Search results for: data driven and knowledge driven
29856 Small Businesses as Vehicles for Job Creation in North-West Nigeria
Authors: Mustapha Shitu Suleiman, Francis Neshamba, Nestor Valero-Silva
Abstract:
Small businesses are considered as engine of economic growth, contributing to employment generation, wealth creation, and poverty alleviation and food security in both developed and developing countries. Nigeria is facing many socio-economic problems and it is believed that by supporting small business development, as propellers of new ideas and more effective users of resources, often driven by individual creativity and innovation, Nigeria would be able to address some of its economic and social challenges, such as unemployment and economic diversification. Using secondary literature, this paper examines the role small businesses can play in the creation of jobs in North-West Nigeria to overcome issues of unemployment, which is the most devastating economic challenge facing the region. Most studies in this area have focused on Nigeria as a whole and only a few studies provide a regional focus, hence, this study will contribute to knowledge by filling this gap by concentrating on North-West Nigeria. It is hoped that with the present administration’s determination to improve the economy, small businesses would be used as vehicles for diversification of the economy away from crude oil to create jobs that would lead to a reduction in the country’s high unemployment level.Keywords: job creation, north-west, Nigeria, small business, unemployment
Procedia PDF Downloads 30529855 Ownership and Shareholder Schemes Effects on Airport Corporate Strategy in Europe
Authors: Dimitrios Dimitriou, Maria Sartzetaki
Abstract:
In the early days of the of civil aviation, airports are totally state-owned companies under the control of national authorities or regional governmental bodies. From that time the picture has totally changed and airports privatisation and airport business commercialisation are key success factors to stimulate air transport demand, generate revenues and attract investors, linked to reliable and resilience of air transport system. Nowadays, airport's corporate strategy deals with policies and actions, affecting essential the business plans, the financial targets and the economic footprint in a regional economy they serving. Therefore, exploring airport corporate strategy is essential to support the decision in business planning, management efficiency, sustainable development and investment attractiveness on one hand; and define policies towards traffic development, revenues generation, capacity expansion, cost efficiency and corporate social responsibility. This paper explores key outputs in airport corporate strategy for different ownership schemes. The airport corporations are grouped in three major schemes: (a) Public, in which the public airport operator acts as part of the government administration or as a corporised public operator; (b) Mixed scheme, in which the majority of the shares and the corporate strategy is driven by the private or the public sector; and (c) Private, in which the airport strategy is driven by the key aspects of globalisation and liberalisation of the aviation sector. By a systemic approach, the key drivers in corporate strategy for modern airport business structures are defined. Key objectives are to define the key strategic opportunities and challenges and assess the corporate goals and risks towards sustainable business development for each scheme. The analysis based on an extensive cross-sectional dataset for a sample of busy European airports providing results on corporate strategy key priorities, risks and business models. The conventional wisdom is to highlight key messages to authorities, institutes and professionals on airport corporate strategy trends and directions.Keywords: airport corporate strategy, airport ownership, airports business models, corporate risks
Procedia PDF Downloads 30329854 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Numbers and Its Effects on Pupils Achievement of Rational Numbers
Authors: Raliatu Mohammed Kashim
Abstract:
The study investigated primary school teachers conceptual and procedural knowledge of rational numbers to determine how it effects on pupil’s achievement on rational number. Specifically, primary school teachers’ level of conceptual and procedural knowledge about rational number and its effects on their pupils understanding of rational number in primary school was explored. The study was carried out in Bauchi state of Nigeria, Using a multistage design. The first stage was a descriptive design. The second stage involves a pre-test post-test only quasi experiment design. The population of the study comprises of six mathematics teachers holding the Nigerian Certificate in Education (NCE) teaching primary six and their two hundred and ten pupils in intact class. Two instrument namely Conceptual and Procedural knowledge Test (CPKT) and Rational number Achievement Test (RAT) were used for data collection. Data collected was analyzed using ANCOVA and Scheffe’s Test. The result revealed a significant differences between pupils taught by teachers with high conceptual and procedural knowledge and those target by teachers with low conceptual and procedural knowledge.Keywords: conceptual knowledge, procedural knowledge, rational numbers, multistage design
Procedia PDF Downloads 38629853 SynKit: A Event-Driven and Scalable Microservices-Based Kitting System
Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro
Abstract:
The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0
Procedia PDF Downloads 2029852 Efficacy of Knowledge Management Practices in Selected Public Libraries in the Province of Kwazulu-Natal, South Africa
Authors: Petros Dlamini, Bethiweli Malambo, Maggie Masenya
Abstract:
Knowledge management practices are very important in public libraries, especial in the era of the information society. The success of public libraries depends on the recognition and application of knowledge management practices. The study investigates the value and challenges of knowledge management practices in public libraries. Three research objectives informed the study: to identify knowledge management practices in public libraries, understand the value of knowledge management practices in public libraries, and determine the factors hampering knowledge management practices in public libraries. The study was informed by the interpretivism research paradigm, which is associated with qualitative studies. In that light, the study collected data from eight librarians and or library heads, who were purposively selected from public libraries. The study adopted a social anthropological approach, which thoroughly evaluated each participant's response. Data was collected from the respondents through telephonic semi-structured interviews and assessed accordingly. Furthermore, the study used the latest content concept for data interpretation. The chosen data analysis method allowed the study to achieve its main purpose with concrete and valid information. The study's findings showed that all six (100%) selected public libraries apply knowledge management practices. The findings of the study revealed that public libraries have knowledge sharing as the main knowledge management practice. It was noted that public libraries employ many practices, but each library employed its practices of choice depending on their knowledge management practices structure. The findings further showed that knowledge management practices in public libraries are employed through meetings, training, information sessions, and awareness, to mention a few. The findings revealed that knowledge management practices make the libraries usable. Furthermore, it has been asserted that knowledge management practices in public libraries meet users’ needs and expectations and equip them with skills. It was discovered that all participating public libraries from Umkhanyakude district municipality valued their knowledge management practices as the pillar and foundation of services. Noticeably, knowledge management practices improve users ‘standard of living and build an information society. The findings of the study showed that librarians should be responsible for the value of knowledge management practices as they are qualified personnel. The results also showed that 83.35% of public libraries had factors hampering knowledge management practices. The factors are not limited to shortage of funds, resources and space, and political interference. Several suggestions were made to improve knowledge management practices in public libraries. These suggestions include improving the library budget, increasing libraries’ building sizes, and conducting more staff training.Keywords: knowledge management, knowledge management practices, storage, dissemination
Procedia PDF Downloads 9429851 Key Technologies and Evolution Strategies for Computing Force Bearer Network
Authors: Zhaojunfeng
Abstract:
Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment.Keywords: component-computing force bearing, bearing requirements of computing force application, dual-SLA indicators for computing force applications, SRv6, evolution strategies
Procedia PDF Downloads 12929850 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution
Abstract:
Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.Keywords: air pollution, commercial microwave links, rainfall, washout
Procedia PDF Downloads 11029849 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 2329848 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review
Authors: G. W. Greubel, A. Kalam
Abstract:
This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy. South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously, the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be protected from the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’, which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid.Keywords: load shedding, renewable energy integration, smart grid, virtual grid, virtual power plant
Procedia PDF Downloads 5629847 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 44629846 Challenges of School Leadership
Authors: Stefan Ninković
Abstract:
The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.Keywords: educational changes, leaders, leadership, school
Procedia PDF Downloads 33529845 Architectural Visualization: From Ancient Civilizations to the Roman Empire
Authors: Matthias Stange
Abstract:
Architectural visualization has been practiced for as long as there have been buildings. Visualization (lat.: visibilis "visible") generally refers to bringing abstract data and relationships into a graphically, visually comprehensible form. Particularly, visualization refers to the process of translating relationships that are difficult to formulate linguistically or logically into visual media (e.g., drawings or models) to make them comprehensible. Building owners have always been interested in knowing how their building will look before it is built. In the empirical part of this study, the roots of architectural visualization are examined, starting from the ancient civilizations to the end of the Roman Empire. Extensive literature research on architectural theory and architectural history forms the basis for this analysis. The focus of the analysis is basic research from the emergence of the first two-dimensional drawings in the Neolithic period to the triggers of significant further developments of architectural representation, as well as their importance for subsequent methods and the transmission of knowledge over the following epochs. The analysis focuses on the development of analog methods of representation from the first Neolithic house floor plans to the Greek detailed stone models and paper drawings in the Roman Empire. In particular, the question of socio-cultural, socio-political, and economic changes as possible triggers for the development of representational media and methods will be analyzed. The study has shown that the development of visual building representation has been driven by scientific, technological, and social developments since the emergence of the first civilizations more than 6000 years ago first by the change in human’s subsistence strategy, from food appropriation by hunting and gathering to food production by agriculture and livestock, and the sedentary lifestyle required for this.Keywords: ancient Greece, ancient orient, Roman Empire, architectural visualization
Procedia PDF Downloads 11529844 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 5529843 The Nexus between Social Entrepreneurship and Youth Empowerment
Authors: Aaron G. Laylo
Abstract:
This paper mainly assumes that social entrepreneurship contributes significantly to youth empowerment i.e., work and community engagement. Two questions are thus raised in order to establish this hypothesis: 1) First, how does social entrepreneurship contribute to youth empowerment?; and 2) secondly, why is social entrpreneurship significantly incremental to youth empowerment? This research aims a) to investigate on the social aspect of entrepreneurship; b) to explore challenges in youth empowerment particularly in respect to work and community engagement; and c) to inquire into whether social enterprises have truly served as a catalyst for, thus an effective response to, youth empowerment. It must be emphasized that young people, which comprise 1.8 billion in a world of seven billion are an asset; Apparently, how to maximize that potential is crucial. By utilizing exploratory research design, the paper endeavors to generate new ideas in regards to both components, develop tentative theories on social entrepreneurship, and refine certain issues that are under observation and seek scholarly attention— a rather emerging phenomenon vis a vis the challenge to empower a significant cluster of the society. Case studies will be utilized as an approach in order to comparatively analyze youth-driven social enterprises in the Philippines that have been widely recognized as successful insofar as social impact is concerned. As most scholars attested, social entrepreneurship is still at its infancy stage. Youth empowerment, meanwhile, is yet a vast area to explore insofar as academic research is concerned. Programs and projects that advocate the pursuit of these components abound. However, academic research is yet to be undertaken to see and understand their social and economic relevance. This research is also an opportunity for scholars to explore, understand, and make sense of the promise that lies in social entrepreneurship research and how it can serve as a catalyst for youth empowerment. Youth-driven social enterprises can be an influential tool in sustaining development across the globe as they intend to provide opportunities for optimal economic productivity that recognizes social inclusion. Ultimately, this study should be able to contribute to both research and development-in-practice communities for the greater good of the society. By establishing the nexus between these two components, the research may contribute to fostering greater exploration of the benefits that both may yield to human progress as well as the gaps that have to be filled in by various policy stakeholders relevant to these units.Keywords: social entpreneurship, youth, empowerment, social inclusion
Procedia PDF Downloads 30429842 An Investigation into the Use of Overset Mesh for a Vehicle Aerodynamics Case When Driving in Close Proximity
Authors: Kushal Kumar Chode, Remus Miahi Cirstea
Abstract:
In recent times, the drive towards more efficient vehicles and the increase in the number of vehicle on the roads has driven the aerodynamic researchers from studying the vehicle in isolation towards understanding the benefits of vehicle platooning. Vehicle platooning is defined as a series of vehicles traveling in close proximity. Due to the limitations in size and load measurement capabilities for the wind tunnels facilities, it is very difficult to perform this investigation experimentally. In this paper, the use of chimera or overset meshing technique is used within the STARCCM+ software to model the flow surrounding two identical vehicle models travelling in close proximity and also during an overtaking maneuver. The results are compared with data obtained from a polyhedral mesh and identical physics conditions. The benefits in terms of computational time and resources and the accuracy of the overset mesh approach are investigated.Keywords: chimera mesh, computational accuracy, overset mesh, platooning vehicles
Procedia PDF Downloads 34929841 Recommendations as a Key Aspect for Online Learning Personalization: Perceptions of Teachers and Students
Authors: N. Ipiña, R. Basagoiti, O. Jimenez, I. Arriaran
Abstract:
Higher education students are increasingly enrolling in online courses, they are, at the same time, generating data about their learning process in the courses. Data collected in those technology enhanced learning spaces can be used to identify patterns and therefore, offer recommendations/personalized courses to future online students. Moreover, recommendations are considered key aspects for personalization in online learning. Taking into account the above mentioned context, the aim of this paper is to explore the perception of higher education students and teachers towards receiving recommendations in online courses. The study was carried out with 322 students and 10 teachers from two different faculties (Engineering and Education) from Mondragon University. Online questionnaires and face to face interviews were used to gather data from the participants. Results from the questionnaires show that most of the students would like to receive recommendations in their online courses as a guide in their learning process. Findings from the interviews also show that teachers see recommendations useful for their students’ learning process. However, teachers believe that specific pedagogical training is required. Conclusions can also be drawn as regards the importance of personalization in technology enhanced learning. These findings have significant implications for those who train online teachers due to the fact that pedagogy should be the driven force and further training on the topic could be required. Therefore, further research is needed to better understand the impact of recommendations on online students’ learning process and draw some conclusion on pedagogical concerns.Keywords: higher education, perceptions, recommendations, online courses
Procedia PDF Downloads 26629840 Appraisal of Incentive Schemes for Employees: A Case of Construction Smes
Authors: B. M. Arthur-Aidoo, C. O. Aigbavboa, W. D. Thwala
Abstract:
The performance of construction employees cannot be underestimated if the success of construction projects are to be achieved. This is because the construction industry has been characterised as labour oriented sector, which most of its activities being executed by labour. In the construction sector, employees are driven by incentive schemes which perform encourage and motivate workers for higher efficiency and higher output. The construction sector, however, depends mainly on its labour. In view of the sector's high dependency on its employees, that there must be a significant incentive scheme which must be established to act as a stimulus to drive high performance from employees among the various known incentive packages. This study, therefore, seeks to appraise the incentive packages adopted by construction SMEs. To establish reliable findings that will contribute to knowledge, the study utilised an exploratory approach via semi-structured interviews among sampled construction professionals with the requisite expertise on employees' incentive schemes. The study further established that although incentive schemes are classified in various ways and mediums that act as stimuli to encourage high performance among employees, some are more influential and impacts performance than others. Additionally, the study concludes that medical allowance, holiday with pay, free working tools, and training for employees were ranked the most influential incentives that promote high outputs by workers within the construction SME sector.Keywords: appraisal, construction, employees, incentive, small and medium-sized enterprises, SMEs
Procedia PDF Downloads 13629839 Big Data Analytics and Public Policy: A Study in Rural India
Authors: Vasantha Gouri Prathapagiri
Abstract:
Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.Keywords: Digital India Mission, public service delivery system, public policy, Indian administration
Procedia PDF Downloads 15929838 Resource Framework Descriptors for Interestingness in Data
Authors: C. B. Abhilash, Kavi Mahesh
Abstract:
Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.Keywords: RDF, interestingness, knowledge base, semantic data
Procedia PDF Downloads 16229837 Institutional Cooperation to Foster Economic Development: Universities and Social Enterprises
Authors: Khrystyna Pavlyk
Abstract:
In the OECD countries, percentage of adults with higher education degrees has increased by 10 % during 2000-2010. Continuously increasing demand for higher education gives universities a chance of becoming key players in socio-economic development of a territory (region or city) via knowledge creation, knowledge transfer, and knowledge spillovers. During previous decade, universities have tried to support spin-offs and start-ups, introduced courses on sustainability and corporate social responsibility. While much has been done, new trends are starting to emerge in search of better approaches. Recently a number of universities created centers that conduct research in a field social entrepreneurship, which in turn underpin educational programs run at these universities. The list includes but is not limited to the Centre for Social Economy at University of Liège, Institute for Social Innovation at ESADE, Skoll Centre for Social Entrepreneurship at Oxford, Centre for Social Entrepreneurship at Rosklide, Social Entrepreneurship Initiative at INSEAD. Existing literature already examined social entrepreneurship centers in terms of position in the institutional structure, initial and additional funding, teaching initiatives, research achievements, and outreach activities. At the same time, Universities can become social enterprises themselves. Previous research revealed that universities use both business and social entrepreneurship models. Universities which are mainly driven by a social mission are more likely to transform into social entrepreneurial institutions. At the same time, currently, there is no clear understanding of what social entrepreneurship in higher education is about and thus social entrepreneurship in higher education needs to be studied and promoted at the same time. Main roles which socially oriented university can play in city development include: buyer (implementation of socially focused local procurement programs creates partnerships focused on local sustainable growth.); seller (centers created by universities can sell socially oriented goods and services, e.g. in consultancy.); employer (Universities can employ socially vulnerable groups.); business incubator (which will help current student to start their social enterprises). In the paper, we will analyze these in more detail. We will also examine a number of indicators that can be used to assess the impact, both direct and indirect, that universities can have on city's economy. At the same time, originality of this paper mainly lies not in methodological approaches used, but in countries evaluated. Social entrepreneurship is still treated as a relatively new phenomenon in post-transitional countries where social services were provided only by the state for many decades. Paper will provide data and example’s both from developed countries (the US and EU), and those located in CIS and CEE region.Keywords: social enterprise, university, regional economic development, comparative study
Procedia PDF Downloads 25429836 The Effect of Knowledge Management in Lean Organization
Authors: Mehrnoosh Askarizadeh
Abstract:
In an ever changeable and globalized world with new economic and global competitors competing for the same customers and resources, is increasing the pressure on organizations' competitiveness. In addition, organizations faces additional challenges due to an ever-growing amount of data and the ever-bigger challenge of analyzing that data and keeping the data secure. Successful companies are characterized by exploiting their intellectual capital in an efficient manner. Thus, the most valuable asset an organization has today has become its employees' knowledge. To enable this, there is a tool that supports easier handling and optimizes the use of knowledge, which is knowledge management. Based on the theoretical framework and careful review as well as analysis of interviews and observations resulted in six essential areas: structure, management, compensation, communication, trust and motivation. The analysis showed that the scientific articles and literature have different perspectives, different definitions and are based on different theories but the essence is that they all finally seems to arrive at the same result and conclusion, although with different viewpoints and perspectives. This is regardless of whether the focus is on management style, rewards or communication they all focus on the individual. The conclusion is that organizational culture affects knowledge management and dissemination of information, because of its direct impact on the individual. The largest and most important underlying factor why we choose to participate in improvement work or share knowledge is our motivation. Motivation is the reason for and the reason behind our actions.Keywords: lean, lean production, knowledge management, information management, motivation
Procedia PDF Downloads 51629835 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.Keywords: graph computation, graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia PDF Downloads 14629834 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 28529833 “Chasing Hope”: Parents’ Perspectives on Complementary and Alternative Interventions for Autism Spectrum Disorder Children in Kazakhstan
Authors: Sofiya An, Akbota Kanderzhanova, Assel Akhmetova, Faye Foster, Chee K. Chan
Abstract:
Healthcare, education and social support for children with autism in Kazakhstan has been evolving and transforming over the last three decades. There is still limited knowledge of the use of complementary and alternative medicine by families caring for autistic children in this post-Soviet region. An exploratory qualitative focus group study of Kazakhstani families was carried out to capture and understand their experiences of using complementary and alternative (CAM) medicine. A total of six focus groups were conducted in five cities across the country including Nur-Sultan, Almaty, Kyzylorda, Karaganda and Taraz. The perceived factors driving the availability, choice, and use of complementary and alternative medicine by families of autistic children in the country were distilled and evaluated. The data collected was analyzed using a framework analysis and themes and subthemes were developed. Two major themes stood out. The first was the “unmet needs”, which relates to the predisposing factors that motivate parents to CAM uptake, and the second was the “chasing hope”, which relates to the enabling factors that facilitate parents’ uptake of CAM. Fear of missing out (FOMO) is a latent underlying motivation underscoring these two themes as well. Parents of autism spectrum disorder (ASD) children in Kazakhstan have to deal with many challenges when seeking treatment for their children with ASD. They are prepared and resort to try out whatever CAM interventions available. The motivation and rationale of choice of use is driven by the lack of options and the hope of any potential positive outcome rather than from rational decisions based on efficacy or the evidence-based data of CAM. Parents get desperate and are willing to try CAM regardless of and independent of their cultural and belief systems and they do not want to miss out just in case it might work. This study also gives an international and cross-cultural perspective on the motives, choice and practice of parents with ASD children using CAM in Kazakhstan, a Central Asian country.Keywords: autism spectrum disorder, Central Asia, complementary and alternative medicine, cross-cultural perspective, qualitative research
Procedia PDF Downloads 14129832 Role of Strategic Human Resource Practices and Knowledge Management Capacity
Authors: Ploychompoo Kittikunchotiwut
Abstract:
This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed.Keywords: human resource practices, knowledge management capacity, innovation performance
Procedia PDF Downloads 30229831 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors
Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung
Abstract:
The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling
Procedia PDF Downloads 56329830 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities
Authors: Paul Barasa Wanyama, Tom Wanyama
Abstract:
Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities
Procedia PDF Downloads 1529829 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities
Authors: Mandeep Saini
Abstract:
The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics
Procedia PDF Downloads 2129828 A Critical Re-Evaluation of Knowledge Management Definitions and Terminologies
Authors: Raymond Olayinka
Abstract:
The last three decades have witnessed myriads of definitions of knowledge management proposed by researchers and industry practitioners. Despite the magnitude of research and available literature on knowledge management, there is yet to be a consensus on what constitutes a good definition. There exists an in-exhaustive list of definitions which can appear confusing, conflicting and overlapping. What is even more daunting is the lack of common terminology in describing knowledge management processes and the inconsistency in the sequence in which the processes take. Whilst newbies to knowledge management research would struggle to make sense of knowledge management definitions, industry practitioners would struggle with their applicability. Against this backdrop, this study aimed to re-evaluate knowledge management definitions and terminologies. The objectives were threefold: (1) to conduct a critical review of an existing body of work around knowledge management concepts and definitions (2) to analyse and synthesise findings (3) to present conclusions and recommendations. The methodology for this study centres around the review of the literature and secondary data sources. A total of 48 knowledge management processes were found and extracted from various definitions (e.g. ‘identify’, ‘capture’, ‘codify’, ‘store’…). A taxonomy of the processes was created based on the commonality of the entities. The 48 processes were classified under 8 headings which were further converged into 3 main headings namely ‘acquire’, ‘exploit’ and ‘evaluate’, of which all definitions therefore hinge. The study concludes that in the multitude of knowledge management definitions, there is a consistent pattern to which the processes are organised and should be utilised. The contribution of this study is in the synthesis of previous work by various authors and the presentation of a more holistic approach to knowledge management definitions and terminologies.Keywords: knowledge management definitions, knowledge management terminologies, knowledge management processes, literature review
Procedia PDF Downloads 25429827 Diversifying Nigeria's Economy Using Tourism as a Richer Alternative to Oil
Authors: Aly Audu Fada
Abstract:
The mono-economic structure of Nigerian economy has made it depend on oil for so many years. Apart from the negative effect of its exploitation, relying solely on oil as the major source of revenue for peddling the ship of development is myopic. The crumbling oil price in the world market is one proof of the dangers of this over-dependence. This paper highlights the consequences of the oil-driven economy and explores the various opportunities that are accessible in tourism through a contextual analysis. It is recommended that those at the helm of affairs should initiate collaboration between the public and private sectors to explore and harness the rich tourism resources naturally dispersed across the country to achieve the objectives of economic transformation agenda of the Federal Government.Keywords: diversifying, economic, tourism, oil
Procedia PDF Downloads 392