Search results for: computer vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3165

Search results for: computer vision

2655 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria

Authors: Victor Oluwaseyi Olowonisi

Abstract:

The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.

Keywords: e-learning, education, higher education, increasing literacy

Procedia PDF Downloads 271
2654 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI

Authors: Genady Grabarnik, Serge Yaskolko

Abstract:

Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.

Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education

Procedia PDF Downloads 58
2653 Analysis of Computer Science Papers Conducted by Board of Intermediate and Secondary Education at Secondary Level

Authors: Ameema Mahroof, Muhammad Saeed

Abstract:

The purpose of this study was to analyze the papers of computer science conducted by Board of Intermediate and Secondary Education with reference to Bloom’s taxonomy. The present study has two parts. First, the analysis is done on the papers conducted by Board of Intermediate of Secondary Education on the basis of basic rules of item construction especially Bloom’s (1956). And the item analysis is done to improve the psychometric properties of a test. The sample included the question papers of computer science of higher secondary classes (XI-XII) for the years 2011 and 2012. For item analysis, the data was collected from 60 students through convenient sampling. Findings of the study revealed that in the papers by Board of intermediate and secondary education the maximum focus was on knowledge and understanding level and very less focus was on the application, analysis, and synthesis. Furthermore, the item analysis on the question paper reveals that item difficulty of most of the questions did not show a balanced paper, the items were either very difficult while most of the items were too easy (measuring knowledge and understanding abilities). Likewise, most of the items were not truly discriminating the high and low achievers; four items were even negatively discriminating. The researchers also analyzed the items of the paper through software Conquest. These results show that the papers conducted by Board of Intermediate and Secondary Education were not well constructed. It was recommended that paper setters should be trained in developing the question papers that can measure various cognitive abilities of students so that a good paper in computer science should assess all cognitive abilities of students.

Keywords: Bloom’s taxonomy, question paper, item analysis, cognitive domain, computer science

Procedia PDF Downloads 152
2652 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 183
2651 Analysis of Scientific Attitude, Computer Anxiety, Educational Internet Use, Problematic Internet Use, and Academic Achievement of Middle School Students According to Demographic Variables

Authors: Mehmet Bekmezci, Ismail Celik, Ismail Sahin, Ahmet Kiray, A. Oguz Akturk

Abstract:

In this research, students’ scientific attitude, computer anxiety, educational use of the Internet, academic achievement, and problematic use of the Internet are analyzed based on different variables (gender, parents’ educational level and daily access to the Internet). The research group involves 361 students from two middle schools which are located in the center of Konya. The “general survey method” is adopted in the research. In accordance with the purpose of the study, percentage, mean, standard deviation, independent samples t--‐test, ANOVA (variance) are employed in the study. A total of four scales are implemented. These four scales include a total of 13 sub-dimensions. The scores from these scales and their subscales are studied in terms of various variables. In the research, students’ scientific attitude, computer anxiety, educational use of the Internet, the problematic Internet use and academic achievement (gender, parent educational level, and daily access to the Internet) are investigated based on various variables and some significant relations are found.

Keywords: scientific attitude, educational use of the internet, computer anxiety, problematic use of the internet, academic achievement

Procedia PDF Downloads 366
2650 Computer-Based versus Paper-Based Tests: A Comparative Study of Two Types of Indonesian National Examination for Senior High School Students

Authors: Faizal Mansyur

Abstract:

The objective of this research is to find out whether there is a significant difference in the English language scores of senior high school students in the Indonesia National Examination for students tested by using computer-based and paper-based tests. The population of this research is senior high school students in South Sulawesi Province who sat the Indonesian National Examination for 2015/2016 academic year. The samples of this research are 800 students’ scores from 8 schools taken by employing the multistage random sampling technique. The data of this research is a secondary data since it is obtained from the education office for South Sulawesi. In analyzing the collected data, the researcher employed the independent samples T-Test with the help of SPSS v.24 program. The finding of this research reveals that there is a significant difference in the English language scores of senior high school students in the Indonesia National Examination for students tested by using computer-based and paper-based Tests (p < .05). Moreover, students tested by using PBT (Mean = 63.13, SD = 13.63) achieve higher score than those tested by using CBT (Mean = 46.33, SD = 14.68).

Keywords: computer-based test, paper-based test, Indonesian national examination, testing

Procedia PDF Downloads 167
2649 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company

Authors: Rahma Saleh Hussein Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, CMMS

Procedia PDF Downloads 125
2648 WHSS: A Platform for Designing Water Harvesting Systems for Multiple Purposes

Authors: Ignacio Sanchez Cohen, Aurelio Pedroza Sandoval, Ricardo Trejo Calzada

Abstract:

Water harvesting systems (WHS) has become the unique alternative that farmers in dry areas accounts for surviving dry periods. Nevertheless, technicians, agronomists, and users, in general, have to cope with the difficulty of finding suitable technology for optimal design of WHS. In this paper, we describe a user-friendly computer program that uses readily available information for the design of multiple WHS depending upon the water final use (agriculture, household, conservation, etc). The application (APP) itself contains several links to help the user complete the input requirements. It is not a prerequisite to have any computer skills for the use of the APP. Outputs of the APP are the dimensions of the WHS named terraces, micro-catchments, cisterns, and small household cisterns for roof water catchment. The APP also provides guidance on crops for backyard agriculture. We believe that this tool may guide users to better optimize WHS for multiple purposes and to widen the possibility of copping with dry spells in arid lands.

Keywords: rainfall-catchment, models, computer aid, arid lands

Procedia PDF Downloads 178
2647 The Saudi Arabia 2030 Strategy: Translation Reception and Translator Readiness

Authors: Budur Alsulami

Abstract:

One of the aims of the recently implemented Saudi Arabia Vision 2030 strategy is focused on strengthening education, entertainment, and tourism to attract international visitors to the country. To promote and increase the tourism sector, tourism translation can serve the tourism industry by translating various materials that promote the country’s tourism such as brochures, catalogues, and websites. In order to achieve the goal of enhancing tourism in Saudi Arabia, promotional texts related to tourism and Saudi culture will need to be translated into English and addressed to non-Arabic-speaking potential tourists. This research aims to measure student readiness to be professional translators who can introduce and promote Saudi Arabia to non-Arabic-speaking tourists. The study will also evaluate students' abilities to promote and convey Saudi culture to non-Arabic tourists by translating tourism texts. Translating tourism materials demands considerable effort and specific translation skills to capture tourists' interest and encourage visits. Numerous scholars have explored challenges in translating tourism promotional materials, focusing on translation methods, cultural issues, course design, and necessary knowledge for tourism translation. Based on these insights, experts recommend that translators prioritize audience expectations, cultural appropriateness, and linguistic conventions while revising course syllabi to include practical skills. This research aims to assess students' readiness to become professional translators aligned with Vision 2030 tourism goals. To accomplish this, in the first stage of the project, twenty students from two Saudi Arabian Universities who have completed at least two years of Translation Studies were invited to translate two tourism texts of 300 words each. These tourism texts contain information about famous tourist sights and traditional food in Saudi Arabia and contained cultural terms and heritage information. The students then completed a questionnaire about the challenges of the text and the process of their translation, and then participated in a semi-structured interview. In the second stage of the project, the students’ translations will be evaluated by a qualified National Accreditation Authority of Translators and Interpreters (NAATI) examiner applying the NAATI rubrics. Finally, these translations will be read and assessed by fifteen to twenty native and near-native readers of English, who will evaluate the quality of the translations based on their understanding and perception of these texts. Results analysed to date suggest that a number of student translators faced challenges such as choosing a suitable translation method, omitting some key terms or words during the translation process, and managing their time, all of which may indicate a lack of practice in translating texts of this nature and lack of awareness regarding translation strategies most suitable for the genre.

Keywords: Saudi Arabia Vision 2030, translation, tourism, reader reception, culture, heritage, translator training/competencies

Procedia PDF Downloads 12
2646 Pattern of Anisometropia, Management and Outcome of Anisometropic Amblyopia

Authors: Husain Rajib, T. H. Sheikh, D. G. Jewel

Abstract:

Background: Amblyopia is a frequent cause of monocular blindness in children. It can be unilateral or bilateral reduction of best corrected visual acuity associated with decrement in visual processing, accomodation, motility, spatial perception or spatial projection. Anisometropia is an important risk factor for amblyopia that develops when unequal refractive error causes the image to be blurred in the critical developmental period and central inhibition of the visual signal originating from the affected eye associated with significant visual problems including anisokonia, strabismus, and reduced stereopsis. Methods: It is a prospective hospital based study of newly diagnosed of amblyopia seen at the pediatric clinic of Chittagong Eye Infirmary & Training Complex. There were 50 anisometropic amblyopia subjects were examined & questionnaire was piloted. Included were all patients diagnosed with refractive amblyopia between 3 to 13 years, without previous amblyopia treatment, and whose parents were interested to participate in the study. Patients diagnosed with strabismic amblyopia were excluded. Patients were first corrected with the best correction for a month. When the VA in the amblyopic eye did not improve over month, then occlusion treatment was started. Occlusion was done daily for 6-8 hours (full time) together with vision therapy. The occlusion was carried out for 3 months. Results: In this study about 8% subjects had anisometropia from myopia, 18% from hyperopia, 74% from astigmatism. The initial mean visual acuity was 0.74 ± 0.39 Log MAR and after intervention of amblyopia therapy with active vision therapy mean visual acuity was 0.34 ± 0.26 Log MAR. About 94% of subjects were improving at least two lines. The depth of amblyopia associated with type of anisometropic refractive error and magnitude of Anisometropia (p<0.005). By doing this study 10% mild amblyopia, 64% moderate and 26% severe amblyopia were found. Binocular function also decreases with magnitude of Anisometropia. Conclusion: Anisometropic amblyopia is a most important factor in pediatric age group because it can lead to visual impairment. Occlusion therapy with at least one instructed hour of active visual activity practiced out of school hours was effective in anisometropic amblyopes who were diagnosed at the age of 8 years and older, and the patients complied well with the treatment.

Keywords: refractive error, anisometropia, amblyopia, strabismic amblyopia

Procedia PDF Downloads 276
2645 Computer Assisted Learning Module (CALM) for Consumer Electronics Servicing

Authors: Edicio M. Faller

Abstract:

The use of technology in the delivery of teaching and learning is vital nowadays especially in education. Computer Assisted Learning Module (CALM) software is the use of computer in the delivery of instruction with a tailored fit program intended for a specific lesson or a set of topics. The CALM software developed in this study is intended to supplement the traditional teaching methods in technical-vocational (TECH-VOC) instruction specifically the Consumer Electronics Servicing course. There are three specific objectives of this study. First is to create a learning enhancement and review materials on the selected lessons. Second, is to computerize the end-of-chapter quizzes. Third, is to generate a computerized mock exam and summative assessment. In order to obtain the objectives of the study the researcher adopted the Agile Model where the development of the study undergoes iterative and incremental process of the Software Development Life Cycle. The study conducted an acceptance testing using a survey questionnaire to evaluate the CALM software. The results showed that CALM software was generally interpreted as very satisfactory. To further improve the CALM software it is recommended that the program be updated, enhanced and lastly, be converted from stand-alone to a client/server architecture.

Keywords: computer assisted learning module, software development life cycle, computerized mock exam, consumer electronics servicing

Procedia PDF Downloads 395
2644 The Evaluation of the Effects of Atypical Antipsychotics on Sperm Quality by Computer-Assisted Sperm Analysis in Rats

Authors: O. Atli Eklioglu

Abstract:

Atypical antipsychotics such as quetiapine, olanzapine, and risperidone have been frequently and chronically used to treat psychiatric disorders accompanied by psychosis mainly schizophrenia. Since these drugs are commonly used in male patients of reproductive age, it is required to determine the possible effects of them on the reproductive system. In this study, it was aimed to evaluate the possible toxic effects of quetiapine, olanzapine and risperidone, which are the most frequently prescribed and chronically used psychiatric drugs, on sperm parameters. For this purpose, quetiapine (10, 20 and 40 mg/kg), olanzapine (2.5, 5 and 10 mg/kg), and risperidone (1.25, 2.5 and 3 mg/kg) were administered to male rats for 28 consecutive days. At the end of this period, sperm concentration, motility, and morphology were investigated by a computer-assisted sperm analysis system. According to the results, sperm parameters were negatively affected by antipsychotic use.

Keywords: quetiapine, olanzapine, risperidone, sperm count, motility, sperm morphology, computer-assisted sperm analysis

Procedia PDF Downloads 152
2643 Optimizing the Performance of Thermoelectric for Cooling Computer Chips Using Different Types of Electrical Pulses

Authors: Saleh Alshehri

Abstract:

Thermoelectric technology is currently being used in many industrial applications for cooling, heating and generating electricity. This research mainly focuses on using thermoelectric to cool down high-speed computer chips at different operating conditions. A previously developed and validated three-dimensional model for optimizing and assessing the performance of cascaded thermoelectric and non-cascaded thermoelectric is used in this study to investigate the possibility of decreasing the hotspot temperature of computer chip. Additionally, a test assembly is built and tested at steady-state and transient conditions. The obtained optimum thermoelectric current at steady-state condition is used to conduct a number of pulsed tests (i.e. transient tests) with different shapes to cool the computer chips hotspots. The results of the steady-state tests showed that at hotspot heat rate of 15.58 W (5.97 W/cm2), using thermoelectric current of 4.5 A has resulted in decreasing the hotspot temperature at open circuit condition (89.3 °C) by 50.1 °C. Maximum and minimum hotspot temperatures have been affected by ON and OFF duration of the electrical current pulse. Maximum hotspot temperature was resulted by longer OFF pulse period. In addition, longer ON pulse period has generated the minimum hotspot temperature.

Keywords: thermoelectric generator, TEG, thermoelectric cooler, TEC, chip hotspots, electronic cooling

Procedia PDF Downloads 143
2642 Factors Determining the Purchasing Intentions towards Online Shopping: An Evidence from Twin Cities of Pakistan

Authors: Muhammad Waiz, Rana Maruf Tahir, Fatima Javaid

Abstract:

Technology in the recent times is available for everyone in the world that no one is left behind. After getting technology into our daily routine, there is a need to study the different factors regarding online shopping. This study examines the impact of online reviews, mobile shopping and computer literacy on online purchasing intention. The sample size was 200 from which 167 complete questionnaires were collected from students and employees of twin cities. SPSS programming software was used to analyze the impact of different factors on purchasing intention. The results of this study showed that those websites which have good ratings and have online shopping application will attract more customers towards them whereas the results showed that the computer literacy has no impact on online purchasing intention. Findings may help for those who want to increase their sales or to start a new online business. Future research, limitations, and implications are discussed.

Keywords: computer literacy, mobile shopping, online purchase intention, online reviews, theory of planned behavior

Procedia PDF Downloads 227
2641 Recurrence of Pterygium after Surgery and the Effect of Surgical Technique on the Recurrence of Pterygium in Patients with Pterygium

Authors: Luksanaporn Krungkraipetch

Abstract:

A pterygium is an eye surface lesion that begins in the limbal conjunctiva and progresses to the cornea. The lesion is more common in the nasal limbus than in the temporal, and it has a distinctive wing-like aspect. Indications for surgery, in decreasing order of significance, are grown over the corneal center, decreased vision due to corneal deformation, documented growth, sensations of discomfort, and aesthetic concerns. Recurrent pterygium results in the loss of time, the expense of therapy, and the potential for vision impairment. The objective of this study is to find out how often the recurrence of pterygium after surgery occurs, what effect the surgery technique has, and what causes them to come back in people with pterygium. Materials and Methods: Observational case control in retrospect: the study involves a retrospective analysis of 164 patient samples. Data analysis is descriptive statistics analysis, i.e., basic data details about pterygium surgery and the risk of recurrent pterygium. For factor analysis, the inferential statistics odds ratio (OR) and 95% confidence interval (CI) ANOVA are utilized. A p-value of 0.05 was deemed statistically important. Results: The majority of patients, according to the results, were female (60.4%). Twenty-four of the 164 (14.6%) patients who underwent surgery exhibited recurrent pterygium. The average age is 55.33 years old. Postoperative recurrence was reported in 19 cases (79.3%) of bare sclera techniques and five cases (20.8%) of conjunctival autograft techniques. The recurrence interval is 10.25 months, with the most common (54.17 percent) being 12 months. In 91.67 percent of cases, all follow-ups are successful. The most common recurrence level is 1 (25%). A surgical complication is a subconjunctival hemorrhage (33.33 percent). Comparing the surgeries done on people with recurrent pterygium didn't show anything important (F = 1.13, p = 0.339). Age significantly affected the recurrence of pterygium (95% CI, 6.79-63.56; OR = 20.78, P 0.001). Conclusion: This study discovered a 14.6% rate of pterygium recurrence after pterygium surgery. Across all surgeries and patients, the rate of recurrence was four times higher with the bare sclera method than with conjunctival autograft. The researchers advise selecting a more conventional surgical technique to avoid a recurrence.

Keywords: pterygium, recurrence pterygium, pterygium surgery, excision pterygium

Procedia PDF Downloads 90
2640 Assessment of the Effectiveness of the Anti-Debris Flow Engineering Constructed to Reduce the Risk of Expected Debris Flow in the River Mletiskhevi by Computer Program RAMMS

Authors: Sopio Gogilava, Goga Chakhaia, Levan Tsulukidze, Zurab Laoshvili, Irina Khubulava, Shalva Bosikashvili, Teimuraz Gugushvili

Abstract:

Geoinformatics systems (GIS) integrated computer program RAMMS is widely used for forecasting debris flows and accordingly for the determination of anticipating risks with 85% accuracy. In view of the above, the work introduces new capabilities of the computer program RAMMS, which evaluates the effectiveness of anti-debris flow engineering construction, namely: the possibility of decreasing the expected velocity, kinetic energy, and output cone volume in the Mletiskhevi River. As a result of research has been determined that the anti-debris flow engineering construction designed to reduce the expected debris flow risk in the Mletiskhevi River is an effective environmental protection technology, that's why its introduction is promising.

Keywords: construction, debris flow, geoinformatics systems, program RAMMS

Procedia PDF Downloads 147
2639 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
2638 Psychodiagnostic Tool Development for Measurement of Social Responsibility in Ukrainian Organizations

Authors: Olena Kovalchuk

Abstract:

How to define the understanding of social responsibility issues by Ukrainian companies is a contravention question. Thus, one of the practical uses of social responsibility is a diagnostic tool development for educational, business or scientific purposes. So the purpose of this research is to develop a tool for measurement of social responsibility in organization. Methodology: A 21-item questionnaire “Organization Social Responsibility Scale” was developed. This tool was adapted for the Ukrainian sample and based on the questionnaire “Perceived Role of Ethics and Social Responsibility” which connects ethical and socially responsible behavior to different aspects of the organizational effectiveness. After surveying the respondents, the factor analysis was made by the method of main compounds with orthogonal rotation VARIMAX. On the basis of the obtained results the 21-item questionnaire was developed (Cronbach’s alpha – 0,768; Inter-Item Correlations – 0,34). Participants: 121 managers at all levels of Ukrainian organizations (57 males; 65 females) took part in the research. Results: Factor analysis showed five ethical dilemmas concerning the social responsibility and profit compatibility in Ukrainian organizations. Below we made an attempt to interpret them: — Social responsibility vs profit. Corporate social responsibility can be a way to reduce operational costs. A firm’s first priority is employees’ morale. Being ethical and socially responsible is the priority of the organization. The most loaded question is "Corporate social responsibility can reduce operational costs". Significant effect of this factor is 0.768. — Profit vs social responsibility. Efficiency is much more important to a firm than ethics or social responsibility. Making the profit is the most important concern for a firm. The dominant question is "Efficiency is much more important to a firm than whether or not the firm is seen as ethical or socially responsible". Significant effect of this factor is 0.793. — A balanced combination of social responsibility and profit. Organization with social responsibility policy is more attractive for its stakeholders. The most loaded question is "Social responsibility and profitability can be compatible". Significant effect of this factor is 0.802. — Role of Social Responsibility in the successful organizational performance. Understanding the value of social responsibility and business ethics. Well-being and welfare of the society. The dominant question is "Good ethics is often good business". Significant effect of this factor is 0.727. — Global vision of social responsibility. Issues related to global social responsibility and sustainability. Innovative approaches to poverty reduction. Awareness of climate change problems. Global vision for successful business. The dominant question is "The overall effectiveness of a business can be determined to a great extent by the degree to which it is ethical and socially responsible". Significant effect of this factor is 0.842. The theoretical contribution. The perspective of the study is to develop a tool for measurement social responsibility in organizations and to test questionnaire’s adequacy for social and cultural context. Practical implications. The research results can be applied for designing a training programme for business school students to form their global vision for successful business as well as the ability to solve ethical dilemmas in managerial practice. Researchers interested in social responsibility issues are welcome to join the project.

Keywords: corporate social responsibility, Cronbach’s alpha, ethical behaviour, psychodiagnostic tool

Procedia PDF Downloads 364
2637 Well-Being and Helping Technology for Retired Population in Finland

Authors: R. Pääkkönen, L. Korpinen

Abstract:

This study aimed to evaluate parameters influencing well-being and how to maintain well-being as long as possible after retirement. There is contradictory information on the health changes after retirement in Finland. This work is based on interviews, statistics, and literature evaluation of Finland. Most often, balance, multitasking reaction time, and adaptation of vision in dim and darks areas are worsened. Slowing is one characteristic that is difficult to measure properly. The most important is try to determine ways to manage daily activities and symptoms of disease after retirement. Medicine is advancing, problems are often also on the economic side. Information of technical aids is important. It is worth planning a retirement age.

Keywords: retirement, working, aging, wellness

Procedia PDF Downloads 238
2636 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm

Authors: Mary Anne Roa

Abstract:

Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.

Keywords: congestion control, queue management, computer networks, fuzzy logic

Procedia PDF Downloads 400
2635 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 318
2634 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials

Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic

Abstract:

In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.

Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method

Procedia PDF Downloads 79
2633 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 100
2632 Automatic Near-Infrared Image Colorization Using Synthetic Images

Authors: Yoganathan Karthik, Guhanathan Poravi

Abstract:

Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.

Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data

Procedia PDF Downloads 46
2631 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman

Abstract:

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.

Keywords: computer based instruction, teacher candidate, attitude, technology based instruction, information and communication technologies

Procedia PDF Downloads 295
2630 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V.K.Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.

Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier

Procedia PDF Downloads 491
2629 Inquiry-based Science Education in Computer Science Learning in Primary School

Authors: Maslin Masrom, Nik Hasnaa Nik Mahmood, Wan Normeza Wan Zakaria, Azizul Azizan, Norshaliza Kamaruddin

Abstract:

Traditionally, in science education, the teacher provides facts and the students learn them. It is outmoded for today’s students to equip them with real-life situations, mainly because knowledge and life skills are acquired passively from the instructors. Inquiry-Based Science Education (IBSE) is an approach that allows students to experiment, ask questions, and develop responses based on reasoning. It has provided students and teachers with opportunities to actively engage in collaborative learning via inquiry. This approach inspires the students to become active thinkers, research for solutions, and gain life-long experience and self-confidence. Therefore, the research aims to investigate how the primary-school teacher supports students or pupils through an inquiry-based science education approach for computer science, specifically coding skills. The results are presented and described.

Keywords: inquiry-based science education, student-centered learning, computer science, primary school

Procedia PDF Downloads 157
2628 The Effectiveness of Guest Lecturers with Disabilities in the Classroom

Authors: Afshin Gharib

Abstract:

Often, instructors prefer to bring into class a guest lecturer who can provide an “experiential” perspective on a particular topic. The assumption is that the personal experience brought into the classroom makes the material resonate more with students and that students would have a preference for material being taught from an experiential perspective. The question we asked in the present study was whether a guest lecture from an “experiential” expert with a disability (e.g. a guest suffering from cone-rod dystrophy lecturing on vision, or a dyslexic lecturing on the psychology of reading) would be more effective than the course instructor in capturing students attention and conveying information in an Introduction to Psychology class. Students in two sections of Introduction to Psychology (N = 25 in each section) listened to guest lecturers with disabilities lecturing on a topic related to their disability, one in the area of Sensation and Perception (the guest lecturer is vision impaired) and one in the area of Language Development (the guest lecturer is dyslexic). The Guest lecturers lectured on the same topic in both sections, however, each lecturer used their own experiences to highlight the topics they cover in one section but not the other (counterbalanced between sections), providing students in one section with experiential testimony. Following each of the 4 lectures (two experiential, two non-experiential) students rated the lecture on several dimensions including overall quality, level of engagement, and performance. In addition, students in both sections were tested on the same test items from the lecture material to ascertain degree of learning, and given identical “pop” quizzes two weeks after the exam to measure retention. It was hypothesized that students would find the experiential lectures from lecturers talking about their disabilities more engaging, learn more from them, and retain the material for longer. We found that students in fact preferred the course instructor to the guests, regardless of whether the guests included a discussion of their own disability in their lectures. Performance on the exam questions and the pop quiz items were not different between “experiential” and “non-experiential” lectures, suggesting that guest lecturers who discuss their own disabilities in lecture are not more effective in conveying material and students are not more likely to retain material delivered by “experiential” guests. In future research we hope to explore the reasons for students preference for their regular instructor over guest lecturers.

Keywords: guest lecturer, student perception, retention, experiential

Procedia PDF Downloads 22
2627 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams

Authors: Rochelle Elva

Abstract:

Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of learning and mastery of skills. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation, and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy Value Theory and Motivation Theory to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected possible path to success that continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were, on average, one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.

Keywords: expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science

Procedia PDF Downloads 81
2626 Quality Analysis of Vegetables Through Image Processing

Authors: Abdul Khalique Baloch, Ali Okatan

Abstract:

The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.

Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria

Procedia PDF Downloads 70