Search results for: inverse filtering on graphs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1164

Search results for: inverse filtering on graphs

654 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
653 Comparison Between PID and PD Controllers for 4 Cable-Based Robots

Authors: Fouad Inel, Lakhdar Khochemane

Abstract:

This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: the first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-IntegratedDerivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.

Keywords: dynamic modeling, geometric modeling, graphical user interface, open loop, parallel cable-based robots, PID/PD controllers

Procedia PDF Downloads 422
652 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 440
651 Identification of Impact Load and Partial System Parameters Using 1D-CNN

Authors: Xuewen Yu, Danhui Dan

Abstract:

The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.

Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem

Procedia PDF Downloads 127
650 Oil Contaminate Removal from Wastewater with Novel Nanofiber-Based Membranes

Authors: Zhaoyang Liu

Abstract:

Oil pollution is typically caused by oil and gas-related operations such as vessel accidents, which can pollute waterways as well as the environment and damage the ecosystem. Tanker ship cleaning contributes to oil spills, which have a negative impact on coastal countries due to protracted service disruption. It is critical for coastal countries to develop efficient oil taint cleanup technology. There are various oil/water separation technologies, such as gravity separation, hydrocyclone, air flotation, and membrane filtration, among others. Among these, membrane filtration has been shown to produce high-quality effluent. Commercial membranes, on the other hand, nevertheless face significant practical challenges, such as a high susceptibility for membrane fouling when dealing with greasy effluent. We developed a unique anti-fouling filtering membrane for oil/water separation in this work. The membrane was made of inorganic nanofibers, which possesses the advantages of low membrane fouling, high permeation flux and long-term durability. This results from this study could facilitate to pave a new way for membranes filtration’s practical applications in oil/gas industry.

Keywords: oil, contaminate, wastewater, removal

Procedia PDF Downloads 79
649 A Quantitative Evaluation of Text Feature Selection Methods

Authors: B. S. Harish, M. B. Revanasiddappa

Abstract:

Due to rapid growth of text documents in digital form, automated text classification has become an important research in the last two decades. The major challenge of text document representations are high dimension, sparsity, volume and semantics. Since the terms are only features that can be found in documents, selection of good terms (features) plays an very important role. In text classification, feature selection is a strategy that can be used to improve classification effectiveness, computational efficiency and accuracy. In this paper, we present a quantitative analysis of most widely used feature selection (FS) methods, viz. Term Frequency-Inverse Document Frequency (tfidf ), Mutual Information (MI), Information Gain (IG), CHISquare (x2), Term Frequency-Relevance Frequency (tfrf ), Term Strength (TS), Ambiguity Measure (AM) and Symbolic Feature Selection (SFS) to classify text documents. We evaluated all the feature selection methods on standard datasets like 20 Newsgroups, 4 University dataset and Reuters-21578.

Keywords: classifiers, feature selection, text classification

Procedia PDF Downloads 460
648 Pattern of Stress Distribution in Different Ligature-Wire-Brackets Systems: A FE and Experimental Analysis

Authors: Afef Dridi, Salah Mezlini

Abstract:

Since experimental devices cannot calculate stress and deformation of complex structures. The Finite Element Method FEM has been widely used in several fields of research. One of these fields is orthodontics. The advantage of using such a method is the use of an accurate and non invasive method that allows us to have a sufficient data about the physiological reactions can happening in soft tissues. Most of researches done in this field were interested in the study of stresses and deformations induced by orthodontic apparatus in soft tissues (alveolar tissues). Only few studies were interested in the distribution of stress and strain in the orthodontic brackets. These studies, although they tried to be as close as possible to real conditions, their models did not reproduce the clinical cases. For this reason, the model generated by our research is the closest one to reality. In this study, a numerical model was developed to explore the stress and strain distribution under the application of real conditions. A comparison between different material properties was also done.

Keywords: visco-hyperelasticity, FEM, orthodontic treatment, inverse method

Procedia PDF Downloads 260
647 Utilizing Quantum Chemistry for Nanotechnology: Electron and Spin Movement in Molecular Devices

Authors: Mahsa Fathollahzadeh

Abstract:

The quick advancement of nanotechnology necessitates the creation of innovative theoretical approaches to elucidate complex experimental findings and forecast novel capabilities of nanodevices. Therefore, over the past ten years, a difficult task in quantum chemistry has been comprehending electron and spin transport in molecular devices. This thorough evaluation presents a comprehensive overview of current research and its status in the field of molecular electronics, emphasizing the theoretical applications to various device types and including a brief introduction to theoretical methods and their practical implementation plan. The subject matter includes a variety of molecular mechanisms like molecular cables, diodes, transistors, electrical and visual switches, nano detectors, magnetic valve gadgets, inverse electrical resistance gadgets, and electron tunneling exploration. The text discusses both the constraints of the method presented and the potential strategies to address them, with a total of 183 references.

Keywords: chemistry, nanotechnology, quantum, molecule, spin

Procedia PDF Downloads 50
646 Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array

Authors: Andrew Youssef, David Matthews, Jie Pan

Abstract:

Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors.

Keywords: embedded sensor, monitoring, PVDF, vibration

Procedia PDF Downloads 339
645 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 99
644 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands

Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour

Abstract:

In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.

Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering

Procedia PDF Downloads 601
643 Visualization of Quantitative Thresholds in Stocks

Authors: Siddhant Sahu, P. James Daniel Paul

Abstract:

Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.

Keywords: technical analysis, expert system, law of demand, stocks, portfolio analysis, Indian automotive sector

Procedia PDF Downloads 318
642 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 125
641 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity

Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad

Abstract:

Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.

Keywords: biomass, electricity, thermal, generation

Procedia PDF Downloads 98
640 An Algorithm to Find Fractional Edge Domination Number and Upper Fractional Edge Domination Number of an Intuitionistic Fuzzy Graph

Authors: Karunambigai Mevani Govindasamy, Sathishkumar Ayyappan

Abstract:

In this paper, we formulate the algorithm to find out the dominating function parameters of Intuitionistic Fuzzy Graphs(IFG). The methodology we adopted here is converting any physical problem into an IFG, and that has been transformed into Intuitionistic Fuzzy Matrix. Using Linear Program Solver software (LiPS), we found the defined parameters for the given IFG. We obtained these parameters for a path and cycle IFG. This study can be extended to other varieties of IFG. In particular, we obtain the definition of edge dominating function, minimal edge dominating function, fractional edge domination number (γ_if^') and upper fractional edge domination number (Γ_if^') of an intuitionistic fuzzy graph. Also, we formulated an algorithm which is appropriate to work on LiPS to find fractional edge domination number and upper fractional edge domination number of an IFG.

Keywords: fractional edge domination number, intuitionistic fuzzy cycle, intuitionistic fuzzy graph, intuitionistic fuzzy path

Procedia PDF Downloads 177
639 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects

Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa

Abstract:

This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.

Keywords: box-counting, digital image processing, fractal dimension, numerical method

Procedia PDF Downloads 83
638 Relationship between Stress and Personality in Young Adults

Authors: Sneha Sadana

Abstract:

Human beings are unique and so are their reactions towards varied stimuli. This study focuses on the impact personality has on how one deals with stressful situations. It can be intriguing to know how big of an impact our personality has on the way we react and how it is wired in us to respond to things in a particular manner all because of our personality and the traits which make us who we are. The study was done on 150 college going students, 75 males and 75 females mainly from Ahmedabad, India pursuing a variety of different streams and subjects. The questionnaire consists of two standardized questionnaires which measure stress and personality. The Student Stress Scale by Manju Agarwal evaluates stress of subjects and the big five personality locator by Norman.
The findings showed that there exists a positive relationship between stress and neuroticism and an inverse relationship between stress and sociability, stress and openness, stress and agreeableness and stress and conscientiousness.
And on doing a further comparative analysis on personality types of the same sample it was found out that females were more agreeable, followed by conscientiousness, sociability, openness, and neuroticism. In males, however, it was observed that males were more agreeable, followed by conscientiousness, neuroticism, sociability, and openness

Keywords: college students, personality, stress, theories of personality

Procedia PDF Downloads 336
637 Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process

Authors: Zahra Akbari, Farzin Zokaee, Talat Ghomashchi

Abstract:

Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min.

Keywords: whey treatment, dairy industry, precipitation, protein, mineral

Procedia PDF Downloads 416
636 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: impulsive loaded plates, dynamic analysis, ABAQUS, material nonlinearity

Procedia PDF Downloads 523
635 Comparison Performance between PID and PD Controllers for 3 and 4 Cable-Based Robots

Authors: Fouad. Inel, Lakhdar. Khochemane

Abstract:

This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: The first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-Integrated Derivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.

Keywords: parallel cable-based robots, geometric modeling, dynamic modeling, graphical user interface, open loop, PID/PD controllers

Procedia PDF Downloads 450
634 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 248
633 Exploring the Use of Discourse Markers by American Male and Female Politicians: A Corpus Based Study

Authors: Gohar Rahman, Rabia Saad Ullah

Abstract:

This research aims to examine the use of discourse markers within the dominion of political speeches, differentiating between genders. The analysis centers on twelve speakers, comprising six males and six females. Speeches selected include commencement, victory, state union addresses, campaigns, and presidential speeches. Halliday and Hasan's cohesion framework, specifically discourse markers, is utilized as a theoretical framework. Data is quantitatively analyzed using AntConc to identify marker frequency. The findings are presented through Excel's tables and graphs, suggesting differences in discourse marker preferences between genders. The findings suggest a divergence in the preferences for discourse markers between males and females. However, asserting that females utilize discourse markers more frequently due to the increased use of filler words, face threat mitigation, and polite speech would be an exaggeration. The disparity in frequency is not substantial, suggesting that males and females exhibit varying language inclinations to some degree.

Keywords: discourse markers, political discourse, gender, speeches, language

Procedia PDF Downloads 58
632 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
631 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 194
630 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 254
629 Evaluation and Analysis of the Secure E-Voting Authentication Preparation Scheme

Authors: Nidal F. Shilbayeh, Reem A. Al-Saidi, Ahmed H. Alsswey

Abstract:

In this paper, we presented an evaluation and analysis of E-Voting Authentication Preparation Scheme (EV-APS). EV-APS applies some modified security aspects that enhance the security measures and adds a strong wall of protection, confidentiality, non-repudiation and authentication requirements. Some of these modified security aspects are Kerberos authentication protocol, PVID scheme, responder certificate validation, and the converted Ferguson e-cash protocol. Authentication and privacy requirements have been evaluated and proved. Authentication guaranteed only eligible and authorized voters were permitted to vote. Also, the privacy guaranteed that all votes will be kept secret. Evaluation and analysis of some of these security requirements have been given. These modified aspects will help in filtering the counter buffer from unauthorized votes by ensuring that only authorized voters are permitted to vote.

Keywords: e-voting preparation stage, blind signature protocol, Nonce based authentication scheme, Kerberos Authentication Protocol, pseudo voter identity scheme PVID

Procedia PDF Downloads 299
628 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model

Authors: Li Chen, Alex Skvortsov, Chris Norwood

Abstract:

Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.

Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model

Procedia PDF Downloads 287
627 Is the Okun's Law Valid in Tunisia?

Authors: El Andari Chifaa, Bouaziz Rached

Abstract:

The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.

Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters

Procedia PDF Downloads 317
626 Wavelet Coefficients Based on Orthogonal Matching Pursuit (OMP) Based Filtering for Remotely Sensed Images

Authors: Ramandeep Kaur, Kamaljit Kaur

Abstract:

In recent years, the technology of the remote sensing is growing rapidly. Image enhancement is one of most commonly used of image processing operations. Noise reduction plays very important role in digital image processing and various technologies have been located ahead to reduce the noise of the remote sensing images. The noise reduction using wavelet coefficients based on Orthogonal Matching Pursuit (OMP) has less consequences on the edges than available methods but this is not as establish in edge preservation techniques. So in this paper we provide a new technique minimum patch based noise reduction OMP which reduce the noise from an image and used edge preservation patch which preserve the edges of the image and presents the superior results than existing OMP technique. Experimental results show that the proposed minimum patch approach outperforms over existing techniques.

Keywords: image denoising, minimum patch, OMP, WCOMP

Procedia PDF Downloads 389
625 Intrusion Detection Based on Graph Oriented Big Data Analytics

Authors: Ahlem Abid, Farah Jemili

Abstract:

Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.

Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud

Procedia PDF Downloads 149