Search results for: multi stage flash distillation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7476

Search results for: multi stage flash distillation

6966 "Prezafe" to "Parizafe": Parallel Development of Izafe in Germanic

Authors: Yexin Qu

Abstract:

Izafe is a construction typically found in Iranian languages, which is attested already in Old Avestan and Old Persian. The narrow sense of izafe can be described as the linear structure of [NP pt Modifier] with pt as an uninflectable particle or clitic. The history of the Iranian izafe has the following stages: Stage I: Verbless nominal relative clauses, Stage II: Verbless nominal relative clauses with Case Attraction; and Stage III: Narrow sense izafe. Previous works suggest that embedded relative clauses and correlatives in other Indo-European languages might be relevant for the source of the izafe-construction. Stage I, as the precursor of narrow sense izafe, or so-called “prezafe” is not found in branches other than Iranian. Comparable cases have been demonstrated in Vedic, Greek, and some rare cases in Latin. This suggests “prezafe” may date back very early in Indo-European. Izafe-like structures are not attested in branches such as Balto-Slavic and Germanic, but Balto-Slavic definite adjectives and Germanic weak adjectives can be compared to the verbless nominal relative clauses and analyzed as developments of verbless relative clauses parallel to izafe in Indo-Iranian, as are called “parizafe” in this paper. In this paper, the verbless RC is compared with Germanic weak adjectives. The Germanic languages used n-stem derivation to form determined derivatives, which are semantically equivalent to the appositive RC and eventually became weak adjectives. To be more precise, starting from an adjective “X”, the Germanic weak adjective structure is formed as [det X-n], literally “the X”, with the meaning “the X one”, which can be shown to be semantically equivalent to “the one which is X”. In this paper, Stage I suggest that, syntactically, the Germanic verbless relative clauses went through CP to DP relabeling like Iranian, based on the following observations: (1) Germanic relative pronouns (e.g., Gothic saei, Old English se) and determiners (e.g., Gothic sa, Old English se) are both from the *so/to pronominal roots; (2) the semantic equivalence of Germanic weak adjectives and the izafe structure. This may suggest that Germanic may also have had “Prezafe” Stages I and II. In conclusion: “Prezafe” in Stage I may have been a phenomenon of the proto-language, Stage II was the result of independent parallel developments and then each branch had its own strategy.

Keywords: izafe, relative clause, Germanic, Indo-European

Procedia PDF Downloads 73
6965 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions

Authors: Ozan Kahraman, Hao Feng

Abstract:

Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.

Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization

Procedia PDF Downloads 183
6964 Development of a Systematic Approach to Assess the Applicability of Silver Coated Conductive Yarn

Authors: Y. T. Chui, W. M. Au, L. Li

Abstract:

Recently, wearable electronic textiles have been emerging in today’s market and were developed rapidly since, beside the needs for the clothing uses for leisure, fashion wear and personal protection, there also exist a high demand for the clothing to be capable for function in this electronic age, such as interactive interfaces, sensual being and tangible touch, social fabric, material witness and so on. With the requirements of wearable electronic textiles to be more comfortable, adorable, and easy caring, conductive yarn becomes one of the most important fundamental elements within the wearable electronic textile for interconnection between different functional units or creating a functional unit. The properties of conductive yarns from different companies can vary to a large extent. There are vitally important criteria for selecting the conductive yarns, which may directly affect its optimization, prospect, applicability and performance of the final garment. However, according to the literature review, few researches on conductive yarns on shelf focus on the assessment methods of conductive yarns for the scientific selection of material by a systematic way under different conditions. Therefore, in this study, direction of selecting high-quality conductive yarns is given. It is to test the stability and reliability of the conductive yarns according the problems industrialists would experience with the yarns during the every manufacturing process, in which, this assessment system can be classified into four stage. That is 1) Yarn stage, 2) Fabric stage, 3) Apparel stage and 4) End user stage. Several tests with clear experiment procedures and parameters are suggested to be carried out in each stage. This assessment method suggested that the optimal conducting yarns should be stable in property and resistant to various corrosions at every production stage or during using them. It is expected that this demonstration of assessment method can serve as a pilot study that assesses the stability of Ag/nylon yarns systematically at various conditions, i.e. during mass production with textile industry procedures, and from the consumer perspective. It aims to assist industrialists to understand the qualities and properties of conductive yarns and suggesting a few important parameters that they should be reminded of for the case of higher level of suitability, precision and controllability.

Keywords: applicability, assessment method, conductive yarn, wearable electronics

Procedia PDF Downloads 538
6963 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 168
6962 Probabilistic-Based Design of Bridges under Multiple Hazards: Floods and Earthquakes

Authors: Kuo-Wei Liao, Jessica Gitomarsono

Abstract:

Bridge reliability against natural hazards such as floods or earthquakes is an interdisciplinary problem that involves a wide range of knowledge. Moreover, due to the global climate change, engineers have to design a structure against the multi-hazard threats. Currently, few of the practical design guideline has included such concept. The bridge foundation in Taiwan often does not have a uniform width. However, few of the researches have focused on safety evaluation of a bridge with a complex pier. Investigation of the scouring depth under such situation is very important. Thus, this study first focuses on investigating and improving the scour prediction formula for a bridge with complicated foundation via experiments and artificial intelligence. Secondly, a probabilistic design procedure is proposed using the established prediction formula for practical engineers under the multi-hazard attacks.

Keywords: bridge, reliability, multi-hazards, scour

Procedia PDF Downloads 377
6961 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.

Keywords: real-time, multi-vehicle tracking, feature selection, color attribution

Procedia PDF Downloads 167
6960 Prevalence and Correlates of Mental Disorders in Children and Adolescents in Mendefera Community, Eritrea

Authors: Estifanos H. Zeru

Abstract:

Introduction: Epidemiological research is important to draw need-based rational public health policy. However, research on child and adolescent mental health in low and middle income countries, where socioeconomic, political, cultural, biological and other mental health hazards are in abundance, is almost nonexistent. To the author's knowledge, there is no published research in this field in Eritrea, whose child and adolescent population constitutes 53% of its total population. Study Aims and Objectives: The objective of this study was to determine the prevalence and patterns of DSM-IV psychiatric disorders and identify their socio-demographic correlates among children and adolescents in Mendefera, Eritrea. The study aims to provide local information to public health policymakers to guide policy in service development. Methodology: In a cross-sectional two stage procedure, both the Parent and Child versions of the SDQ were used to screen 314 children and adolescents aged 4-17 years, recruited by a multi-stage random sampling method. All parents/adult guardians also completed a socio-demographic questionnaire. All children and adolescents who screened positive for any of the SDQ abnormality sub-classes were selected for the second stage interview, which was conducted using the K-SADS-PL 2009 Working Draft version to generate specific DSM-IV diagnoses. All data gathered was entered into CSPro version 6.2 and was then transported in to and analyzed using SPSS version 20 for windows. Results: Prevalence of DSM-IV psychiatric disorders was found to be 13.1%. Adolescents 11-17 years old and males had higher prevalence than children 4-10 years old and females, respectively. Behavioral disorders were the commonest disorders (9.9%), followed by affective disorders (3.2%) and anxiety disorders (2.5). Chronic medical illness in the child, poor academic performance, difficulties with teachers in school, psychopathology in a family member and parental conflict were found to be independently associated with these disorders. Conclusion: Prevalence of child and adolescent psychiatric disorders in Eritrea is high. Promotion, prevention, treatment, and rehabilitation for child and adolescent mental health services need to be made widely available in the country. The socio-demographic correlates identified by this study can be targeted for intervention. The need for further research is emphasized.

Keywords: adolescents, children, correlates, DSM-IV psychiatric disorders, Eritrea, K-SAD-PL 2009, prevalence and correlates, SDQ

Procedia PDF Downloads 268
6959 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 444
6958 Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities

Authors: Yoshiaki Shikata, Nobutane Hanayama

Abstract:

We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified.

Keywords: processor sharing, multi-server, various capacity, N-priority classes, routing strategy, loss probability, mean sojourn time, mean waiting time, simulation

Procedia PDF Downloads 334
6957 Teaching Health in an Online 3D Virtual Learning Environment

Authors: Nik Siti Hanifah Nik Ahmad

Abstract:

This research discuss about teaching cupping therapy or hijama by using an online 3D Virtual Learning Environment. The experimental platform was using of flash and Second Life as 2D and 3D comparison. 81 samples have been used in three experiments with 21 in the first and 30 in each second and third. The design of the presentation was tested in five categories such as effectiveness, ease of use, efficacy, aesthetic and users’ satisfaction. The results from three experiments had shown promising outcome for usage of the technique to be implement in teaching Cupping Therapy as well as other alternative or conventional medicine knowledge especially for training.

Keywords: medical and health, cupping therapy or hijama, second life, online 3D VLE, virtual worlds

Procedia PDF Downloads 426
6956 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.

Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate

Procedia PDF Downloads 501
6955 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 105
6954 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm

Authors: Jan Busch, Peter Nyhuis

Abstract:

Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented.

Keywords: aerodynamic feeding system, genetic algorithm, multi-objective optimization, workpiece orientation

Procedia PDF Downloads 585
6953 Influential Factors on Woodcarvings in Traditional Malay Houses of Negeri Sembilan, Malaysia

Authors: Nurdiyana Zainal Abidin, Raja Nafida Raja Shahminan, Fawazul Khair Ibrahim

Abstract:

Timber vernacular houses in Malaysia are unique heritage buildings which can be identified through their designs, structure, architectural elements and ornamentations. Woodcarvings are common forms of ornamentations and decorations in Traditional Malay Houses and they can be found throughout Malaysia including in Negeri Sembilan. As a multi-cultural, multi-racial, and multi-religion state which uniquely practices the matrilineal social system, Negeri Sembilan has a strong connection to its’ history and heritage and in particular the distinctive vernacular architecture. The purpose of this paper is to underline the factors that influence the woodcarvings in Traditional Malay Houses in Negeri Sembilan, Malaysia. The houses studied were from the archives of measured drawings in Center of Built Environment in the Malay World (KALAM), Universiti Teknologi Malaysia (UTM). The findings indicated several factors influencing the woodcarver’s works and also the applications of the woodcarvings such as religious factors, cultural factors and political factors. These factors among several other shows that woodcarvings were predetermined before being carved and that they were not just merely placed without reason but are functioning pieces of aesthetic ornamentation.

Keywords: influences, traditional Malay houses, woodcarvings, multi-cultural

Procedia PDF Downloads 514
6952 A Multi-Attribute Utility Model for Performance Evaluation of Sustainable Banking

Authors: Sonia Rebai, Mohamed Naceur Azaiez, Dhafer Saidane

Abstract:

In this study, we develop a performance evaluation model based on a multi-attribute utility approach aiming at reaching the sustainable banking (SB) status. This model is built accounting for various banks’ stakeholders in a win-win paradigm. In addition, it offers the opportunity for adopting a global measure of performance as an indication of a bank’s sustainability degree. This measure is referred to as banking sustainability performance index (BSPI). This index may constitute a basis for ranking banks. Moreover, it may constitute a bridge between the assessment types of financial and extra-financial rating agencies. A real application is performed on three French banks.

Keywords: multi-attribute utility theory, performance, sustainable banking, financial rating

Procedia PDF Downloads 471
6951 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 99
6950 Studies on Biojetfuel Obtained from Vegetable Oil: Process Characteristics, Engine Performance and Their Comparison with Mineral Jetfuel

Authors: F. Murilo T. Luna, Vanessa F. Oliveira, Alysson Rocha, Expedito J. S. Parente, Andre V. Bueno, Matheus C. M. Farias, Celio L. Cavalcante Jr.

Abstract:

Aviation jetfuel used in aircraft gas-turbine engines is customarily obtained from the kerosene distillation fraction of petroleum (150-275°C). Mineral jetfuel consists of a hydrocarbon mixture containing paraffins, naphthenes and aromatics, with low olefins content. In order to ensure their safety, several stringent requirements must be met by jetfuels, such as: high energy density, low risk of explosion, physicochemical stability and low pour point. In this context, aviation fuels eventually obtained from biofeedstocks (which have been coined as ‘biojetfuel’), must be used as ‘drop in’, since adaptations in aircraft engines are not desirable, to avoid problems with their operation reliability. Thus, potential aviation biofuels must present the same composition and physicochemical properties of conventional jetfuel. Among the potential feedtstocks for aviation biofuel, the babaçu oil, extracted from a palm tree extensively found in some regions of Brazil, contains expressive quantities of short chain saturated fatty acids and may be an interesting choice for biojetfuel production. In this study, biojetfuel was synthesized through homogeneous transesterification of babaçu oil using methanol and its properties were compared with petroleum-based jetfuel through measurements of oxidative stability, physicochemical properties and low temperature properties. The transesterification reactions were carried out using methanol and after decantation/wash procedures, the methyl esters were purified by molecular distillation under high vacuum at different temperatures. The results indicate significant improvement in oxidative stability and pour point of the products when compared to the fresh oil. After optimization of operational conditions, potential biojetfuel samples were obtained, consisting mainly of C8 esters, showing low pour point and high oxidative stability. Jet engine tests are being conducted in an automated test bed equipped with pollutant emissions analysers to study the operational performance of the biojetfuel that was obtained and compare with a mineral commercial jetfuel.

Keywords: biojetfuel, babaçu oil, oxidative stability, engine tests

Procedia PDF Downloads 261
6949 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 164
6948 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements

Authors: Marlies Achenbach

Abstract:

System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.

Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies

Procedia PDF Downloads 431
6947 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 159
6946 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention

Authors: Chia-Jung Li, Kuan-Hao Tsui

Abstract:

As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.

Keywords: multi-omics, nutrients, ferroptosis, ovarian aging

Procedia PDF Downloads 107
6945 Effect of Deficit Irrigation on Photosynthesis Pigments, Proline Accumulation and Oil Quantity of Sweet Basil (Ocimum basilicum L.) in Flowering and Seed Formation Stages

Authors: Batoul Mohamed Abdullatif, Nouf Ali Asiri

Abstract:

O. basilicum plant was subjected to deficit irrigation using four treatments viz. control, irrigated with 70% of soil water capacity (SWC), Treatment 1, irrigated with 50% SWC, Treatment 2, irrigated with 30% SWC and Treatment 3, irrigated with 10 % SWC. Photosynthesis pigments viz. chlorophyll a, b, and the carotenoids, proline accumulation, and oil quantity were investigated under these irrigation treatments. The results indicate that photosynthesis pigments and oil content of deficit irrigation treatments did not significantly reduced than that of the full irrigation control. Photosynthesis pigments were affected by the stage of growth and not by irrigation treatments. They were high during flowering stage and low during seed formation stage for all treatments. The lowest irrigation plants (10 % SWC) achieved, during flowering stage, 0.72 mg\g\fresh weight of chlorophyll a, compared to 0.43 mg\g\fresh weight in control plant, 0.40 mg\g\fresh weight of chlorophyll b, compared to 0.19 mg\g\fresh weight in control plants and 0.29 mg\g\fresh weight of carotenoids, compared to 0.21 mg\g\fresh weight in control plants. It has been shown that reduced irrigation rates tend to enhance O. basilicum to have high oil quantity reaching a value of 63.37 % in a very low irrigation rate (10 % SWC) compared to 45.38 of control in seeds. Proline was shown to be accumulated in roots to almost double the amount in shoot during flowering stage in treatment 3. This accumulation seems to have a pronounce effect on O. basilicum acclimation to deficit irrigation.

Keywords: deficit irrigation, photosynthesis pigments, proline accumulation, oil quantity, sweet basil flowering formation, seed formation

Procedia PDF Downloads 429
6944 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images

Authors: Qiang Wang, Hongyang Yu

Abstract:

Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.

Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations

Procedia PDF Downloads 84
6943 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 522
6942 Industrial Wastewater Treatment Improvements Using Activated Carbon

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.

Keywords: adsorption, COD removal, filtration, TDS removal

Procedia PDF Downloads 502
6941 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm

Authors: Seyedmahdi Mousavihashemi

Abstract:

One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.

Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design

Procedia PDF Downloads 504
6940 Construction Contractor Pre-Qualification Using Multi-Attribute Utility Theory: A Multiplicative Approach

Authors: B. Vikram, Y. Anu Leena, Y. Anu Neena, M. V. Krishna Rao, V. S. S. Kumar

Abstract:

The industry is often criticized for inefficiencies in outcomes such as time and cost overruns, low productivity, poor quality and inadequate customer satisfaction. To enhance the chances for construction projects to be successful, selecting an able contractor is one of the fundamental decisions to be made by clients. The selection of the most appropriate contractor is a multi-criteria decision making (MCDM) process. In this paper, multi-attribute utility theory (MAUT) is employed utilizing the multiplicative form of utility function for ranking the prequalified contractors. Performance assessment criteria covering contracting company attributes, experience record, past performance, performance potential, financial stability and project specific criteria are considered for contractor evaluation. A case study of multistoried building for which four contractors submitted bids is considered to illustrate the applicability of multiplicative approach of MAUT to rank the prequalified contractors. The proposed MAUT decision making methodology can also be employed to other decision making situations.

Keywords: multi-attribute utility theory, construction industry, prequalification, contractor

Procedia PDF Downloads 440
6939 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 103
6938 The Design Optimization for Sound Absorption Material of Multi-Layer Structure

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.

Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design

Procedia PDF Downloads 295
6937 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations, hybrid system

Procedia PDF Downloads 422