Search results for: earthquake time series
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19808

Search results for: earthquake time series

19298 The Discursive Construction of Emotions in the Headlines of French Newspapers on Seismic Disasters

Authors: Mirela-Gabriela Bratu

Abstract:

The main objective of this study is to highlight the way in which emotions are constructed discursively in the French written press, more particularly in the titles of informative articles. To achieve this objective, we will begin the study with the theoretical part, which aims to capture the characteristics of journalistic discourse, to which we will add clues of emotions that we will identify in the titles of the articles. The approach is based on the empirical results from the analysis of the articles published on the earthquake that took place on August 24, 2016, in Italy, as described by two French national daily newspapers: Le Monde and Le Point. The corpus submitted to the analysis contains thirty-seven titles, published between August 24, 2016, and August 24, 2017. If the textual content of the speech offers information respecting the grammatical standards and following the presentation conventions, the choice of words can touch the reader, so the journalist must add other means than mastering of the language to create emotion. This study aims to highlight the strategies, such as rhetorical figures, the tenses, or factual data, used by journalists to create emotions for the readers. We also try, thanks to the study of the articles which were published for several days relating to the same event, to emphasize whether we can speak or not of the dissipation of emotion and the catastrophic side as the event fades away in time. The theoretical framework is offered by works on rhetorical strategies (Perelman, 1992; Amossi, 2000; Charaudeau, 2000) and on the study of emotions (Plantin, 1997, 1998, 2004; Tetu, 2004).

Keywords: disaster, earthquake, emotion, feeling

Procedia PDF Downloads 117
19297 Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibrereinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 480
19296 The Scenario of Disaster Management in Nepal: A Case Study of Nepal Earthquakes, 2015

Authors: Sandesh Yadav

Abstract:

Earthquake constitutes one of the most terrible natural hazards which often turn into a disaster or causing extensive devastation and loss of human lives and their properties. In the year 2015, Nepal experienced the most devastating earthquakes on 25th April, 2015 and 12th May, 2015 respectively. Several villages, towns, human constructions and their properties, lives were completely damaged. The hazardous effect of Nepal earthquakes depends not only on their magnitude of Richter Scale on intensity alone, but also on so many factors, such as geology of earth crust (lithology, elasticity, soil condition, permissible stress, rock structures etc.). The unscientifically and non-seismically designed buildings resulted in huge loss of life and property. Further, the loss due to earthquake can be grouped into three broad categories namely agriculture sector (loss of livestock, poultry and food stocks), industrial sector (mainly brick production industry) and infrastructural sector (transportation infrastructure). The present research study begins with the tracing of Geological history of earthquakes in Nepal along with identification of causes of Nepal earthquakes, 2015. Secondly, research study identifies the extent of tremors of earthquakes of 2015 in Nepal and surrounding areas along with their sphere of impact. Thirdly, the research study tries to assess the agricultural loss, industrial loss and infrastructural loss due to earthquakes in Nepal. Lastly, the research study ends with the various recommendations and suggestions in order to minimize the loss due to earthquakes in the future.

Keywords: earthquake, richter scale, sphere of impact, tremors

Procedia PDF Downloads 222
19295 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States

Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi

Abstract:

The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.

Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM

Procedia PDF Downloads 286
19294 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis

Procedia PDF Downloads 576
19293 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means

Authors: Smita Sonker

Abstract:

Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.

Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series

Procedia PDF Downloads 373
19292 Modeling and Behavior of Structural Walls

Authors: Salima Djehaichia, Rachid Lassoued

Abstract:

Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.

Keywords: modeling, old building, pushover analysis, structural walls

Procedia PDF Downloads 223
19291 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 38
19290 A Finite Elements Model for the Study of Buried Pipelines Affected by Strike-Slip Fault

Authors: Reza Akbari, Jalal MontazeriFashtali, PeymanMomeni Taromsari

Abstract:

Pipeline systems, play an important role as a vital element in reducing or increasing the risk of earthquake damage and vulnerability. Pipelines are suitable, cheap, fast, and safe routes for transporting oil, gas, water, sewage, etc. The sepipelines must pass from a wide geographical area; hence they will structurally face different environmental and underground factors of earthquake forces’ effect. Therefore, structural engineering analysis and design for this type of lines requires the understanding of relevant parameters behavior and lack of familiarity with them can cause irreparable damages and risks to design and execution, especially in the face of earthquakes. Today, buried pipelines play an important role in human life cycle, thus, studying the vulnerability of pipeline systems is of particular importance. This study examines the behavior of buried pipelines affected by strike-slip fault. Studied fault is perpendicular to the tube axis and causes stress and deformation in the tube by sliding horizontally. In this study, the pipe-soil interaction is accurately simulated, so that one can examine the large displacements and strains, nonlinear material behavior and contact and friction conditions of soil and pipe. The results can be used for designing buried pipes and determining the amount of fault displacement that causes the failure of the buried pipes.

Keywords: pipe lines , earthquake , fault , soil-fault interaction

Procedia PDF Downloads 433
19289 Performance Evaluation and Cost Analysis of Standby Systems

Authors: Mohammed A. Hajeeh

Abstract:

Pumping systems are an integral part of water desalination plants, their effective functioning is vital for the operation of a plant. In this research work, the reliability and availability of pressurized pumps in a reverse osmosis desalination plant are studied with the objective of finding configurations that provides optimal performance. Six configurations of a series system with different number of warm and cold standby components were examined. Closed form expressions for the mean time to failure (MTTF) and the long run availability are derived and compared under the assumption that the time between failures and repair times of the primary and standby components are exponentially distributed. Moreover, a cost/ benefit analysis is conducted in order to identify a configuration with the best performance and least cost. It is concluded that configurations with cold standby components are preferable especially when the pumps are of the size.

Keywords: availability, cost/benefit, mean time to failure, pumps

Procedia PDF Downloads 263
19288 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 268
19287 Dorsal Root Ganglion Neuromodulation as an Alternative to Opioids in the Evolving Healthcare Crisis

Authors: Adam J. Carinci

Abstract:

Background: The opioid epidemic is the most pressing healthcare crisis of our time. There is increasing recognition that opioids have limited long-term efficacy and are associated with hyperalgesia, addiction, and increased morbidity and mortality. Therefore, alternative strategies to combat chronic pain are paramount. We initiated a multicenter retrospective case series to review the efficacy of DRG stimulation in facilitating opioid tapering, opioid discontinuation and as a viable alternative to chronic opioid therapy. Purpose: The dorsal root ganglion (DRG) plays a key role in the development and maintenance of pain. Recent innovations in neuromodulation, specifically, dorsal root ganglion stimulation, offers an effective alternative to opioids in the treatment of chronic pain. This retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy. Procedure: This small multicenter retrospective case series provides preliminary evidence that DRG stimulation facilitates opioid weaning, opioid tapering and is a viable option to opioid therapy in the treatment of chronic pain. A retrospective analysis was completed. Visual analog scale pain scores and pain medication usage were collected at the baseline visit and after four weeks, 3 months and 6 months of treatment. Ten consecutive patients across two study centers were included. The pain was rated 7.38 at baseline and decreased to 1.50 at the 4-week follow-up, a reduction of 79.5%. All patients significantly decreased their opioid pain medication use with an average > 30% reduction in morphine equivalents and four were able to discontinue their medications entirely. Conclusion: This Retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy.

Keywords: dorsal root ganglion, neuromodulation, opioid sparing, stimulation

Procedia PDF Downloads 94
19286 Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 415
19285 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 128
19284 Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake

Authors: Minami Ito, Akihiro Iijima

Abstract:

On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority.

Keywords: eco-friendly reconstruction, harmony with environment, decontamination, nuclear disaster

Procedia PDF Downloads 204
19283 Triplex Detection of Pistacia vera, Arachis hypogaea and Pisum sativum in Processed Food Products Using Probe Based PCR

Authors: Ergün Şakalar, Şeyma Özçirak Ergün, Emrah Yalazi̇, Emine Altinkaya, Cengiz Ataşoğlu

Abstract:

In recent years, food allergies which cause serious health problems affect to public health around the world. Foodstuffs which contain allergens are either intentionally used as ingredients or are encased as contaminant in food products. The prevalence of clinical allergy to peanuts and nuts is estimated at about 0.4%-1.1% of the adult population, representing the allergy to pistachio the 7% of the cases of tree nut causing allergic reactions. In order to protect public health and enforce the legislation, methods for sensitive analysis of pistachio and peanut contents in food are required. Pea, pistachio and peanut are used together, to reduce the cost in food production such as baklava, snack foods.DNA technology-based methods in food analysis are well-established and well-roundedtools for species differentiation, allergen detection. Especially, the probe-based TaqMan real-time PCR assay can amplify target DNA with efficiency, specificity, and sensitivity.In this study, pistachio, peanut and pea were finely ground and three separate series of triplet mixtures containing 0.1, 1, 10, 100, 1000, 10,000 and 100,000 mg kg-1 of each sample were prepared for each series, to a final weight of 100 g. DNA from reference samples and industrial products was successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. TaqMan probes were designed for triplex determination of ITS, Ara h 3 and pea lectin genes which are specific regions for identification pistachio, peanut and pea, respectively.The real-time PCR as quantitative detected pistachio, peanut and pea in these mixtures down to the lowest investigated level of 0.1, 0.1 and 1 mg kg-1, respectively. Also, the methods reported here are capable of detecting of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA. We accomplish that the quantitative triplex real-time PCR method developed in this study canbe applied to detect pistachio, peanut and peatraces for three allergens at once in commercial food products.

Keywords: allergens, DNA, real-time PCR, TaqMan probe

Procedia PDF Downloads 231
19282 Brand Placement Strategies in Turkey: The Case of “Yalan Dünya”

Authors: Burçe Boyraz

Abstract:

This study examines appearances of brand placement as an alternative communication strategy in television series by focusing on Yalan Dünya which is one of the most popular television series in Turkey. Consequently, this study has a descriptive research design and quantitative content analysis method is used in order to analyze frequency and time data of brand placement appearances in first 3 seasons of Yalan Dünya with 16 episodes. Analysis of brand placement practices in Yalan Dünya is dealt in three categories: episode-based analysis, season-based analysis and comparative analysis. At the end, brand placement practices in Yalan Dünya are evaluated in terms of type, form, duration and legal arrangements. As a result of this study, it is seen that brand placement plays a determinant role in Yalan Dünya content. Also, current legal arrangements make brand placement closer to other traditional communication strategies instead of differing brand placement from them distinctly.

Keywords: advertising, alternative communication strategy, brand placement, Yalan Dünya

Procedia PDF Downloads 224
19281 War and the Battle of Lebanese Television over Gender

Authors: Natalie M. Khazaal

Abstract:

The effects of the civil war on Lebanese women have been challenging to conceptualize. For some, war is a liberating and empowering force for women, while for others it is one that subjugates women and disempowers them in new ways. Scholars have explored the impact on the Lebanese civil war (1975-1990) on women in the fields of labor history, political activism and literary production. In all these arenas, women’s role and visibility were contested and negotiated in diverse ways. But probably the most visible arena where this contestation took place was television. Dramatized entertainment series were crucial sites where fictional women battled out the gender question, and which reflected and participated in the negotiations of gender politics. Even more stunningly, actual television stations became part of this battle through the plots and portrayals of women that they created. The state-backed Tele-Liban (TL) peddled patriarchal articulations of gender that directly competed with the edgy vision of liberated, independent women on the pirate Lebanese Broadcasting Corporation (LBC). This presentation explores how LBC used gender to distinguish its brand against the retrograde TL programing. Television series are an important medium for creating, testing and reenacting gender politics. They are even more consequential in another way. They are the sites where a dramatic shift in the relationship between Arab television and Arab publics—from benign neglect of public concerns towards engagement with audiences—took place for the first time. As this shift is at the heart of why Arab media was seen as a participant in the Arab uprisings, it is important to explore the roots of the shift in the dramas and comedy series of the mid-1980s Lebanese television. This presentation argues that television battles over gender were consequential and need serious consideration as sites of unexpected meaning.

Keywords: gender, Lebanon, television, war, women

Procedia PDF Downloads 608
19280 Formulation and in Vitro Evaluation of Cubosomes Containing CeO₂ Nanoparticles Loaded with Glatiramer Acetate Drug

Authors: Akbar Esmaeili, Zahra Salarieh

Abstract:

Cerium oxide nanoparticles (nano-series) are used as catalysts in industrial applications due to their free radical scavenging properties. Given that free radicals play an essential role in the pathology of many neurological diseases, we investigated the use of nanocrystals as a potential therapeutic agent for oxidative damage. This project synthesized nano-series from a new and environmentally friendly bio-pathway. Investigation of cerium nitrate in culture medium containing inoculated Lactobacillus acidophilus strain before incubation produces nano-series. Loaded with glatiramer acetate (GA) was formed by coating carboxymethylcellulose (CMC) and CeO2. FE-SEM analysis showed nano-series in the 9-11 nm range, spherical shape, and uniform particle size distribution. Cubic nanoparticles containing anti-multiple sclerosis (anti-Ms) treatment called GA were used. Glycerol monostearate (GMS) was used as a fat base, and evening primrose extract was used as an anti-inflammatory in cubosomes. Design-Expert® software was used to study the effects of different formulation factors on the properties of GAloaded cubic dispersions. Thirty GA-labeled cubic dispersions were prepared with GA-labeled carboxymethylcellulose and evaluated in vitro. The results showed an average nano-series size of 89.02 and a zeta potential of -49.9. Cubosomes containing GA-CMC/CeO2 showed a stable release profile for 180 min. The results showed that cubosomes containing GA-CMC/CeO2 could be a promising drug carrier with normal release behavior.

Keywords: ciochemistry, biotechnology, molecular, biology

Procedia PDF Downloads 24
19279 The Design of Smart Tactile Textiles for Therapeutic Applications

Authors: Karen Hong

Abstract:

Smart tactile textiles are a series of textile-based products that incorporates smart embedded technology to be utilized as tactile therapeutic applications for 2 main groups of target users. The first group of users will be children with sensory processing disorder who are suffering from tactile sensory dysfunction. Children with tactile sensory issues may have difficulty tolerating the sensations generated from the touch of certain textures on the fabrics. A series of smart tactile textiles, collectively known as ‘Tactile Toys’ are developed as tactile therapy play objects, exposing children to different types of touch sensations within textiles, enabling them to enjoy tactile experiences together with interactive play which will help them to overcome fear of certain touch sensations. The second group of users will be the elderly or geriatric patients who are suffering from deteriorating sense of touch. One of the common consequences of aging is suffering from deteriorating sense of touch and a decline in motoric function. With the focus in stimulating the sense of touch for this particular group of end users, another series of smart tactile textiles, collectively known as ‘Tactile Aids’ are developed also as tactile therapy. This range of products can help to maintain touch sensitivity and at the same time allowing the elderly to enjoy interactive play to practice their hand-eye coordination and enhancing their motor skills. These smart tactile textile products are being designed and tested out by the end users and have proofed their efficacy as tactile therapy enabling the users to lead a better quality of life.

Keywords: smart textiles, embedded technology, tactile therapy, tactile aids, tactile toys

Procedia PDF Downloads 160
19278 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 379
19277 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 113
19276 Development and Evaluation of Virtual Basketball Game Using Motion Capture Technology

Authors: Shunsuke Aoki, Taku Ri, Tatsuya Yamazaki

Abstract:

These days, along with the development of e-sports, video games as a competitive sport is attracting attention. But, in many cases, action in the screen does not match the real motion of operation. Inclusiveness of player motion is needed to increase reality and excitement for sports games. Therefore, in this study, the authors propose a method to recognize player motion by using the motion capture technology and develop a virtual basketball game. The virtual basketball game consists of a screen with nine targets, players, depth sensors, and no ball. The players pretend a two-handed basketball shot without a ball aiming at one of the nine targets on the screen. Time-series data of three-dimensional coordinates of player joints are captured by the depth sensor. 20 joints data are measured for each player to estimate the shooting motion in real-time. The trajectory of the thrown virtual ball is calculated based on the time-series data and hitting on the target is judged as success or failure. The virtual basketball game can be played by 2 to 4 players as a competitive game among the players. The developed game was exhibited to the public for evaluation on the authors' university open campus days. 339 visitors participated in the exhibition and enjoyed the virtual basketball game over the two days. A questionnaire survey on the developed game was conducted for the visitors who experienced the game. As a result of the survey, about 97.3% of the players found the game interesting regardless of whether they had experienced actual basketball before or not. In addition, it is found that women are easy to comfort for shooting motion. The virtual game with motion capture technology has the potential to become a universal entertainment between e-sports and actual sports.

Keywords: basketball, motion capture, questionnaire survey, video ga

Procedia PDF Downloads 103
19275 Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story

Authors: Mohammadreza Baradaran, F. Hamzezarghani

Abstract:

Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined.

Keywords: seismic, rehabilitation, steel building, foundation

Procedia PDF Downloads 256
19274 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes

Authors: T. A. Sakr, Hanaa E. Abd-El-Mottaleb

Abstract:

Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significant to the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasis was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are sigbificantly enhanced while lesser drift improvements are observed.

Keywords: outrigger, shear wall, earthquake, nonlinear

Procedia PDF Downloads 264
19273 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 307
19272 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme

Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye

Abstract:

In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.

Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model

Procedia PDF Downloads 382
19271 Trends of Seasonal and Annual Rainfall in the South-Central Climatic Zone of Bangladesh Using Mann-Kendall Trend Test

Authors: M. T. Islam, S. H. Shakif, R. Hasan, S. H. Kobi

Abstract:

Investigation of rainfall trends is crucial considering climate change, food security, and the economy of a particular region. This research aims to study seasonal and annual precipitation trends and their abrupt changes over time in the south-central climatic zone of Bangladesh using monthly time series data of 50 years (1970-2019). A trend-free pre-whitening method has been employed to make necessary adjustments for autocorrelations in the rainfall data. Trends in rainfall and their intensity have been observed using the non-parametric Mann-Kendall test and Theil-Sen estimator. Significant changes and fluctuation points in the data series have been detected using the sequential Mann-Kendall test at the 95% confidence limit. The study findings show that most of the rainfall stations in the study area have a decreasing precipitation pattern throughout all seasons. The maximum decline in the rainfall intensity has been found for the Tangail station (-8.24 mm/year) during monsoon. Madaripur and Chandpur stations have shown slight positive trends in post-monsoon rainfall. In terms of annual precipitation, a negative rainfall pattern has been identified in each station, with a maximum decrement (-) of 14.48 mm/year at Chandpur. However, all the trends are statistically non-significant within the 95% confidence interval, and their monotonic association with time ranges from very weak to weak. From the sequential Mann-Kendall test, the year of changing points for annual and seasonal downward precipitation trends occur mostly after the 90s for Dhaka and Barishal stations. For Chandpur, the fluctuation points arrive after the mid-70s in most cases.

Keywords: trend analysis, Mann-Kendall test, Theil-Sen estimator, sequential Mann-Kendall test, rainfall trend

Procedia PDF Downloads 58
19270 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 113
19269 Seismic Activity and Groundwater Behavior at Kalabsha Area, Aswan, Egypt

Authors: S. M. Moustafa, A. Ezzat, Y. S. Taha, G. H. Hassib, S. Hamada

Abstract:

After the occurrence of 14, Nov, 1981 earthquake (M = 5.3), on Kalabska fault, south of Egypt, seismic stations distributed in and around the Kalabsha area, in order to monitoring, recording and studying the seismic activity in the area. In addition of that, from 1989 a number of piezometer wells drilled in the same area, distribed on at the both side of the active faults area and in different water bearing formations, in order to measuring the groundwater parameters (level, temperature, ph, and conductivity) to monitoring the relationship between those parameters and the seismic activity at Kalabsha area. The behavior of groundwater due to seismic activity over the world studied by several scientists i.e. H. Wakita (1979) on Izu-Oshima earthquake (M= 7.0) at Japan, M. E. Contadakis & G.asteriadis (1972), and Evans (1966), they found an anomalies on groundwater measurements prior, co, and post the occurrence of bigger earthquakes, referring to the probability of precursory evidence of impending earthquakes. In Kalabsha area south of Egypt, this study has been done using recorded seismic data, and the measurements of underground water parameters. same phenomena of anomalies founded on groundwater measurements pre, co. and post the occurrence of earthquakes with magnitude bigger than 3, and no systematic regularity exists for epicenter distance, duration of anomalies or time lag between anomalies appear and occurrence of events. Also the results found present strong relation between the groundwater in the upper unconfined aquifer Nubian Sandstone formation, and Kalabsha seismic activity, otherwise no relation between the seismic activities in the area with the deep groundwater in the lower confined aquifer Sandstone.

Keywords: seismicity, groundwater, Aswan, Egypt

Procedia PDF Downloads 357