Search results for: teaching and learning empathy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8593

Search results for: teaching and learning empathy

3283 Integration of Technology into Nursing Education: A Collaboration between College of Nursing and University Research Center

Authors: Lori Lioce, Gary Maddux, Norven Goddard, Ishella Fogle, Bernard Schroer

Abstract:

This paper presents the integration of technologies into nursing education. The collaborative effort includes the College of Nursing (CoN) at the University of Alabama in Huntsville (UAH) and the UAH Systems Management and Production Center (SMAP). The faculty at the CoN conducts needs assessments to identify education and training requirements. A team of CoN faculty and SMAP engineers then prioritize these requirements and establish improvement/development teams. The development teams consist of nurses to evaluate the models and to provide feedback and of undergraduate engineering students and their senior staff mentors from SMAP. The SMAP engineering staff develops and creates the physical models using 3D printing, silicone molds and specialized molding mixtures and techniques. The collaboration has focused on developing teaching and training, or clinical, simulators. In addition, the onset of the Covid-19 pandemic has intensified this relationship, as 3D modeling shifted to supplied personal protection equipment (PPE) to local health care providers. A secondary collaboration has been introducing students to clinical benchmarking through the UAH Center for Management and Economic Research. As a result of these successful collaborations the Model Exchange & Development of Nursing & Engineering Technology (MEDNET) has been established. MEDNET seeks to extend and expand the linkage between engineering and nursing to K-12 schools, technical schools and medical facilities in the region to the resources available from the CoN and SMAP. As an example, stereolithography (STL) files of the 3D printed models, along with the specifications to fabricate models, are available on the MEDNET website. Ten 3D printed models have been developed and are currently in use by the CoN. The following additional training simulators are currently under development:1) suture pads, 2) gelatin wound models and 3) printed wound tattoos. Specification sheets have been written for these simulations that describe the use, fabrication procedures and parts list. These specifications are available for viewing and download on MEDNET. Included in this paper are 1) descriptions of CoN, SMAP and MEDNET, 2) collaborative process used in product improvement/development, 3) 3D printed models of training and teaching simulators, 4) training simulators under development with specification sheets, 5) family care practice benchmarking, 6) integrating the simulators into the nursing curriculum, 7) utilizing MEDNET as a pandemic response, and 8) conclusions and lessons learned.

Keywords: 3D printing, nursing education, simulation, trainers

Procedia PDF Downloads 122
3282 talk2all: A Revolutionary Tool for International Medical Tourism

Authors: Madhukar Kasarla, Sumit Fogla, Kiran Panuganti, Gaurav Jain, Abhijit Ramanujam, Astha Jain, Shashank Kraleti, Sharat Musham, Arun Chaudhury

Abstract:

Patients have often chosen to travel for care — making pilgrimages to academic meccas and state-of-the-art hospitals for sophisticated surgery. This culture is still persistent in the landscape of US healthcare, with hundred thousand of visitors coming to the shores of United States to seek the high quality of medical care. One of the major challenges in this form of medical tourism has been the language barrier. Thus, an Iraqi patient, with immediate needs of communicating the healthcare needs to the treating team in the hospital, may face huge barrier in effective patient-doctor communication, delaying care and even at times reducing the quality. To circumvent these challenges, we are proposing the use of a state-of-the-art tool, Talk2All, which can translate nearly one hundred international languages (and even sign language) in real time. The tool is an easy to download app and highly user friendly. It builds on machine learning principles to decode different languages in real time. We suggest that the use of Talk2All will tremendously enhance communication in the hospital setting, effectively breaking the language barrier. We propose that vigorous incorporation of Talk2All shall overcome practical challenges in international medical and surgical tourism.

Keywords: language translation, communication, machine learning, medical tourism

Procedia PDF Downloads 214
3281 Analysis of Engagement Methods in the College Classroom Post Pandemic

Authors: Marsha D. Loda

Abstract:

College enrollment is declining and generation Z, today’s college students, are struggling. Before the pandemic, researchers characterized this generational cohort as unique. Gen Z has been called the most achievement-oriented generation, as they enjoy greater economic status, are more racially and ethnically diverse, and better educated than any other generation. However, they are also the most likely generation to suffer from depression and anxiety. Gen Z has grown up largely with usually well-intentioned but overprotective parents who inadvertently kept them from learning life skills, likely impacting their ability to cope with and to effectively manage challenges. The unprecedented challenges resulting from the pandemic up ended their world and left them emotionally reeling. One of the ramifications of this for higher education is how to reengage current Gen Z students in the classroom. This research presents qualitative findings from 24 single-spaced pages of verbatim comments from college students. Research questions concerned what helps them learn and what they abhor, as well as how to engage them with the university outside of the classroom to aid in retention. Students leave little doubt about what they want to experience in the classroom. In order of mention, students want discussion, to engage with questions, to hear how a topic relates to real life and the real world, to feel connections with the professor and fellow students, and to have an opportunity to give their opinions. They prefer a classroom that involves conversation, with interesting topics and active learning. “professor talks instead of lecturing” “professor builds a connection with the classroom” “I am engaged because it feels like a respectful conversation” Similarly, students are direct about what they dislike in a classroom. In order of frequency, students dislike teachers unenthusiastically reading word or word from notes or presentations, repeating the text without adding examples, or addressing how to apply the information. “All lecture. I can read the book myself” “Not taught how to apply the skill or lesson” “Lectures the entire time. Lesson goes in one ear and out the other.” Pertaining to engagement outside the classroom, Gen Z challenges higher education to step outside the box. They don’t want to just hear from professionals in their field, they want to meet and interact with them. Perhaps because of their dependence on technology and pandemic isolation, they seem to reach out for assistance in forming social bonds. “I believe fun and social events are the best way to connect with students and get them involved. Cookouts, raffles, socials, or networking events would all most likely appeal to many students”. “Events… even if they aren’t directly related to learning. Maybe like movie nights… doing meet ups at restaurants”. Qualitative research suggests strategy. This research is rife with strategic implications to improve learning, increase engagement and reduce drop-out rates among Generation Z higher education students. It also compliments existing research on student engagement. With college enrollment declining by some 1.3 million students over the last two years, this research is both timely and important.

Keywords: college enrollment, generation Z, higher education, pandemic, student engagement

Procedia PDF Downloads 106
3280 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies

Authors: Rade M. Ciric

Abstract:

The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.

Keywords: engineering education, power distribution network, syllabus implementation, outcome evaluation

Procedia PDF Downloads 404
3279 Lesson of Moral Teaching of the Sokoto Caliphate in the Quest for Genuine National Development in Nigeria

Authors: Murtala Marafa

Abstract:

It’s been 50 years now since we began the desperate search for a genuine all round development as a nation. Painfully though, like a wild goose chase, the search for that promised land had remain elusive. In this piece, recourse is made to the sound administrative qualities of the 19th century Sokoto Caliphate leaders. It enabled them to administer the vast entity on the basis of mutual peace and justice. It also guaranteed a just political order built on a sound and viable economy. The paper is of the view that if the Nigerian society can allow for a replication of such moral virtues as exemplified by the founding fathers of the Caliphate, Nigeria could transform into a politically coherent and economically viable nation aspired by all.

Keywords: administration, religion, sokoto caliphate, moral teachings

Procedia PDF Downloads 276
3278 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 390
3277 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 170
3276 Video Sharing System Based On Wi-fi Camera

Authors: Qidi Lin, Jinbin Huang, Weile Liang

Abstract:

This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition that, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC sever and the camera and many mobile phones are connected together, it can transfer photos concurrently.

Keywords: Wifi Camera, socket mobile, platform video monitoring, remote control

Procedia PDF Downloads 338
3275 Self-Regulation and School Adjustment of Students with Autism Spectrum Disorder in Hong Kong

Authors: T. S. Terence Ma, Irene T. Ho

Abstract:

Conducting adequate assessment of the challenges students with ASD (Autism Spectrum Disorder) face and the support they need is imperative for promoting their school adjustment. Students with ASD often show deficits in communication, social interaction, emotional regulation, and self-management in learning. While targeting these areas in intervention is often helpful, we argue that not enough attention has been paid to weak self-regulation being a key factor underlying their manifest difficulty in all these areas. Self-regulation refers to one’s ability to moderate their behavioral or affective responses without assistance from others. Especially for students with high functioning autism, who often show problems not so much in acquiring the needed skills but rather in applying those skills appropriately in everyday problem-solving, self-regulation becomes a key to successful adjustment in daily life. Therefore, a greater understanding of the construct of self-regulation, its relationship with other daily skills, and its role in school functioning for students with ASD would generate insights on how students’ school adjustment could be promoted more effectively. There were two focuses in this study. Firstly, we examined the extent to which self-regulation is a distinct construct that is differentiable from other daily skills and the most salient indicators of this construct. Then we tested a model of relationships between self-regulation and other daily school skills as well as their relative and combined effects on school adjustment. A total of 1,345 Grade1 to Grade 6 students with ASD attending mainstream schools in Hong Kong participated in the research. In the first stage of the study, teachers filled out a questionnaire consisting of 136 items assessing a wide range of student skills in social, emotional and learning areas. Results from exploratory factor analysis (EFA) with 673 participants and subsequent confirmatory factor analysis (CFA) with another group of 672 participants showed that there were five distinct factors of school skills, namely (1) communication skills, (2) pro-social behavior, (3) emotional skills, (4) learning management, and (5) self-regulation. Five scales representing these skill dimensions were generated. In the second stage of the study, a model postulating the mediating role of self-regulation for the effects of the other four types of skills on school adjustment was tested with structural equation modeling (SEM). School adjustment was defined in terms of the extent to which the student is accepted well in school, with high engagement in school life and self-esteem as well as good interpersonal relationships. A 5-item scale was used to assess these aspects of school adjustment. Results showed that communication skills, pro-social behavior, emotional skills and learning management had significant effects on school adjustment only indirectly through self-regulation, and their total effects were found to be not high. The results indicate that support rendered to students with ASD focusing only on the training of well-defined skills is not adequate for promoting their inclusion in school. More attention should be paid to the training of self-management with an emphasis on the application of skills backed by self-regulation. Also, other non-skill factors are important in promoting inclusive education.

Keywords: autism, assessment, factor analysis, self-regulation, school adjustment

Procedia PDF Downloads 108
3274 'Internationalization': Discussing the Ethics of the Global North Developing Social Work Courses for the Global South

Authors: Mary Goitom, Maria Liegghio

Abstract:

In this paper, we critically explore the ethics of Schools of Social Work from the global North developing courses for programs within the Global South. In it, we discuss our experiences of partnering with the University of Guyana to develop and teach graduate courses in a newly formed Masters of Social Work program. Under the umbrella of our university’s goal for 'internationalization', that is, developing and establishing global and local collaborations for teaching, research and scholarship, we bring into question whether a new form of academic imperialism is occurring under the guise of global citizenship and social justice.

Keywords: academic imperialism, global north and south, internationalization, social work education

Procedia PDF Downloads 344
3273 Experiences of Students with SLD at University: A Case Study

Authors: Lorna Martha Dreyer

Abstract:

Consistent with the changing paradigm on the rights of people with disabilities and in pursuit of social justice, there is internationally an increase in students with disabilities enrolling at Higher Education Institutions (HEIs). This trend challenges HEI’s to transform and attain Education for All (EFA) as a global imperative. However, while physical and sensory disabilities are observable, students with specific learning disabilities (SLD) do not present with any visible indications and are often referred to as “hidden” or “invisible” disabilities. This qualitative case study aimed to illuminate the experiences of students with SLDs at a South African university. The research was, therefore, guided by Vygotsky’s social-cultural theory (SCT). This research was conducted within a basic qualitative research methodology embedded in an interpretive paradigm. Data was collected through an online background survey and semi-structured interviews. Thematic qualitative content analysis was used to analyse the collected data systematically. From a social justice perspective, the major findings suggest that there are several factors that impede equal education for students with SLDs at university. Most participants in this small-scale study experienced a lack of acknowledgment and support from lecturers. They reported valuing the support of family and friends more than that of lecturers. It is concluded that lecturers need to be reflective of their pedagogical practices if authentic inclusion is to be realised.

Keywords: higher education, inclusive education, pedagogy, social-cultural theory, specific learning disabilities

Procedia PDF Downloads 147
3272 Caribbean Universities and the Global Educational Market: An Examination of Entrepreneurship and Leadership in an Era of Change

Authors: Paulette Henry

Abstract:

If Caribbean Universities wish to remain sustainable in the global education market they must meet the new demands of the 21st Centuries learners. This means preparing the teaching and learning environment with the human and material and resources so that the University can blossom out into the entrepreneurial University. The entrepreneurial University prepares the learner to become a global citizen, one who is innovative and a critical thinker and has the competencies to create jobs. Entrepreneurship education provides more equitable access to university education building capacity for the local and global economy. The entrepreneurial thinking, the mindset, must therefore be among academic and support staff as well as students. In developing countries where resources are scarce, Universities are grappling with a myriad of financial and non-financial issues. These include increasing costs, Union demands for increased remuneration for staff and reduced subvention from governments which has become the norm. In addition, there is the political pressure against increasing tuition fees and the perceptions on the moral responsibilities of universities in national development. The question is how do small universities carve out their niche, meet both political and consumer demands for a high quality, low lost education, fulfil their development mandate and still remain not only viable but competitive. Themes which are central to this discourse on the transitions necessary for the entrepreneurial university are leadership, governance and staff well-being. This paper therefore presents a case study of a Caribbean University to show how transformational leadership and the change management framework propels change towards an entrepreneurial institution seeking to have a competitive advantage despite its low resourced context. Important to this discourse are the transformational approaches used by the University to prepare staff to move from their traditional psyche to embracing an entrepreneurial mindset whilst equipping students within the same mode to become work ready and creative global citizens. Using the mixed methods approach, opinions were garnered from both members of the University community as well as external stakeholder groups on their perception of the role of the University in the business arena and as a primary stakeholder in national development. One of the critical concepts emanating from the discourse was the need to change the mindset of the those in university governance as well as how national stakeholders engage the university. This paper shows how multiple non-financial factors can contribute to change. A combination of transformational and servant leadership, strengthened institutional structures and developing new ones, rebuilding institutional trust and pride have been among the strategies employed within the change management framework. The university is no longer limited by borders but through international linkages has transcended into a transnational stakeholder.

Keywords: competitiveness, context, entrepreneurial, leadership

Procedia PDF Downloads 210
3271 Automation of AAA Game Development using AI and Procedural Generation

Authors: Paul Toprac, Branden Heng, Harsheni Siddharthan, Allison Tseng, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high budget, high profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 13 AI tools for game development. During this process, the following tools were found to be the most productive: (1) ChatGPT 4.0 for both game and narrative concepting and documentation; (2) Dall-E 3 and OpenArt for concept art; (3) Beatoven for music drafting; (4) Epic PCG for level design; and (5) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are at best tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 30
3270 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 12
3269 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 118
3268 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 30
3267 Exploring the Association between Personality Traits and Adolescent Wellbeing in Online Education: A Systematic Review

Authors: Rashmi Motwani, Ritu Raj

Abstract:

The emergence of online educational environments has changed the way adolescents learn, which has benefits and drawbacks for their development. This review has as its goal the examination of how personality traits and adolescents’ well-being are associated in the setting of online education. This review analyses the effects of a variety of personality traits on the mental, emotional, and social health of online school-going adolescents by looking at a wide range of previous research. This research explores the mechanisms that mediate or regulate the connection between one's personality traits and well-being in an online educational environment. The elements can be broken down into two categories: technological, like internet availability and digital literacy, and social, including social support, peer interaction, and teacher-student connections. To improve the well-being of adolescents in online learning environments, it is essential to understand factors that moderate the effects of interventions and support systems. This review concludes by emphasising the complex nature of the association between individual differences in personality and the success of online students aged 13 to 18. This review contributes to the development of evidence-based strategies for promoting positive mental health and overall well-being among adolescents engaged in online educational settings by shedding light on the impact of personality traits on various dimensions of well-being and by identifying the mediating or moderating factors. Educators, governments, and parents can use the findings of this review to create an online learning environment that is safe and well-being for adolescents.

Keywords: personality traits, adolescent, wellbeing, online education

Procedia PDF Downloads 52
3266 Open Space Use in University Campuses with User Requirements Analysis: The Case of Eskişehir Osmangazi University Meşelik Campus

Authors: Aysen Celen Ozturk, Hatice Dulger

Abstract:

University may be defined as a teaching institution consisting of faculties, institutes, colleges, and units that have undergraduate and graduate education, scientific research and publications. It has scientific autonomy and public legal personality. Today, universities are not only the institutions in which students and lecturers experience education, training and scientific work. They also offer social, cultural and artistic activities that strengthen the link with the city. This also incorporates all city users into the campus borders. Thus, universities contribute to social and individual development of the country by providing science, art, socio-cultural development, communication and socialization with people of different cultural and social backgrounds. Moreover, universities provide an active social life, where the young population is the majority. This enables the sense of belonging to the users to develop, to increase the interaction between academicians and students, and to increase the learning / producing community by continuing academic sharing environments outside the classrooms. For this reason, besides academic spaces in university campuses, the users also need closed and open spaces where they can socialize, spend time together and relax. Public open spaces are the most important social spaces that individuals meet, express themselves and share. Individuals belonging to different socio-cultural structures and ethnic groups maintain their social experiences with the physical environment they are in, the outdoors, and their actions and sharing in these spaces. While university campuses are being designed for their individual and social development roles, user needs must be determined correctly and design should be realized in this direction. While considering that requirements may change over time, user satisfaction should be questioned at certain periods and new arrangements should be made in existing applications in the direction of current demands. This study aims to determine the user requirements through the case of Eskişehir Osmangazi University, Meşelik Campus / Turkey. Post Occupancy Evaluation (POE) questionnaire, cognitive mapping and deep interview methods are used in the research process. All these methods show that the students, academicians and other officials in the Meşelik Campus of Eskişehir Osmangazi University find way finding elements insufficient and are in need of efficient landscape design and social spaces. This study is important in terms of determining the needs of the users as a design input. This will help improving the quality of common space in Eskişehir Osmangazi University and in other similar universities.

Keywords: university campuses, public open space, user requirement, post occupancy evaluation

Procedia PDF Downloads 245
3265 Effectiveness of Using Phonemic Awareness Based Activities in Improving Decoding Skills of Third Grade Students Referred for Reading Disabilities in Oman

Authors: Mahmoud Mohamed Emam

Abstract:

In Oman the number of students referred for reading disabilities is on the rise. Schools serve these students by placement in the so-called learning disabilities unit. Recently the author led a strategic project to train teachers on the use of curriculum based measurement to identify students with reading disabilities in Oman. Additional the project involved training teachers to use phonemic awareness based activities to improve reading skills of those students. Phonemic awareness refers to the ability to notice, think about, and work with the individual sounds in words. We know that a student's skill in phonemic awareness is a good predictor of later reading success or difficulty. Using multiple baseline design across four participants the current studies investigated the effectiveness of using phonemic awareness based activities to improve decoding skills of third grade students referred for reading disabilities in Oman. During treatment students received phonemic awareness based activities that were designed to fulfill the idiosyncratic characteristics of Arabic language phonology as well as orthography. Results indicated that the phonemic awareness based activities were effective in substantially increasing the number of correctly decoded word for all four participants. Maintenance of strategy effects was evident for the weeks following the termination of intervention for the four students. In addition, the effects of intervention generalized to decoding novel words for all four participants.

Keywords: learning disabilities, phonemic awareness, third graders, Oman

Procedia PDF Downloads 642
3264 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 56
3263 Protection of Human Rights in Polish Centres for Foreigners – in the Context of the European Human Rights System

Authors: Oktawia Braniewicz

Abstract:

The phenomenon of emigration and migration increasingly affects Poland's borders as well. For this reason, it is necessary to examine the level of protection of Human Rights in Polish Centres for Foreigners. The field study covered 11 centers for Foreigners in the provinces Kujawsko-Pomorskie Region, Lubelskie Region, Lodzkie Region, Mazowieckie Region and Podlaskie Region. Photographic documentation of living and social conditions, conversations with center employees and refugees allow to show a comprehensive picture of the situation prevailing in Centres for Foreigners. The object of reflection will be, in particular, the standards resulting from art. 8 and 13 of the Convention for the Protection of Human Rights and Fundamental Freedoms and article 2 of Protocol No. 1 to the Convention for the Protection of Human Rights and Fundamental Freedoms. The degree of realization of the right to education and the right to respect for family and private life will be shown. Issues related to learning the Polish language, access to a professional translator and psychological help will also be approximated. Learning Polish is not obligatory, which causes problems with assimilation and integration with other members of the new community. In centers for foreigners, there are no translators - a translator from an external company is rented if necessary. The waiting time for an interpreter makes the refugees feel anxious, unable to communicate with the employees of the centers (this is a situation in which the refugees do not know either English, Polish or Russian). Psychologist's help is available on designated days of the week. There is no separate specialist in child psychology, which is a serious problem.

Keywords: human rights, Polish centres, foreigners, fundamental freedoms

Procedia PDF Downloads 133
3262 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals

Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge

Abstract:

It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.

Keywords: blockchain, deep learning, NLP, monitoring system

Procedia PDF Downloads 133
3261 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: broadcasting contents, scripts, text similarity, topic model

Procedia PDF Downloads 319
3260 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 125
3259 Services, Stigma and Discrimination: Perceptions of African Descendant Men Living with HIV/AIDS in Brazil and in the US

Authors: Aparecida De Fatima Dutra, Freddie Avant, Wilma Cordova

Abstract:

People living with HIV/AIDS (PLWHA) have benefited from advances in treatment. Medical costs are a challenge for some, but the real challenge is the stigma and discrimination PLWHA continue to face, even though the disease has festered for the last four decades. Few studies regarding stigma and discrimination give voice to those affected by these practices. This study provides a voice to PLWHA in Brazil and in the US as to how they perceive stigma and discrimination, as well as services they access. The methodology of this study was designed based on phenomenological research, which is a research that aims to identify what individuals facing the same situation have to share about their experiences. Qualitative research using in- depth interviews was used in order to gather participants’ perceptions about services they access, and stigma and discrimination they experience as PLWHA (hypothesis). The target population was a minority group of 13 Afro-descendant men, mean age of 48.3, residents in East Texas, United States and Salvador, Brazil. Our findings indicate that in both countries, overall, participants have reasonable access to medication and qualified services, except for some specialties, such as dentistry. With regard to stigma and discrimination the majority of participants have not disclosed their diagnosis. They state they prefer not to disclose for fear of being ostracized and rejected. Participants who did reveal their status indicate that stigma and discrimination is a daily occurrence. These experiences tend to occur within their own families, neighborhoods, and in public health agencies where HIV/AIDS is not the focus. Participants who did offer suggestions for social change indicated they would have to reveal their status even if it means being stigmatized and discriminated against. Other factors contributing to this discrimination include skin color and poverty. This study concludes that even after decades since the spread of this epidemic, nothing has changed regarding stigma and discrimination towards PLWHA. Lack of awareness, empathy and education continue to be a major challenge, not only at a local level but across the globe. In conclusion, as documented in previous studies while stigma and discrimination towards this population prevail, negative attitudes will continue to jeopardize all individuals from receiving equal access to prevention, treatment and care. It is crucial to face stigma and discrimination not only as individual experiences, but as social practices that violate and restrict human rights and that as a result, reinforce inequality and social exclusion. Policies should be at the forefront to eliminate the stigma and discrimination PLWHA experience. Health professionals and societies must take a stand in order to promote mindfulness about the negative effect of oppression towards individuals living with HIV/AIDS and the potential global impact of these practices.

Keywords: discrimination, HIV/AIDS, human rights, stigma

Procedia PDF Downloads 338
3258 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 71
3257 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
3256 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 82
3255 Values Education in Military Schools and Işıklar Air Force High School Sample

Authors: Mehmet Eren Çelik

Abstract:

Values are notions that help people to decide what is good or not and to direct their attitude. Teaching values has always been very important throughout the history. Values should be thought in younger ages to get more efficiency. Therefore military schools are the last stop to learn values effectively. That’s why values education in military schools has vital importance. In this study the military side of values education is examined. The purpose of the study is to show how important values education is and why military students need values education. First of all what value is and what values education means is clearly explained and values education in schools and specifically in military schools is stated. Then values education in Işıklar Air Force High School exemplifies the given information.

Keywords: Işıklar Air Force High School, military school, values, values education

Procedia PDF Downloads 388
3254 The Preceptorship Experience and Clinical Competence of Final Year Nursing Students

Authors: Susan Ka Yee Chow

Abstract:

Effective clinical preceptorship is affecting students’ competence and fostering their growth in applying theoretical knowledge and skills in clinical settings. Any difference between the expected and actual learning experience will reduce nursing students’ interest in clinical practices and having a negative consequence with their clinical performance. This cross-sectional study is an attempt to compare the differences between preferred and actual preceptorship experience of final year nursing students, and to examine the relationship between the actual preceptorship experience and perceived clinical competence of the students in a tertiary institution. Participants of the study were final year bachelor nursing students of a self-financing tertiary institution in Hong Kong. The instruments used to measure the effectiveness of clinical preceptorship was developed by the participating institution. The scale consisted of five items in a 5-point likert scale. The questions including goals development, critical thinking, learning objectives, asking questions and providing feedback to students. The “Clinical Competence Questionnaire” by Liou & Cheng (2014) was used to examine students’ perceived clinical competences. The scale consisted of 47 items categorized into four domains, namely nursing professional behaviours; skill competence: general performance; skill competence: core nursing skills and skill competence: advanced nursing skills. There were 193 questionnaires returned with a response rate of 89%. The paired t-test was used to compare the differences between preferred and actual preceptorship experiences of students. The results showed significant differences (p<0.001) for the five questions. The mean for the preferred scores is higher than the actual scores resulting statistically significance. The maximum mean difference was accepted goal and the highest mean different was giving feedback. The Pearson Correlation Coefficient was used to examine the relationship. The results showed moderate correlations between nursing professional behaviours with asking questions and providing feedback. Providing useful feedback to students is having moderate correlations with all domains of the Clinical Competence Questionnaire (r=0.269 – 0.345). It is concluded that nursing students do not have a positive perception of the clinical preceptorship. Their perceptions are significantly different from their expected preceptorship. If students were given more opportunities to ask questions in a pedagogical atmosphere, their perceived clinical competence and learning outcomes could be improved as a result.

Keywords: clinical preceptor, clinical competence, clinical practicum, nursing students

Procedia PDF Downloads 127