Search results for: automotive electric/electronic system
19420 Study of a Photovoltaic System Using MPPT Buck-Boost Converter
Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni
Abstract:
The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump
Procedia PDF Downloads 38019419 Automatic Approach for Estimating the Protection Elements of Electric Power Plants
Authors: Mahmoud Mohammad Salem Al-Suod, Ushkarenko O. Alexander, Dorogan I. Olga
Abstract:
New algorithms using microprocessor systems have been proposed for protection the diesel-generator unit in autonomous power systems. The software structure is designed to enhance the control automata of the system, in which every protection module of diesel-generator encapsulates the finite state machine.Keywords: diesel-generator unit, protection, state diagram, control system, algorithm, software components
Procedia PDF Downloads 41919418 Development of Analytical Systems for Nurses in Kenya
Authors: Peris Wanjiku
Abstract:
The objective of this paper is to describe the development and implications of a national nursing workforce analytical system in Kenya. Findings: Creating a national electronic nursing workforce analytical system provides more reliable information on nurses ‘national demographics, migration patterns, and workforce capacity and efficiency. Data analysis is most useful for human resources for health (HRH) planning when workforce capacity data can be linked to worksite staffing requirements. As a result of establishing this database, the Kenya Ministry of Health has improved its capability to assess its nursing workforce and document important workforce trends, such as out-migration. Current data identify the United States as the leading recipient country of Kenyan nurses. The overwhelming majority of Kenyan nurses who decide to out-migrate are amongst Kenya’s most qualified. Conclusions: The Kenya nursing database is a first step toward facilitating evidence-based decision-making in HRH. This database is unique to developing countries in sub-Saharan Africa. Establishing an electronic workforce database requires long-term investment and sustained support by national and global stakeholders.Keywords: analytical, information, health, migration
Procedia PDF Downloads 9619417 Electromagnetic Simulation Based on Drift and Diffusion Currents for Real-Time Systems
Authors: Alexander Norbach
Abstract:
The script in this paper describes the use of advanced simulation environment using electronic systems (Microcontroller, Operational Amplifiers, and FPGA). The simulation may be used for all dynamic systems with the diffusion and the ionisation behaviour also. By additionally required observer structure, the system works with parallel real-time simulation based on diffusion model and the state-space representation for other dynamics. The proposed deposited model may be used for electrodynamic effects, including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time. For further purpose, the spatial temperature distribution may be used also. With upon system, the uncertainties, unknown initial states and disturbances may be determined. This provides the estimation of the more precise system states for the required system, and additionally, the estimation of the ionising disturbances that occur due to radiation effects. The results have shown that a system can be also developed and adopted specifically for space systems with the real-time calculation of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. In order to be able to react to these processes, it must be calculated within a shorter time that ionising radiation and dose is present. All available sensors shall be used to observe the spatial distributions. By measured value of size and known location of the sensors, the entire distribution can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of kind of systems space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms. For the modelling and derivation of equations, the extended current equation is used. The size K represents the proposed charge density drifting vector. The extended diffusion equation was derived and shows the quantising character and has similar law like the Klein-Gordon equation. These kinds of PDE's (Partial Differential Equations) are analytically solvable by giving initial distribution conditions (Cauchy problem) and boundary conditions (Dirichlet boundary condition). For a simpler structure, a transfer function for B- and E- fields was analytically calculated. With known discretised responses g₁(k·Ts) and g₂(k·Ts), the electric current or voltage may be calculated using a convolution; g₁ is the direct function and g₂ is a recursive function. The analytical results are good enough for calculation of fields with diffusion effects. Within the scope of this work, a proposed model of the consideration of the electromagnetic diffusion effects of arbitrary current 'waveforms' has been developed. The advantage of the proposed calculation of diffusion is the real-time capability, which is not really possible with the FEM programs available today. It makes sense in the further course of research to use these methods and to investigate them thoroughly.Keywords: advanced observer, electrodynamics, systems, diffusion, partial differential equations, solver
Procedia PDF Downloads 13019416 Electronic Media and Physical Activity of Primary School Children
Authors: Srna Jenko Miholic, Marta Borovec, Josipa Persun
Abstract:
The constant expansion of technology has further accelerated the development of media and vice versa. Although its promotion includes all kinds of interesting and positive sides, the poor functioning of the media is still being researched and proven. Young people, as well as children from the earliest age, resort to the media the most, so it is necessary to defend the role of adults as it were parents, teachers, and environment against virtual co-educators such as the media. The research aim of this study was to determine the time consumption of using electronic media by primary school children as well as their involvement in certain physical activities. Furthermore, to determine what is happening when parents restrict their children's access to electronic media and encourage them to participate in alternative contents during their leisure time. Result reveals a higher percentage of parents restrict their children's access to electronic media and then encourage children to socialize with family and friends, spend time outdoors, engage in physical activity, read books or learn something unrelated to school content even though it would not be children's favorite activity. The results highlight the importance of parental control when it comes to children's use of electronic media and the positive effects that parental control has in terms of encouraging children to be useful, socially desirable, physically active, and healthy activities.Keywords: elementary school, digital media, leisure time, parents, physical engagement
Procedia PDF Downloads 14719415 Solar Power Monitoring and Control System using Internet of Things
Authors: Oladapo Tolulope Ibitoye
Abstract:
It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.Keywords: solar system, internet of things, renewable energy, power monitoring
Procedia PDF Downloads 8319414 Performance Evaluation of Grid Connected Photovoltaic System
Authors: Abdulkadir Magaji
Abstract:
This study analyzes and compares the actual measured and simulated performance of a 3.2 kwP grid-connected photovoltaic system. The system is located at the Outdoor Facility of Government Day secondary School Katsina State, which lies approximately between coordinate of 12°15′N 7°30′E. The system consists of 14 Mono crystalline silicon modules connected in two strings of 7 series-connected modules, each facing north at a fixed tilt of 340. The data presented in this study were measured in the year 2015, where the system supplied a total of 4628 kWh to the local electric utility grid. The performance of the system was simulated using PVsyst software using measured and Meteonorm derived climate data sets (solar radiation, ambient temperature and wind speed). The comparison between measured and simulated energy yield are discussed. Although, both simulation results were similar, better comparison between measured and predicted monthly energy yield is observed with simulation performed using measured weather data at the site. The measured performance ratio in the present study shows 58.4% is higher than those reported elsewhere as compared in the study.Keywords: performance, evaluation, grid connection, photovoltaic system
Procedia PDF Downloads 18119413 Implementation of an Open Source ERP for SMEs in the Automotive Sector in Peru: A Case Study
Authors: Gerson E. Cornejo, Luis A. Gamarra, David S. Mauricio
Abstract:
The Enterprise Resource Planning Systems (ERP) allows the integration of all the business processes of the functional areas of the companies, in order to automate and standardize the processes, obtain accurate information and improve decision making in time real. In Peru, 79% of medium and small companies (SMEs) do not use any management software, this is because it is believed that ERPs are expensive, complex and difficult to implement. However, for more than 20 years there have been Open Source ERPs, which are more accessible and have the same benefit as proprietary ERPs, but there is little information on the implementation process. In this work is made a case of study, in order to show the implementation process of an Open Source ERP, Odoo, based on the ASAP methodology (Accelerated SAP) and applied to a company of corrective and preventive maintenance services of vehicles. The ERP allowed the SME to standardize its business processes, increase its productivity, reducing up to 40% certain processes. The study of this case shows that it is feasible and profitable to implement an Open Source ERP in SMEs in the Automotive Sector of Peru. In addition, it is shown that the ASAP methodology is adequate to carry out Open Source ERPs implementation projects.Keywords: ASAP, automotive sector, ERP implementation, open source
Procedia PDF Downloads 33619412 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma
Procedia PDF Downloads 15519411 Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources
Authors: Abdollah Kavousi Fard
Abstract:
This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method.Keywords: microgrid, renewable energy sources, reconfiguration, optimization
Procedia PDF Downloads 27119410 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.Keywords: nanosecond, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 8219409 Automotive Emotions: An Investigation of Their Natures, Frequencies of Occurrence and Causes
Authors: Marlene Weber, Joseph Giacomin, Alessio Malizia, Lee Skrypchuk, Voula Gkatzidou
Abstract:
Technological and sociological developments in the automotive sector are shifting the focus of design towards developing a better understanding of driver needs, desires and emotions. Human centred design methods are being more frequently applied to automotive research, including the use of systems to detect human emotions in real-time. One method for a non-contact measurement of emotion with low intrusiveness is Facial-Expression Analysis (FEA). This paper describes a research study investigating emotional responses of 22 participants in a naturalistic driving environment by applying a multi-method approach. The research explored the possibility to investigate emotional responses and their frequencies during naturalistic driving through real-time FEA. Observational analysis was conducted to assign causes to the collected emotional responses. In total, 730 emotional responses were measured in the collective study time of 440 minutes. Causes were assigned to 92% of the measured emotional responses. This research establishes and validates a methodology for the study of emotions and their causes in the driving environment through which systems and factors causing positive and negative emotional effects can be identified.Keywords: affective computing, case study, emotion recognition, human computer interaction
Procedia PDF Downloads 20319408 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase
Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir
Abstract:
Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment
Procedia PDF Downloads 46519407 Outline of a Technique for the Recommendation of Tourism Products in Cuba Using GIS
Authors: Jesse D. Cano, Marlon J. Remedios
Abstract:
Cuban tourism has developed so much in the last 30 years to the point of becoming one of the engines of the Cuban economy. With such a development, Cuban companies opting for e-tourism as a way to publicize their products and attract customers has also grown. Despite this fact, the majority of Cuban tourism-themed websites simply provide information on the different products and services they offer which results in many cases, in the user getting overwhelmed with the amount of information available which results in the user abandoning the search before he can find a product that fits his needs. Customization has been recognized as a critical factor for successful electronic tourism business and the use of recommender systems is the best approach to address the problem of personalization. This paper aims to outline a preliminary technique to obtain predictions about which products a particular user would give a better evaluation; these products would be those which the website would show in the first place. To achieve this, the theoretical elements of the Cuban tourism environment are discussed; recommendation systems and geographic information systems as tools for information representation are also discussed. Finally, for each structural component identified, we define a set of rules that allows obtaining an electronic tourism system that handles the personalization of the service provided effectively.Keywords: geographic information system, technique, tourism products, recommendation
Procedia PDF Downloads 50319406 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System
Authors: Juzhong Tan, William Kerr
Abstract:
Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.Keywords: cocoa bean, conching, electronic nose, genetic programming
Procedia PDF Downloads 25519405 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.Keywords: circuit breaker, condition base maintenance, intelligent electronic device, time base maintenance, SCADA
Procedia PDF Downloads 32819404 Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction
Authors: S. Meguenni, A. Djahbar, K. Tounsi
Abstract:
Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000).Keywords: synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway traction
Procedia PDF Downloads 37119403 Hand Motion and Gesture Control of Laboratory Test Equipment Using the Leap Motion Controller
Authors: Ian A. Grout
Abstract:
In this paper, the design and development of a system to provide hand motion and gesture control of laboratory test equipment is considered and discussed. The Leap Motion controller is used to provide an input to control a laboratory power supply as part of an electronic circuit experiment. By suitable hand motions and gestures, control of the power supply is provided remotely and without the need to physically touch the equipment used. As such, it provides an alternative manner in which to control electronic equipment via a PC and is considered here within the field of human computer interaction (HCI).Keywords: control, hand gesture, human computer interaction, test equipment
Procedia PDF Downloads 31519402 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential
Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz
Abstract:
This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.Keywords: bacterial attachment, biofouling control, low electric potential, water treatment
Procedia PDF Downloads 27019401 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 15919400 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties
Authors: Yoshio Kurosawa, Takao Yamaguchi
Abstract:
High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.Keywords: automobile, acoustics, porous material, transfer matrix method
Procedia PDF Downloads 50919399 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process
Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski
Abstract:
Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction
Procedia PDF Downloads 13719398 Designing Electric Vehicle Charging Infrastructure to Benefit Historically-Marginalized Residents
Authors: Polly Parkinson, Emma Mecham, Fawn Groves, Amy Wilson-Lopez, Ivonne Santiago
Abstract:
In the rush to meet electric vehicle (EV) adoption goals that address environmental and health concerns, engineering planners and community policy experts cannot separate the socioeconomic and equity factors from transportation needs. Two gaps are identified in existing research: concrete proposals that address affordable micromobility options and provide for needs of community members without cars, and community-engaged research that elevates the concerns and solutions brought forward by historically-marginalized community members. This data analysis from a recent case study in a vulnerable community indicates that because transportation decisions are inextricably linked to health, work, and housing, EV adoption must also address multifaceted human needs. Communities focused on building more electric vehicle charging stations must find ways for lower-income households to also benefit. This research engaged residents in the planning process and resulted in a template for charging stations to advance mobility justice with a range of options that purposefully benefit the whole community.Keywords: community engagement, electric vehicle charging, environmental justice, participatory research, transportation equity
Procedia PDF Downloads 3719397 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine
Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade
Abstract:
The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft
Procedia PDF Downloads 47419396 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme
Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara
Abstract:
In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field
Procedia PDF Downloads 26119395 Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates
Authors: Ahmed Kiani
Abstract:
The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders.Keywords: electric vehicles, greenhouse gas emission reductions, market analysis, policy recommendations
Procedia PDF Downloads 30919394 Interoperability Model Design of Smart Grid Power System
Authors: Seon-Hack Hong, Tae-Il Choi
Abstract:
Interoperability is defined as systems, components, and devices developed by different entities smoothly exchanging information and functioning organically without mutual consultation, being able to communicate with each other and computer systems of the same type or different types, and exchanging information or the ability of two or more systems to exchange information and use the information exchanged without extra effort. Insufficiencies such as duplication of functions when developing systems and applications due to lack of interoperability in the electric power system and low efficiency due to a lack of mutual information transmission system between the inside of the application program and the design is improved, and the seamless linkage of newly developed systems is improved. Since it is necessary to secure interoperability for this purpose, we designed the smart grid-based interoperability standard model in this paper.Keywords: interoperability, power system, common information model, SCADA, IEEE2030, Zephyr
Procedia PDF Downloads 12319393 Improvising Grid Interconnection Capabilities through Implementation of Power Electronics
Authors: Ashhar Ahmed Shaikh, Ayush Tandon
Abstract:
The swift reduction of fossil fuels from nature has crucial need for alternative energy sources to cater vital demand. It is essential to boost alternative energy sources to cover the continuously increasing demand for energy while minimizing the negative environmental impacts. Solar energy is one of the reliable sources that can generate energy. Solar energy is freely available in nature and is completely eco-friendly, and they are considered as the most promising power generating sources due to their easy availability and other advantages for the local power generation. This paper is to review the implementation of power electronic devices through Solar Energy Grid Integration System (SEGIS) to increase the efficiency. This paper will also concentrate on the future grid infrastructure and various other applications in order to make the grid smart. Development and implementation of a power electronic devices such as PV inverters and power controllers play an important role in power supply in the modern energy economy. Solar Energy Grid Integration System (SEGIS) opens pathways for promising solutions for new electronic and electrical components such as advanced innovative inverter/controller topologies and their functions, economical energy management systems, innovative energy storage systems with equipped advanced control algorithms, advanced maximum-power-point tracking (MPPT) suited for all PV technologies, protocols and the associated communications. In addition to advanced grid interconnection capabilities and features, the new hardware design results in small size, less maintenance, and higher reliability. The SEGIS systems will make the 'advanced integrated system' and 'smart grid' evolutionary processes to run in a better way. Since the last few years, there was a major development in the field of power electronics which led to more efficient systems and reduction of the cost per Kilo-watt. The inverters became more efficient and had reached efficiencies in excess of 98%, and commercial solar modules have reached almost 21% efficiency.Keywords: solar energy grid integration systems, smart grid, advanced integrated system, power electronics
Procedia PDF Downloads 18419392 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic
Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich
Abstract:
Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system
Procedia PDF Downloads 26719391 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture
Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou
Abstract:
Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.Keywords: eco-design, industrial engineering, LCA, refrigeration system
Procedia PDF Downloads 189