of volunteers and explores their behaviours. The model identifies specific reasons for volunteer terminating their assignments and proposes strategies to mitigate these issues. The paper then adapts these volunteer retention strategies to address the challenges faced by project managers, concluding with actionable recommendations for fostering an intrinsically motivated and resilient project management workforce. Ultimately, this research aims to contribute to broader efforts in mitigating skilled workforce shortages by offering sustainable retention strategies.

Keywords: skilled workforce shortages, retention challenges in project management, retention strategies in the volunteering sector, retention strategies for project managers

Procedia PDF Downloads 6
7899 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
7898 The Community Project in a Public Urban Space

Authors: Vendula Safarova

Abstract:

The author describes the architectural and social research through the project, Interventions Ostrava City 2013 (the idea came from Vallo + Sadovský architects), in which she participated as an organizer and as an architect. The project invited the public to actively participate, logging their "hits" or proposals (58), and resulted in three exhibitions in Ostrava, a catalog of the exhibition called Urban interventions Ostrava 2013 (published in 2014) and the implementation of two interventions (2014), with a third intervention still in preparation. The article dealt with the public's views and reactions of local authorities. The project also engaged Ostrava City council, who began to talk about the future of the city of Ostrava, taking part in public debates (organized by Fiducia), invited new associations, civil society - city for people (workers from Cooltour), as well as more established clubs such as the Beautification Committee for beautiful Ostrava (newsletter published since 2008). Currently, the City Interventions project has taken place in more than 10 cities, including Slovakia, where it originated, and in Bratislava in 2009. The aim of this article is to inform the public about the so-called Activism in architecture, which manifests itself in the form of community projects that are organized by volunteers (sometimes financially supported by local authorities). It is a unique way to survey public relations and representatives of state and local government for a public urban area.

Keywords: architecture, community project, public urban space, society and planning

Procedia PDF Downloads 274
7897 Industrial Investment and Contract Models in Subway Projects: Case Study

Authors: Seyed Habib A. Rahmati, Parsa Fallah Sheikhlari, Morteza Musakhani

Abstract:

This paper studies the structure of financial investment and efficiency on the subway would be created between Hashtgerd and Qazvin in Iran. Regarding ascending rate of transportation between Tehran and Qazvin which directly air pollution, it clearly implies to public transportation requirement between these two cities near Tehran. The railway transportation like subway can help each country to terminate traffic jam which has some advantages such as speed, security, non-pollution, low cost of public transport, etc. This type of transportation needs national infrastructures which require enormous investment. It couldn’t implement without leading and managing funds and investments properly. In order to response 'needs', clear norms or normative targets have to be agreed and obviously it is important to distinguish costs from investment requirements critically. Implementation phase affects investment requirements and financing needs. So recognizing barrier related to investment and the quality of investment (what technologies and services are invested in) is as important as the amounts of investment. Different investment methods have mentioned as follows loan, leasing, equity participation, Line of financing, finance, usance, bay back. Alternatives survey before initiation and analyzing of risk management is one of the most important parts in this project. Observation of similar project cities each country has the own specification to choose investment method.

Keywords: subway project, project investment, project contract, project management

Procedia PDF Downloads 480
7896 A Child with Attention Deficit Hyperactivity Disorder in a Trap of Expectations: About the Golem Effect at School

Authors: Natalia Kajka, Agnieszka Kulik

Abstract:

The aim of the study is to present the results regarding differences in perception of cognitive progress of children with Attention Deficit Hyperactivity Disorder (ADHD) by adults and children themselves. The experiment was attended by 45 children with ADHD, their parents and teachers. The children attended the 3-month metacognitive training. Both children and adults were examined before and after joining this project. In order to show significant differences between the first and second measurement of the test, non-parametric Wilcoxon tests were performed. The analysis showed statistically significant differences in the change of cognitive functioning in children with ADHD participating in metacognitive training, this was also confirmed by the results of the parents' research. There were no significant differences in the teachers' assessment of these children.

Keywords: ADHD, executive function, Golem effect metacognitive training

Procedia PDF Downloads 179
7895 Farmers Perception on the Level of Participation in Agricultural Project: The Case of a Community Garden Project in Imphendhle Municipality of Kwazulu-Natal Province, South Africa

Authors: Jorine T. Ndoro, Marietjie Van Der Merwe

Abstract:

Rural poverty remains a critical challenge in most developing countries and the participation of farmers in agricultural projects has taken a key role in development initiatives. Farmers’ participation in agricultural initiatives is crucial towards poverty alleviation and food security. Farmers’ involvement directly contributes towards sustainable agricultural development and livelihoods. This study focuses on investigating the perceptions of farmers’ participation in a community garden project. The study involved farmers belonging to community garden project in Imphendhle municipality in Mgungundlvu district of KwaZulu-Natal in South Africa. The study followed a qualitative research design using an interpretive research paradigm. The data was collected through conducting in-depth semi-structured interviews and a focus group was conducted with the eight farmers belonging to the community garden project. The findings show that the farmers are not involved in decision makings in the project. The farmers are passive participants. Participation of the farmers was mainly to carry out the activities from the extension officers. The study recommends that farmers be actively involved in projects and programmes introduced in their communities. Farmers’ active participation contributes to the sustainability of the projects through a sense of ownership.

Keywords: farmers, participation, agricultural extension, community garden

Procedia PDF Downloads 255
7894 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
7893 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 368
7892 Software Development and Team Diversity

Authors: J. Congalton, K. Logan, B. Crump

Abstract:

Software is a critical aspect of modern life. However it is costly to develop and industry initiatives have focused on reducing costs and improving the productivity. Increasing, software is being developed in teams, and with greater globalization and migration, the teams are becoming more ethnically diverse. This study investigated whether diversity in terms of ethnicity impacted on the productivity of software development. Project managers of software development teams were interviewed. The study found that while some issues did exist due to language problems, when project managers created an environment of trust and friendliness, diversity made a positive contribution to productivity.

Keywords: diversity, project management, software development, team work

Procedia PDF Downloads 372
7891 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
7890 Future Sustainable Mobility for Colorado

Authors: Paolo Grazioli

Abstract:

In this paper, we present the main results achieved during an eight-week international design project on Colorado Future Sustainable Mobilitycarried out at Metropolitan State University of Denver. The project was born with the intention to seize the opportunity created by the Colorado government’s plan to promote e-bikes mobility by creating a large network of dedicated tracks. The project was supported by local entrepreneurs who offered financial and professional support. The main goal of the project was to engage design students with the skills to design a user-centered, original vehicle that would satisfy the unarticulated practical and emotional needs of “Gen Z” users by creating a fun, useful, and reliablelife companion that would helps users carry out their everyday tasks in a practical and enjoyable way. The project was carried out with the intention of proving the importance of the combination of creative methods with practical design methodologies towards the creation of an innovative yet immediately manufacturable product for a more sustainable future. The final results demonstrate the students' capability to create innovative and yet manufacturable products and, especially, their ability to create a new design paradigm for future sustainable mobility products. The design solutions explored n the project include collaborative learning and human-interaction design for future mobility. The findings of the research led students to the fabrication of two working prototypes that will be tested in Colorado and developed for manufacturing in the year 2024. The project showed that collaborative design and project-based teaching improve the quality of the outcome and can lead to the creation of real life, innovative products directly from the classroom to the market.

Keywords: sustainable transportation design, interface design, collaborative design, user -centered design research, design prototyping

Procedia PDF Downloads 96
7889 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
7888 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology

Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh

Abstract:

In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.

Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.

Procedia PDF Downloads 58
7887 The Project Evaluation to Develop the Competencies, Capabilities, and Skills in Repairing Computers of People in Jompluak Local Municipality, Bang Khonthi District, Samut Songkram Province

Authors: Wilailuk Meepracha

Abstract:

The results of the study on the project evaluation to develop the competencies, capabilities, and skills in repairing computers of people in Jompluak Local Municipality, Bang Khonthi District, Samut Songkram Province showed that the overall result was good (4.33). When considering on each aspect, it was found that the highest one was on process evaluation (4.60) followed by product evaluation (4.50) and the least one was on feeding factor (3.97). When considering in details, it was found that: 1) the context aspect was high (4.23) with the highest item on the arrangement of the training situation (4.67) followed by the appropriateness of the target (4.30) and the least aspect was on the project cooperation (3.73). 2) The evaluation of average overall primary factor or feeding factor showed high value (4.23) while the highest aspect was on the capability of the trainers (4.47) followed by the suitable venue (4.33) while the least aspect was on the insufficient budget (3.47). 3) The average result of process evaluation was very high (4.60). The highest aspect was on the follow-op supervision (4.70) followed by responsibility of each project staffs (4.50) while the least aspect was on the present situation and the problems of the community (4.40). 4) The overall result of the product evaluation was very high (4.50). The highest aspect was on the diversity of the activities and the community integration (4.67) followed by project target achievement (4.63) while the least aspect was on continuation and regularity of the activities (4.33). The trainees reported high satisfaction on the project management at very high level (43.33%) while 40% reported high level and 16.67% reported moderate level. Suggestions for the project were on the additional number of the computer sets (37.78%) followed by longer training period especially on computer skills (43.48%).

Keywords: project evaluation, competency development, the capability on computer repairing and computer skills

Procedia PDF Downloads 303
7886 Knowledge Sharing within a Team: Exploring the Antecedents and Role of Trust

Authors: Li Yan Hei, Au Wing Tung

Abstract:

Knowledge sharing is a process in which individuals mutually exchange existing knowledge and co-create new knowledge. Previous research has confirmed that trust is positively associated with knowledge sharing. However, only few studies systematically examined the antecedents of trust and these antecedents’ impacts on knowledge sharing. In order to explore and understand the relationships between trust and knowledge sharing in depth, this study proposed a relationship maintenance-based model to examine the antecedents of trust in knowledge sharing in project teams. Three critical elements within a project team were measured, including the environment, project team partner and interaction. It was hypothesized that the trust would lead to knowledge sharing and in turn result in perceived good team performance. With a sample of 200 Hong Kong employees, the proposed model was evaluated with structural equation modeling. Expected findings are trust will contribute to knowledge sharing, resulting in better team performance. The results will also offer insights into antecedents of trust that play a heavy role in the focal relationship. The present study contributes to a more holistic understanding of relationship between trust and knowledge sharing by linking the antecedents and outcomes. The findings will raise the awareness of project managers on ways to promote knowledge sharing.

Keywords: knowledge sharing, project management, team, trust

Procedia PDF Downloads 617
7885 Design and Māori Values: A Rebrand Project for the Social Enterprise Sector

Authors: M. Kiarna, S. Junjira, S. Casey, M. Nolwazi, M. S. Marcos, A. T. Tatiana, L. Cassandra

Abstract:

This paper details a rebrand design project developed for a non-profitable organization called Te Roopu Waiora (TRW), which is currently located in Auckland, Aotearoa New Zealand. This social enterprise is dedicated to supporting the Māori community living with sensorial, physical and intellectual disabilities (whānau hauā). As part of a year three bachelor design brief, the rebrand project enabled students to reflect on Kaupapa Māori principles and appropriately address the values of the organisation. As such, the methodology used a pragmatic paradigm approach and mixed methods design practices involving a human-centred design to problem solving. As result, the student project culminated in the development in a range of cohesive design artefacts, aiming to improve the rentability and perception of the brand with the audience and stakeholders.

Keywords: design in Aotearoa New Zealand, Kaupapa Māori, branding, design education, human-centered design

Procedia PDF Downloads 135
7884 Evaluation of Critical Success Factors in Public-Private Partnership Projects Based on Structural Equation Model

Authors: Medya Fathi

Abstract:

Today, success in the construction industry is not merely about project completion in a timely manner within an established budget and meeting required quality considerations. Management practices and partnerships need to be emphasized as well. In this regard, critical success factors (CSFs) cover necessary considerations for a successful project beyond the traditional success definition, which vary depending on project outcomes, delivery methods, project types, and partnering processes. Despite the extensive research on CSFs, there is a paucity of studies that examine CSFs for public-private partnership (PPP); the delivery method, which has gained increasing attention from researchers and practitioners over the last decade with a slow but growing adoption in the transportation infrastructure, particularly, highway industry. To fill this knowledge gap, data are collected through questionnaire surveys among private and public parties involved in PPP transportation projects in the United States. Then, the collected data are analyzed to explore the causality relationships between CSFs and PPP project success using structural equation model and provide a list of factors with the greatest influence. This study advocates adopting a critical success factor approach to enhance PPP success in the U.S. transportation industry and identify elements essential for public and private organizations to achieve this success.

Keywords: project success, critical success factors, public-private partnership, transportation

Procedia PDF Downloads 95
7883 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 140
7882 Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices

Authors: Imad Eddine Charif, Wafaa Benchouk, Sidi Mohamed Mekelleche

Abstract:

The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind.

Keywords: 1, 3-dipolar cycloaddition, density functional theory, nitrile oxides, regioselectivity, reactivity indices

Procedia PDF Downloads 166
7881 Daily Site Risks Associated with Construction Projects and On-spot Corrective Measurements: Case Study of Revamping Projects in Kuwait Oil Company Fields Area

Authors: Yousef S. Al-Othman

Abstract:

The growth and expansion of the industrial facilities comes proportional to the market increasing demand of products and services. Furthermore, raw material producers such as oil companies usually undergo massive revamping projects to maintain a synchronized supply. These revamping projects are usually delivered through challenging construction projects held and associated with daily site risks related to the construction process. Henceforth, a case study related to these risks and corresponding on-spot corrective measurements has been made on a certain number of construction project contractors at Kuwait Oil Company (KOC) to derive the benefits and overall effectiveness of the on-spot corrective measurements during the construction phase of a project, and how would the same help in avoiding major incidents, ensuring a smooth, cost effective and on time delivery of the project. Findings of this case study shall have an added value to the overall risk management process by minimizing the daily site risks that may affect the project lead time, resulting in an undisturbed on-site construction process.

Keywords: oil and gas, risk management, construction projects, project lead time

Procedia PDF Downloads 107
7880 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole

Authors: Hasan Keshavarzian, Tayebeh Nesari

Abstract:

Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.

Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis

Procedia PDF Downloads 381
7879 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 275
7878 A Model of Foam Density Prediction for Expanded Perlite Composites

Authors: M. Arifuzzaman, H. S. Kim

Abstract:

Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.

Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate

Procedia PDF Downloads 408
7877 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea

Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama

Abstract:

Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.

Keywords: satellite, sea surface temperature, upwelling, wind stress

Procedia PDF Downloads 157
7876 Early Design Prediction of Submersible Maneuvers

Authors: Hernani Brinati, Mardel de Conti, Moyses Szajnbok, Valentina Domiciano

Abstract:

This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data.

Keywords: submarine maneuvers, submarine, maneuvering, dynamics

Procedia PDF Downloads 636
7875 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 459
7874 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 606
7873 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay

Abstract:

Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: mechanical power, torque, Savonius rotor, wind car

Procedia PDF Downloads 337
7872 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 193