Search results for: features engineering methods for forecasting
20391 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model
Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech
Abstract:
Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM
Procedia PDF Downloads 13620390 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models
Authors: Ainouna Bouziane
Abstract:
The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.Keywords: electron tomography, supported catalysts, nanometrology, error assessment
Procedia PDF Downloads 8520389 Experience of the Formation of Professional Competence of Students of IT-Specialties
Authors: B. I. Zhumagaliyev, L. Sh. Balgabayeva, G. S. Nabiyeva, B. A. Tulegenova, P. Oralkhan, B. S. Kalenova, S. S. Akhmetov
Abstract:
The article describes an approach to build competence in research of Bachelor and Master, which is now an important feature of modern specialist in the field of engineering. Provides an example of methodical teaching methods with the research aspect, is including the formulation of the problem, the method of conducting experiments, analysis of the results. Implementation of methods allows the student to better consolidate their knowledge and skills at the same time to get research. Knowledge on the part of the media requires some training in the subject area and teaching methods.Keywords: professional competence, model of it-specialties, teaching methods, educational technology, decision making
Procedia PDF Downloads 43620388 Digital Retinal Images: Background and Damaged Areas Segmentation
Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager
Abstract:
Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.Keywords: retinal images, fundus images, diabetic retinopathy, background segmentation, damaged areas segmentation
Procedia PDF Downloads 40320387 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine
Procedia PDF Downloads 17620386 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 9720385 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 48020384 Authentication of Physical Objects with Dot-Based 2D Code
Authors: Michał Glet, Kamil Kaczyński
Abstract:
Counterfeit goods and documents are a global problem, which needs more and more sophisticated methods of resolving it. Existing techniques using watermarking or embedding symbols on objects are not suitable for all use cases. To address those special needs, we created complete system allowing authentication of paper documents and physical objects with flat surface. Objects are marked using orientation independent and resistant to camera noise 2D graphic codes, named DotAuth. Based on the identifier stored in 2D code, the system is able to perform basic authentication and allows to conduct more sophisticated analysis methods, e.g., relying on augmented reality and physical properties of the object. In this paper, we present the complete architecture, algorithms and applications of the proposed system. Results of the features comparison of the proposed solution and other products are presented as well, pointing to the existence of many advantages that increase usability and efficiency in the means of protecting physical objects.Keywords: anti-forgery, authentication, paper documents, security
Procedia PDF Downloads 13320383 Consideration of Uncertainty in Engineering
Authors: A. Mohammadi, M. Moghimi, S. Mohammadi
Abstract:
Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method
Procedia PDF Downloads 41420382 Implementation of a Virtual Testbed for Secure IoT Firmware Update Using Blockchain
Authors: Tarun Chand, Michael Jurczyk
Abstract:
With the increasing need and popularity of IoT devices and how integrated they are becoming in our daily lives and industries, these devices make for a very lucrative target for malicious actors. And since these devices have such limited resources, the implementation of robust security features is a tradeoff to be made for the actual functionality the device was intended for. This makes them an easy target with high returns. Several frameworks for the secure firmware update of these devices have been recently proposed in the literature. They focus on methods such as blockchains and distributed file systems to secure firmware updates, but do not go into the details of the actual implementation of these frameworks and the lower-level interactions among these methods used. This work integrates some of these security measures into one overall framework and details the actual lower-level implementation of this framework in a virtual dockerized testbed running on AWS.Keywords: blockchain, Ethereum, Geth, IPFS, secure IoT-firmware update, virtual testbed development
Procedia PDF Downloads 6720381 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 36720380 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity
Procedia PDF Downloads 25820379 A Supervised Face Parts Labeling Framework
Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad
Abstract:
Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.Keywords: face labeling, semantic segmentation, classification, face segmentation
Procedia PDF Downloads 25520378 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 21920377 Surface Deformation Studies in South of Johor Using the Integration of InSAR and Resistivity Methods
Authors: Sirajo Abubakar, Ismail Ahmad Abir, Muhammad Sabiu Bala, Muhammad Mustapha Adejo, Aravind Shanmugaveloo
Abstract:
Over the years, land subsidence has been a serious threat mostly to urban areas. Land subsidence is the sudden sinking or gradual downward settling of the ground’s surface with little or no horizontal motion. In most areas, land subsidence is a slow process that covers a large area; therefore, it is sometimes left unnoticed. South of Johor is the area of interest for this project because it is going through rapid urbanization. The objective of this research is to evaluate and identify potential deformations in the south of Johor using integrated remote sensing and 2D resistivity methods. Synthetic aperture radar interferometry (InSAR) which is a remote sensing technique has the potential to map coherent displacements at centimeter to millimeter resolutions. Persistent scatterer interferometry (PSI) stacking technique was applied to Sentinel-1 data to detect the earth deformation in the study area. A dipole-dipole configuration resistivity profiling was conducted in three areas to determine the subsurface features in that area. This subsurface features interpreted were then correlated with the remote sensing technique to predict the possible causes of subsidence and uplifts in the south of Johor. Based on the results obtained, West Johor Bahru (0.63mm/year) and Ulu Tiram (1.61mm/year) are going through uplift due to possible geological uplift. On the other end, East Johor Bahru (-0.26mm/year) and Senai (-1.16mm/year) undergo subsidence due to possible fracture and granitic boulders loading. Land subsidence must be taken seriously as it can cause serious damages to infrastructures and human life. Monitoring land subsidence and taking preventive actions must be done to prevent any disasters.Keywords: interferometric synthetic aperture radar, persistent scatter, minimum spanning tree, resistivity, subsidence
Procedia PDF Downloads 14720376 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children
Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura
Abstract:
Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification
Procedia PDF Downloads 30120375 Assessment of the Effectiveness of the Anti-Debris Flow Engineering Constructed to Reduce the Risk of Expected Debris Flow in the River Mletiskhevi by Computer Program RAMMS
Authors: Sopio Gogilava, Goga Chakhaia, Levan Tsulukidze, Zurab Laoshvili, Irina Khubulava, Shalva Bosikashvili, Teimuraz Gugushvili
Abstract:
Geoinformatics systems (GIS) integrated computer program RAMMS is widely used for forecasting debris flows and accordingly for the determination of anticipating risks with 85% accuracy. In view of the above, the work introduces new capabilities of the computer program RAMMS, which evaluates the effectiveness of anti-debris flow engineering construction, namely: the possibility of decreasing the expected velocity, kinetic energy, and output cone volume in the Mletiskhevi River. As a result of research has been determined that the anti-debris flow engineering construction designed to reduce the expected debris flow risk in the Mletiskhevi River is an effective environmental protection technology, that's why its introduction is promising.Keywords: construction, debris flow, geoinformatics systems, program RAMMS
Procedia PDF Downloads 14520374 AI Features in Netflix
Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji
Abstract:
The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.Keywords: easy accessibility, recommends, accuracy, privacy
Procedia PDF Downloads 6320373 The Enhancement of Training of Military Pilots Using Psychophysiological Methods
Authors: G. Kloudova, M. Stehlik
Abstract:
Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.Keywords: cognitive effort, human performance, military pilots, psychophysiological methods
Procedia PDF Downloads 23120372 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM
Procedia PDF Downloads 35420371 Historical Development of Negative Emotive Intensifiers in Hungarian
Authors: Martina Katalin Szabó, Bernadett Lipóczi, Csenge Guba, István Uveges
Abstract:
In this study, an exhaustive analysis was carried out about the historical development of negative emotive intensifiers in the Hungarian language via NLP methods. Intensifiers are linguistic elements which modify or reinforce a variable character in the lexical unit they apply to. Therefore, intensifiers appear with other lexical items, such as adverbs, adjectives, verbs, infrequently with nouns. Due to the complexity of this phenomenon (set of sociolinguistic, semantic, and historical aspects), there are many lexical items which can operate as intensifiers. The group of intensifiers are admittedly one of the most rapidly changing elements in the language. From a linguistic point of view, particularly interesting are a special group of intensifiers, the so-called negative emotive intensifiers, that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g.borzasztóanjó ’awfully good’, which means ’excellent’). Despite their special semantic features, negative emotive intensifiers are scarcely examined in literature based on large Historical corpora via NLP methods. In order to become better acquainted with trends over time concerning the intensifiers, The exhaustively analysed a specific historical corpus, namely the Magyar TörténetiSzövegtár (Hungarian Historical Corpus). This corpus (containing 3 millions text words) is a collection of texts of various genres and styles, produced between 1772 and 2010. Since the corpus consists of raw texts and does not contain any additional information about the language features of the data (such as stemming or morphological analysis), a large amount of manual work was required to process the data. Thus, based on a lexicon of negative emotive intensifiers compiled in a previous phase of the research, every occurrence of each intensifier was queried, and the results were stored in a separate data frame. Then, basic linguistic processing (POS-tagging, lemmatization etc.) was carried out automatically with the ‘magyarlanc’ NLP-toolkit. Finally, the frequency and collocation features of all the negative emotive words were automatically analyzed in the corpus. Outcomes of the research revealed in detail how these words have proceeded through grammaticalization over time, i.e., they change from lexical elements to grammatical ones, and they slowly go through a delexicalization process (their negative content diminishes over time). What is more, it was also pointed out which negative emotive intensifiers are at the same stage in this process in the same time period. Giving a closer look to the different domains of the analysed corpus, it also became certain that during this process, the pragmatic role’s importance increases: the newer use expresses the speaker's subjective, evaluative opinion at a certain level.Keywords: historical corpus analysis, historical linguistics, negative emotive intensifiers, semantic changes over time
Procedia PDF Downloads 23320370 Association of Musculoskeletal and Radiological Features with Clinical and Serological Findings in Systemic Sclerosis: A Single-Centre Registry Study
Authors: Rezvan Hosseinian
Abstract:
Aim: Systemic sclerosis (SSc) is a chronic connective tissue disease with the clinical hallmark of skin thickening and tethering. The correlation of musculoskeletal features with other parameters should be considered in SSc patients. Methods: We reviewed the records of all patients who had more than one visit and standard anteroposterior radiography of hand. We used univariate analysis, and factors with p<0.05 were included in logistic regression to find out dependent factors. Results: Overall, 180 SSc patients were enrolled in our study, 161 (89.4%) of whom were women. The median age (IQR) was 47.0 years (16), and 52% had a diffuse subtype of the disease. In multivariate analysis, tendon friction rubs (TFRs) were associated with the presence of calcinosis, muscle tenderness, and flexion contracture (FC) on physical examination (p<0.05). Arthritis showed no differences in the two subtypes of the disease (p=0.98), and in multivariate analysis, there were no correlations between radiographic arthritis and serological and clinical features. The radiographic results indicated that disease duration correlated with joint erosion, acro-osteolysis, resorption of the distal ulna, calcinosis and radiologic FC (p< 0.05). Acro-osteolysis was more frequent in the dcSSc subtype, TFRs, and anti-TOPO I antibody. Radiologic FC showed an association with skin score, calcinosis and haematocrit <30% (p<0.05). Joint flexion on radiography was associated with disease duration, modified Rodnan skin score, calcinosis, and low hematocrit (P<0.01). Conclusion: Disease duration was a main dependent factor for developing joint erosion, acro-osteolysis, bone resorption, calcinosis, and flexion contracture on hand radiography. Acro-osteolysis presented in the severe form of the disease. Acro-osteolysis was the only dependent variable associated with bone demineralization.Keywords: disease subsets, hand radiography, joint erosion, sclerosis
Procedia PDF Downloads 9020369 Association of Musculoskeletal and Radiological Features with Clinical and Serological Findings in Systemic Sclerosis: A Single-Centre Registry Study
Authors: Nasrin Azarbani
Abstract:
Aim: Systemic sclerosis (SSc) is a chronic connective tissue disease with the clinical hallmark of skin thickening and tethering. Correlation of musculoskeletal features with other parameters should be considered in SSc patients. Methods: We reviewed the records of all patients who had more than one visit and standard anteroposterior radiography of hand. We used univariate analysis, and factors with p<0.05 were included in logistic regression to find out dependent factors. Results: Overall, 180 SSc patients were enrolled in our study, 161 (89.4%) of whom were women. Median age (IQR) was 47.0 years (16), and 52% had diffuse subtype of the disease. In multivariate analysis, tendon friction rubs (TFRs) was associated with the presence of calcinosis, muscle tenderness, and flexion contracture (FC) on physical examination (p<0.05). Arthritis showed no differences in the two subtypes of the disease (p=0.98), and in multivariate analysis, there were no correlations between radiographic arthritis and serological and clinical features. The radiographic results indicated that disease duration correlated with joint erosion, acro-osteolysis, resorption of distal ulna, calcinosis and radiologic FC (p< 0.05). Acro-osteolysis was more frequent in the dcSSc subtype, TFRs, and anti-TOPO I antibody. Radiologic FC showed an association with skin score, calcinosis and haematocrit <30% (p<0.05). Joint flexion on radiography was associated with disease duration, modified Rodnan skin score, calcinosis, and low haematocrit (P<0.01). Conclusion: Disease duration was a main dependent factor for developing joint erosion, acro-osteolysis, bone resorption, calcinosis, and flexion contracture on hand radiography. Acro-osteolysis presented in the severe form of the disease. Acro-osteolysis was the only dependent variable associated with bone demineralization.Keywords: sclerosis, disease subsets, joint erosion, musculoskeletal
Procedia PDF Downloads 6620368 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 38420367 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia
Authors: Dhekra Khazri, Hakim Gabtni
Abstract:
Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector
Procedia PDF Downloads 28320366 Voices and Pictures from an Online Course and a Face to Face Course
Authors: Eti Gilad, Shosh Millet
Abstract:
In light of the technological development and its introduction into the field of education, an online course was designed in parallel to the 'conventional' course for teaching the ''Qualitative Research Methods''. This course aimed to characterize learning-teaching processes in a 'Qualitative Research Methods' course studied in two different frameworks. Moreover its objective was to explore the difference between the culture of a physical learning environment and that of online learning. The research monitored four learner groups, a total of 72 students, for two years, two groups from the two course frameworks each year. The courses were obligatory for M.Ed. students at an academic college of education and were given by one female-lecturer. The research was conducted in the qualitative method as a case study in order to attain insights about occurrences in the actual contexts and sites in which they transpire. The research tools were open-ended questionnaire and reflections in the form of vignettes (meaningful short pictures) to all students as well as an interview with the lecturer. The tools facilitated not only triangulation but also collecting data consisting of voices and pictures of teaching and learning. The most prominent findings are: differences between the two courses in the change features of the learning environment culture for the acquisition of contents and qualitative research tools. They were manifested by teaching methods, illustration aids, lecturer's profile and students' profile.Keywords: face to face course, online course, qualitative research, vignettes
Procedia PDF Downloads 41820365 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 31320364 Economics of Oil and Its Stability in the Gulf Region
Authors: Al Mutawa A. Amir, Liaqat Ali, Faisal Ali
Abstract:
After the World War II, the world economy was disrupted and changed due to oil and its prices. The research in this paper presents the basic statistical features and economic characteristics of the Gulf economy. The main features of the Gulf economies and its heavy dependence on oil exports, its dualism between modern and traditional sectors and its rapidly increasing affluences are particularly emphasized. In this context, the research in this paper discussed the problems of growth versus development and has attempted to draw the implications for the future economic development of this area.Keywords: oil prices, GCC, economic growth, gulf oil
Procedia PDF Downloads 33520363 Improvement of the Numerical Integration's Quality in Meshless Methods
Authors: Ahlem Mougaida, Hedi Bel Hadj Salah
Abstract:
Several methods are suggested to improve the numerical integration in Galerkin weak form for Meshless methods. In fact, integrating without taking into account the characteristics of the shape functions reproduced by Meshless methods (rational functions, with compact support etc.), causes a large integration error that influences the PDE’s approximate solution. Comparisons between different methods of numerical integration for rational functions are discussed and compared. The algorithms are implemented in Matlab. Finally, numerical results were presented to prove the efficiency of our algorithms in improving results.Keywords: adaptive methods, meshless, numerical integration, rational quadrature
Procedia PDF Downloads 36420362 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept
Authors: Igor Vishnevskyi
Abstract:
Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling
Procedia PDF Downloads 78