Search results for: X-ray diffraction technique
7166 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames
Procedia PDF Downloads 3757165 Foggy Image Restoration Using Neural Network
Authors: Khader S. Al-Aidmat, Venus W. Samawi
Abstract:
Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration
Procedia PDF Downloads 3847164 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique
Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat
Abstract:
The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.Keywords: AI, bottle, die shaping, FEM
Procedia PDF Downloads 2397163 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 1637162 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells
Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon
Abstract:
By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique
Procedia PDF Downloads 3407161 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete
Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello
Abstract:
The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.Keywords: concrete, pine wood ash, pozzolanic activity, X-ray
Procedia PDF Downloads 4577160 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy
Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa
Abstract:
Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator
Procedia PDF Downloads 1927159 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior
Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa
Abstract:
Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release
Procedia PDF Downloads 2287158 Approximation of Convex Set by Compactly Semidefinite Representable Set
Authors: Anusuya Ghosh, Vishnu Narayanan
Abstract:
The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation
Procedia PDF Downloads 3887157 Miniaturization of I-Slot Antenna with Improved Efficiency and Gain
Authors: Mondher Labidi, Fethi Choubani
Abstract:
In this paper, novel miniaturization technique of antenna is proposed using I-slot. Using this technique, gain of antenna can increased for 4dB (antenna only) to 6.6dB for the proposed I-slot antenna and a frequency shift of about 0.45 GHz to 1 GHz is obtained. Also a reduction of the shape size of the antenna is achieved (about 38 %) to operate in the Wi-Fi (2.45 GHz) band.RF Moreover the frequency shift can be controlled by changing the place or the length of the I-slot. Finally the proposed miniature antenna with an improved radiation efficiency and gain was built and tested.Keywords: slot antenna, miniaturization, RF, electrical equivalent circuit (EEC)
Procedia PDF Downloads 2877156 Synthesis and Characterization of pH-Sensitive Graphene Quantum Dot-Loaded Metal-Organic Frameworks for Targeted Drug Delivery and Fluorescent Imaging
Authors: Sayed Maeen Badshah, Kuen-Song Lin, Abrar Hussain, Jamshid Hussain
Abstract:
Liver cancer is a significant global health issue, ranking fifth in incidence and second in mortality. Effective therapeutic strategies are urgently needed to combat this disease, particularly in regions with high prevalence. This study focuses on developing and characterizing fluorescent organometallic frameworks as distinct drug delivery carriers with potential applications in both the treatment and biological imaging of liver cancer. This work introduces two distinct organometallic frameworks: the cake-shaped GQD@NH₂-MIL-125 and the cross-shaped M8U6/FM8U6. The GQD@NH₂-MIL-125 framework is particularly noteworthy for its high fluorescence, making it an effective tool for biological imaging. X-ray diffraction (XRD) analysis revealed specific diffraction peaks at 6.81ᵒ (011), 9.76ᵒ (002), and 11.69ᵒ (121), with an additional significant peak at 26ᵒ (2θ), corresponding to the carbon material. Morphological analysis using Field Emission Scanning Electron Microscopy (FE-SEM), and Transmission Electron Microscopy (TEM) demonstrated that the framework has a front particle size of 680 nm and a side particle size of 55±5 nm. High-resolution TEM (HR-TEM) images confirmed the successful attachment of graphene quantum dots (GQDs) onto the NH2-MIL-125 framework. Fourier-Transform Infrared (FT-IR) spectroscopy identified crucial functional groups within the GQD@NH₂-MIL-125 structure, including O-Ti-O metal bonds within the 500 to 700 cm⁻¹ range, and N-H and C-N bonds at 1,646 cm⁻¹ and 1,164 cm⁻¹, respectively. BET isotherm analysis further revealed a specific surface area of 338.1 m²/g and an average pore size of 46.86 nm. This framework also demonstrated UV-active properties, as identified by UV-visible light spectra, and its photoluminescence (PL) spectra showed an emission peak around 430 nm when excited at 350 nm, indicating its potential as a fluorescent drug delivery carrier. In parallel, the cross-shaped M8U6/FM8U6 frameworks were synthesized and characterized using X-ray diffraction, which identified distinct peaks at 2θ = 7.4 (111), 8.5 (200), 9.2 (002), 10.8 (002), 12.1 (220), 16.7 (103), and 17.1 (400). FE-SEM, HR-TEM, and TEM analyses revealed particle sizes of 350±50 nm for M8U6 and 200±50 nm for FM8U6. These frameworks, synthesized from terephthalic acid (H₂BDC), displayed notable vibrational bonds, such as C=O at 1,650 cm⁻¹, Fe-O in MIL-88 at 520 cm⁻¹, and Zr-O in UIO-66 at 482 cm⁻¹. BET analysis showed specific surface areas of 740.1 m²/g with a pore size of 22.92 nm for M8U6 and 493.9 m²/g with a pore size of 35.44 nm for FM8U6. Extended X-ray Absorption Fine Structure (EXAFS) spectra confirmed the stability of Ti-O bonds in the frameworks, with bond lengths of 2.026 Å for MIL-125, 1.962 Å for NH₂-MIL-125, and 1.817 Å for GQD@NH₂-MIL-125. These findings highlight the potential of these organometallic frameworks for enhanced liver cancer therapy through precise drug delivery and imaging, representing a significant advancement in nanomaterial applications in biomedical science.Keywords: liver cancer cells, metal organic frameworks, Doxorubicin (DOX), drug release.
Procedia PDF Downloads 157155 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 2507154 Ancient Iran Water Technologies
Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand
Abstract:
The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran
Procedia PDF Downloads 1127153 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques
Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee
Abstract:
Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel
Procedia PDF Downloads 2607152 Zinc Oxide Nanowires: Device Fabrication and Optical Properties
Authors: Igori Wallace
Abstract:
Zinc oxide (ZnO) nanowires with hexagonal structure were successfully synthesized by the chemical bath deposition technique. The obtained nanowires were characterized by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The SEM micrographs revealed the morphology of ZnO nanowires with the diameter between 170.3 and 481nm and showed that the normal pH of the bath solution, 8.1 is the optimized value to form ZnO nanowires with the hexagonal shape. The compositional (EDX) analysis revealed the elemental compositions of samples and confirmed the presence of Zn and O.Keywords: crystallite, chemical bath deposition technique, hexagonal, morphology, nanowire
Procedia PDF Downloads 3097151 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites
Authors: A. Feliczak Guzik, I. Nowak
Abstract:
Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis
Procedia PDF Downloads 887150 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 1307149 Achieving Social Sustainability through Architectural Designs for Physically Challenged People: Datascapes Technique
Authors: Fatemeh Zare, Kaveh Bazrafkan, Alireza Bolhari
Abstract:
Quality of life is one of the most recent issues in today's architectural world. It has numerous criteria and has diverse aspects in different nation's cultures. Social sustainability, on the other hand, is frequently a positive attitude which is manifested by integration of human beings and equity of access to fundamental amenities; for instance, transportation, hygienic systems, equal education facilities, etc. This paper demonstrates that achieving desired quality of life is through assurance of sustainable society. Choosing a sustainable approach in every day's life becomes a practical manner and solution for human life. By assuming that an architect is someone who designs people's life by his/her projects, scrutinizing the relationship between quality of life and architectural buildings would reveal hidden criteria through Datascapes technique. This would be enriched when considering this relationship with everyone's basic needs in the society. One the most impressive needs are the particular demands of physically challenged people which are directly examined and discussed.Keywords: sustainable design, social sustainability, disabled people, datascapes technique
Procedia PDF Downloads 4857148 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds
Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar
Abstract:
The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction
Procedia PDF Downloads 5947147 Optical Flow Technique for Supersonic Jet Measurements
Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi
Abstract:
This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.Keywords: Schlieren, optical flow, supersonic jets, shock shear layer
Procedia PDF Downloads 3127146 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 5847145 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution
Authors: Hasan Türe, Kader Terzioglu, Evren Tunca
Abstract:
Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).Keywords: alginate, adsorption, beads, perlite
Procedia PDF Downloads 2907144 Effect of Therapeutic Exercises with or without Positional Release Technique in Treatment of Chronic Mechanical Low Back Pain Patients a Randomized Controlled Trial
Authors: Ghada M. R. Koura, Mohamed N. Mohamed, Ahmed M. F. El Shiwi
Abstract:
Chronic mechanical Low back dysfunction (CMLBD) is the most common problem of the working-age population in modern industrial sociaty; it causes a substantial economic burden due to the wide use of medical services and absence from work. Aim of work: the aim of this study was to investigate the effect of positional release technique on patients with chronic mechanical low back pain. Materials and Methods: Thirty two patients from both sexes were diagnosed with CMLBP, aged 20 to 45 years and were divided randomly into two equal groups; sixteen patients each; group A (control group) received therapeutic exercises that include (Stretch and Strength exercises for back and abdominal muscles). Group B (experimental group) received therapeutic exercises with positional release technique; treatment was applied 3 days/week for 4 weeks. Pain was measured by Visual Analogue Scale, Lumbar range of motion was measured by Inclinometer and Functional disability was measured by Oswestry disability scale. Measurements were taken at two intervals pre-treatment and post-treatment. Results: Data obtained was analyzed via paired and unpaired t-Test. There were statistical differences between the 2 groups, where the experimental group showed greater improvement than control group. Conclusion: Positional release technique is considered as an effective treatment for reducing pain, functional disability and increasing lumbar range of motion in individuals with chronic mechanical low back pain.Keywords: chronic mechanical low back pain, traditional physical therapy program, positional release technique, randomized controlled trial
Procedia PDF Downloads 5987143 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix
Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung
Abstract:
The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation
Procedia PDF Downloads 4747142 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 1697141 3D Interactions in Under Water Acoustic Simulations
Authors: Prabu Duplex
Abstract:
Due to stringent emission regulation targets, large-scale transition to renewable energy sources is a global challenge, and wind power plays a significant role in the solution vector. This scenario has led to the construction of offshore wind farms, and several wind farms are planned in the shallow waters where the marine habitat exists. It raises concerns over impacts of underwater noise on marine species, for example bridge constructions in the ocean straits. Dangerous to aquatic life, the environmental organisations say, the bridge would be devastating, since ocean straits are important place of transit for marine mammals. One of the highest concentrations of biodiversity in the world is concentrated these areas. The investigation of ship noise and piling noise that may happen during bridge construction and in operation is therefore vital. Once the source levels are known the receiver levels can be modelled. With this objective this work investigates the key requirement of the software that can model transmission loss in high frequencies that may occur during construction or operation phases. Most propagation models are 2D solutions, calculating the propagation loss along a transect, which does not include horizontal refraction, reflection or diffraction. In many cases, such models provide sufficient accuracy and can provide three-dimensional maps by combining, through interpolation, several two-dimensional (distance and depth) transects. However, in some instances the use of 2D models may not be sufficient to accurately model the sound propagation. A possible example includes a scenario where an island or land mass is situated between the source and receiver. The 2D model will result in a shadow behind the land mass where the modelled transects intersect the land mass. Diffraction will occur causing bending of the sound around the land mass. In such cases, it may be necessary to use a 3D model, which accounts for horizontal diffraction to accurately represent the sound field. Other scenarios where 2D models may not provide sufficient accuracy may be environments characterised by a strong up-sloping or down sloping seabed, such as propagation around continental shelves. In line with these objectives by means of a case study, this work addresses the importance of 3D interactions in underwater acoustics. The methodology used in this study can also be used for other 3D underwater sound propagation studies. This work assumes special significance given the increasing interest in using underwater acoustic modeling for environmental impacts assessments. Future work also includes inter-model comparison in shallow water environments considering more physical processes known to influence sound propagation, such as scattering from the sea surface. Passive acoustic monitoring of the underwater soundscape with distributed hydrophone arrays is also suggested to investigate the 3D propagation effects as discussed in this article.Keywords: underwater acoustics, naval, maritime, cetaceans
Procedia PDF Downloads 207140 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique
Authors: P. Kanakasabapathy, S. Radhika
Abstract:
In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self-scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self-scheduling to ensure profit for the plant.Keywords: ancillary services, BPSO, power system economics, self-scheduling, sliding window technique
Procedia PDF Downloads 4017139 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 1657138 Silent Culminations in Operas Aida and Mazeppa
Authors: Stacy Jarvis
Abstract:
A silent culmination is a musical technique that creates or increases tension in a piece of music. It is a type of cadence in which the music gradually builds to a climax but suddenly stops without any resolution. This technique can create suspense and anticipation in the listener as they wait to find out what will happen next. It can also draw attention to a particular element of the music, such as a particular instrument or vocal line. Silent culminations can evoke a sense of mystery or ambiguity by not resolving the tension created. This technique has been used by composers of all musical genres, from classical to jazz, as well as in film scores. Silent culminations can also make a piece of music more dynamic and exciting. Verdi’s Aida is a classic example of the use of silent culminations to create tension and suspense. Throughout the opera, Verdi uses a technique of gradually building to a climax, only to abruptly stop without any resolution. This technique brings out the story's drama and intensity and creates anticipation for the climactic moments. For example, at the end of the second act, Verdi reaches a crescendo of tension as Aida and Radamès swear their undying love for one another, only to stop with a moment of silence. This technique also helps to draw attention to the important moments in the story, such as the duets between Aida and Radamès. By stopping the music just before it resolves, Verdi can create an atmosphere of anticipation and suspense that carries through to the opera's end. Silent culminations are used greatly in Aida and are integral to Verdi’s dramatic style. In his symphonic poem Mazeppa, Tchaikovsky uses silent culminations to emphasize the piece's drama and powerful emotions. The piece begins with a gentle introduction but quickly builds to a powerful climax. Throughout the piece, Tchaikovsky uses silent culminations to create tension and suspense, drawing the listener in and heightening the intensity of the music 2. The most dramatic moment of the piece comes when the music builds to a frantic climax and then suddenly cuts out, leaving the listener hanging in anticipation of what will happen next. This technique creates an intense atmosphere and leaves the listener eager to hear what comes next. In addition, the use of silent culminations helps to emphasize the strong emotions of the piece, such as fear, horror, and despair. By not resolving the tension with a resolution, the listener is left with a feeling of uneasiness and uncertainty that helps to convey the story of Mazeppa’s tragic fate.Keywords: Verdi, Tchaikovsky, opera, culmination
Procedia PDF Downloads 967137 The Backlift Technique among South African Cricket Players
Authors: Habib Noorbhai
Abstract:
This study primarily aimed to investigate the batting backlift technique (BBT) among semi-professional, professional and current international cricket players. A key question was to investigate if the lateral batting backlift technique (LBBT) is more common at the highest levels of the game. The participants in this study sample (n = 130) were South African semi-professional players (SP) (n = 69) and professional players (P) (n = 49) and South African international professional players (SAI) (n = 12). Biomechanical and video analysis were performed on all participant groups. Classifiers were utilised to identify the batting backlift technique type (BBTT) employed by all batsmen. All statistics and wagon wheels (scoring areas of the batsmen on a cricket field) were sourced online. This study found that a LBBT is more common at the highest levels of cricket batsmanship with batsmen at the various levels of cricket having percentages of the LBBT as follows: SP = 37.7%; P = 38.8%; SAI = 75%; p = 0.001. This study also found that SAI batsmen who used the LBBT were more proficient at scoring runs in various areas around the cricket field (according to the wagon wheel analysis). This study found that a LBBT is more common at the highest levels of cricket batsmanship. Cricket coaches should also pay attention to the direction of the backlift with players, especially when correlating the backlift to various scoring areas on the cricket field. Further in-depth research is required to fully investigate the change in batting backlift techniques among cricket players over a long-term period.Keywords: cricket batting, biomechanical analysis, backlift, performance
Procedia PDF Downloads 261