Search results for: water sustainable
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12271

Search results for: water sustainable

6991 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids

Authors: Ayalew Yimam Ali

Abstract:

The Y-shaped microchannel system is used to mix up low or high viscosities of different fluids, and the laminar flow with high-viscous water-glycerol fluids makes the mixing at the entrance Y-junction region a challenging issue. Acoustic streaming (AS) is time-average, a steady second-order flow phenomenon that could produce rolling motion in the microchannel by oscillating low-frequency range acoustic transducer by inducing acoustic wave in the flow field is the promising strategy to enhance diffusion mass transfer and mixing performance in laminar flow phenomena. In this study, the 3D trapezoidal Structure has been manufactured with advanced CNC machine cutting tools to produce the molds of trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm spine sharp-edge tip depth from PMMA glass (Polymethylmethacrylate) and the microchannel has been fabricated using PDMS (Polydimethylsiloxane) which could be grown-up longitudinally in Y-junction microchannel mixing region top surface to visualized 3D rolling steady acoustic streaming and mixing performance evaluation using high-viscous miscible fluids. The 3D acoustic streaming flow patterns and mixing enhancement were investigated using the micro-particle image velocimetry (μPIV) technique with different spine depth lengths, channel widths, high volume flow rates, oscillation frequencies, and amplitude. The velocity and vorticity flow fields show that a pair of 3D counter-rotating streaming vortices were created around the trapezoidal spine structure and observing high vorticity maps up to 8 times more than the case without acoustic streaming in Y-junction with the high-viscosity water-glycerol mixture fluids. The mixing experiments were performed by using fluorescent green dye solution with de-ionized water on one inlet side, de-ionized water-glycerol with different mass-weight percentage ratios on the other inlet side of the Y-channel and evaluated its performance with the degree of mixing at different amplitudes, flow rates, frequencies, and spine sharp-tip edge angles using the grayscale value of pixel intensity with MATLAB Software. The degree of mixing (M) characterized was found to significantly improved to 0.96.8% with acoustic streaming from 67.42% without acoustic streaming, in the case of 0.0986 μl/min flow rate, 12kHz frequency and 40V oscillation amplitude at y = 2.26 mm. The results suggested the creation of a new 3D steady streaming rolling motion with a high volume flow rate around the entrance junction mixing region, which promotes the mixing of two similar high-viscosity fluids inside the microchannel, which is unable to mix by the laminar flow with low viscous conditions.

Keywords: nano fabrication, 3D acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement

Procedia PDF Downloads 26
6990 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd

Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto

Abstract:

Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.

Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle

Procedia PDF Downloads 384
6989 2D Surface Flow Model in The Biebrza Floodplain

Authors: Dorota Miroslaw-Swiatek, Mateusz Grygoruk, Sylwia Szporak

Abstract:

We applied a two-dimensional surface water flow model with irregular wet boundaries. In this model, flow equations are in the form of a 2-D, non-linear diffusion equations which allows to account spatial variations in flow resistance and topography. Calculation domain to simulate the flow pattern in the floodplain is congruent with a Digital Elevation Model (DEM) grid. The rate and direction of sheet flow in wetlands is affected by vegetation type and density, therefore the developed model take into account spatial distribution vegetation resistance to the water flow. The model was tested in a part of the Biebrza Valley, of an outstanding heterogeneity in the elevation and flow resistance distributions due to various ecohydrological conditions and management measures. In our approach we used the highest-possible quality of the DEM in order to obtain hydraulic slopes and vegetation distribution parameters for the modelling. The DEM was created from the cloud of points measured in the LiDAR technology. The LiDAR reflects both the land surface as well as all objects on top of it such as vegetation. Depending on the density of vegetation cover the ability of laser penetration is variable. Therefore to obtain accurate land surface model the “vegetation effect” was corrected using data collected in the field (mostly the vegetation height) and satellite imagery such as Ikonos (to distinguish different vegetation types of the floodplain and represent them spatially). Model simulation was performed for the spring thaw flood in 2009.

Keywords: floodplain flow, Biebrza valley, model simulation, 2D surface flow model

Procedia PDF Downloads 496
6988 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid

Procedia PDF Downloads 378
6987 Probing Scientific Literature Metadata in Search for Climate Services in African Cities

Authors: Zohra Mhedhbi, Meheret Gaston, Sinda Haoues-Jouve, Julia Hidalgo, Pierre Mazzega

Abstract:

In the current context of climate change, supporting national and local stakeholders to make climate-smart decisions is necessary but still underdeveloped in many countries. To overcome this problem, the Global Frameworks for Climate Services (GFCS), implemented under the aegis of the United Nations in 2012, has initiated many programs in different countries. The GFCS contributes to the development of Climate Services, an instrument based on the production and transfer of scientific climate knowledge for specific users such as citizens, urban planning actors, or agricultural professionals. As cities concentrate on economic, social and environmental issues that make them more vulnerable to climate change, the New Urban Agenda (NUA), adopted at Habitat III in October 2016, highlights the importance of paying particular attention to disaster risk management, climate and environmental sustainability and urban resilience. In order to support the implementation of the NUA, the World Meteorological Organization (WMO) has identified the urban dimension as one of its priorities and has proposed a new tool, the Integrated Urban Services (IUS), for more sustainable and resilient cities. In the southern countries, there’s a lack of development of climate services, which can be partially explained by problems related to their economic financing. In addition, it is often difficult to make climate change a priority in urban planning, given the more traditional urban challenges these countries face, such as massive poverty, high population growth, etc. Climate services and Integrated Urban Services, particularly in African cities, are expected to contribute to the sustainable development of cities. These tools will help promoting the acquisition of meteorological and socio-ecological data on their transformations, encouraging coordination between national or local institutions providing various sectoral urban services, and should contribute to the achievement of the objectives defined by the United Nations Framework Convention on Climate Change (UNFCCC) or the Paris Agreement, and the Sustainable Development Goals. To assess the state of the art on these various points, the Web of Science metadatabase is queried. With a query combining the keywords "climate*" and "urban*", more than 24,000 articles are identified, source of more than 40,000 distinct keywords (but including synonyms and acronyms) which finely mesh the conceptual field of research. The occurrence of one or more names of the 514 African cities of more than 100,000 inhabitants or countries, reduces this base to a smaller corpus of about 1410 articles (2990 keywords). 41 countries and 136 African cities are cited. The lexicometric analysis of the metadata of the articles and the analysis of the structural indicators (various centralities) of the networks induced by the co-occurrence of expressions related more specifically to climate services show the development potential of these services, identify the gaps which remain to be filled for their implementation and allow to compare the diversity of national and regional situations with regard to these services.

Keywords: African cities, climate change, climate services, integrated urban services, lexicometry, networks, urban planning, web of science

Procedia PDF Downloads 194
6986 A Case Study on Vocational Teachers’ Perceptions on Their Linguistically and Culturally Responsive Teaching

Authors: Kirsi Korkealehto

Abstract:

In Finland the transformation from homogenous culture into multicultural one as a result of heavy immigration has been rapid in the recent decades. As multilingualism and multiculturalism are growing features in our society, teachers in all educational levels need to be competent for encounters with students from diverse cultural backgrounds. Consequently, also the number of multicultural and multilingual vocational school students has increased which has not been taken into consideration in teacher education enough. To bridge this gap between teachers’ competences and the requirements of the contemporary school world, Finnish Ministry of Culture and Education established the DivEd-project. The aim of the project is to prepare all teachers to work in the linguistically and culturally diverse world they live in, to develop and increase culturally sustaining and linguistically responsive pedagogy in Finland, increase awareness among Teacher Educators working with preservice teachers and to increase awareness and provide specific strategies to in-service teachers. The partners in the nationwide project are 6 universities and 2 universities of applied sciences. In this research, the linguistically and culturally sustainable teaching practices developed within the DivEd-project are tested in practice. This research aims to explore vocational teachers’ perceptions of these multilingualism and multilingual educational practices. The participants of this study are vocational teachers in of different fields. The data were collected by individual, face-to-face interviews. The data analysis was conducted through content analysis. The findings indicate that the vocational teachers experience that they lack knowledge on linguistically and culturally responsive pedagogy. Moreover, they regard themselves in some extent incompetent in incorporating multilingually and multiculturally sustainable pedagogy in everyday teaching work. Therefore, they feel they need more training pertaining multicultural and multilingual knowledge, competences and suitable pedagogical methods for teaching students from diverse linguistic and cultural backgrounds.

Keywords: multicultural, multilingual, teacher competence, vocational school

Procedia PDF Downloads 146
6985 Cause-Related Marketing: A Review of the Literature

Authors: Chang Hung Chen

Abstract:

Typically the Cause-Related Marketing (CRM) is effective for promoting products, and is also accepted as a role of communication tool for creating a positive image of the corporate. Today, companies are taking Corporate Social Responsibility (CSR) as core activities to build a goal of sustainable development. CRM is not a synonym of CSR. Actually, CRM is a part of CSR, or a type of marketing strategy in CSR framework. This article focuses on the relationship between CSR and CRM, and how the CRM improves the CSR performance of the corporate. The research was conducted through review of literature on the subject area.

Keywords: cause-related marketing, corporate social responsibility, corporate image, consumer behavior

Procedia PDF Downloads 346
6984 Adsorption of Basic Dyes Using Activated Carbon Prepared from Date Palm Fibre

Authors: Riham Hazzaa , Mohamed Hussien Abd El Megid

Abstract:

Dyes are toxic and cause severe problems to aquatic environment. The use of agricultural solid wastes is considered as low-cost and eco-friendly adsorbents for removing dyes from waste water. Date palm fibre, an abundant agricultural by-product in Egypt was used to prepare activated carbon by physical activation method. This study investigates the use of date palm fiber (DPF) and activated carbon (DPFAC) for the removal of a basic dye, methylene blue (MB) from simulated waste water. The effects of temperature, pH of solution, initial dye (concentration, adsorbent dosage and contact time were studied. The experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin, Radushkevich and Harkins–Jura isotherms. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order and Elvoich equations. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results revealed that as the initial dye concentration , amount of adsorbent and temperature increased, the percentage of dye removal increased. The optimum pH required for maximum removal was found to be 6. The adsorption of methylene blue dye was better described by the pseudo-second-order equation. Results indicated that DPFAC and DPF could be an alternative for more costly adsorbents used for dye removal.

Keywords: adsorption, basic dye, palm fiber, activated carbon

Procedia PDF Downloads 329
6983 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 56
6982 Impact of Organic Fertilizer, Inorganic Fertilizer and Soil Conditioner on Growth and Yield of Cowpea (Vigna unguiculata L. Walp) in Sudan Savannah, Nigeria

Authors: Mohammed Bello Sokoto, Adewumi Babatunde Adebayo, Ajit Singh

Abstract:

The field experiment was conducted at the dry land Teaching and Research Farm of Usmanu Danfodiyo University, Sokoto, during the 2023 rainy season to determine the effects of organic, inorganic, soil conditioner and integrated use of soil conditioners (Agzyme) with organic (super gro) and inorganic fertilizers on the growth and yield of cowpea varieties. The research consisted of two cowpea varieties (SAMPEA-20-T and ex-GidanYunfa) and six combinations of organic and inorganic fertilizers and soil conditioners factorially combined and laid out in a Randomized Complete Block Design (RCBD) replicated three times. Data were collected on plant height, leaf area index, number of pods per plant, number of seeds per pod, days to 50% flowering, grain yield, and 100 seed weight. Results indicated that the 100% inorganic fertilizer had a significantly increased growth parameter such as plant height and number of leaves, while combined application of the organic fertilizer and soil conditioner resulted in a significant increase in yield parameters such as number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. The study observed that the use of soil conditioner in combination with fertilizers supports sustainable cowpea production. Application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner was better in increasing the number of pods/plant, seeds/pod, 100 seed weight and grain yield. The ex-Gidan Yunfa cowpea variety generally performed better in most parameters measured, such as plant height, days to 50% flowering, number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. Therefore, the combined application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner is effective for the sustainable production of cowpeas.

Keywords: integrated, fertilizers, growth, yield, cowpea, Sudan Savannah

Procedia PDF Downloads 39
6981 Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation

Authors: Srinivasa Reddy Mallampati, Min Hee Park, Soo Mim Cho, Sung Hyeon Yoon

Abstract:

One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure.

Keywords: end of life vehicles shredder residue, hazardous plastics, nanoparticle froth flotation, separation process

Procedia PDF Downloads 274
6980 The Potential Effectiveness of Marine Algae in Removal of Heavy Metal from Aqueous Medium

Authors: Wed Albalawi, Ebtihaj Jambi, Maha Albazi, Shareefa AlGhamdi

Abstract:

Heavy metal pollution has become a hard threat to marine ecosystems alongside extremely industrialized and urban (urbanized) zones because of their toxicity, resolution, and non-biodegradable nature. Great interest has been given to a new technique -biosorption- which exploits the cell envelopes of organisms to remove metals from water solutions. The main objective of the present study is to explore the potential of marine algae from the Red Sea for the removal of heavy metals from an aqueous medium. The subsequent objective is to study the effect of pH and agitation time on the adsorption capacity of marine algae. Randomly chosen algae from the Red Sea (Jeddah) with known altitude and depth were collected. Analysis of heavy metal ion concentration was measured by ICP-OES (Inductively coupled plasma - optical emission spectrometry) using air argon gas. A standard solution of heavy metal ions was prepared by diluting the original standard solution with ultrapure water. Types of seaweed were used to study the effect of pH on the biosorption of different heavy metals. The biosorption capacity of Cr is significantly lower in Padina Pavonica (P.P) compared to the biosorption capacity in Sargassum Muticum (S.M). The S.M exhibited significantly higher in Cr removal than the P.P at pH 2 and pH 7. However, the P.P exhibited significantly higher in Cr removal than the S.M at pH 3, pH 4, pH 5, pH 6, and pH 8. In conclusion, the dried cells of algae can be used as an effective tool for the removal of heavy metals.

Keywords: biosorption, heavy metal, pollution, pH value, brown algae

Procedia PDF Downloads 74
6979 Groundwater Recharge Estimation of Fetam Catchment in Upper Blue Nile Basin North-Western Ethiopia

Authors: Mekonen G., Sileshi M., Melkamu M.

Abstract:

Recharge estimation is important for the assessment and management of groundwater resources effectively. This study applied the soil moisture balance and Baseflow separation methods to estimate groundwater recharge in the Fetam Catchment. It is one of the major catchments understudied from the different catchments in the upper Blue Nile River basin. Surface water has been subjected to high seasonal variation; due to this, groundwater is a primary option for drinking water supply to the community. This research has been conducted to estimate groundwater recharge by using fifteen years of River flow data for the Baseflow separation and ten years of daily meteorological data for the daily soil moisture balance recharge estimating method. The recharge rate by the two methods is 170.5 and 244.9mm/year daily soil moisture and baseflow separation method, respectively, and the average recharge is 207.7mm/year. The average value of annual recharge in the catchment is almost equal to the average recharge in the country, which is 200mm/year. So, each method has its own limitations, and taking the average value is preferable rather than taking a single value. Baseflow provides overestimated result compared to the average of the two, and soil moisture balance is the list estimator. The recharge estimation in the area also should be done by other recharge estimation methods.

Keywords: groundwater, recharge, baseflow separation, soil moisture balance, Fetam catchment

Procedia PDF Downloads 356
6978 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly

Authors: Agnieszka Markowska-Radomska, Ewa Dluska

Abstract:

Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.

Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion

Procedia PDF Downloads 194
6977 Sustainability Reporting and Performances of the Companies in the Istanbul Stock Exchange Sustainability Index

Authors: Zeynep Şahin, Züleyha Yılmaz, Fikret Çankaya

Abstract:

In today's business world, in which it is difficult to survive, the economic life of products, services or knowledge is considerably reduced. Competitors produce similar products or extra-featured ones instantly. In this environment, the contribution of companies to the social and economic environment is a preferred criterion by consumers alongside products or services. Therefore, consumers need to obtain more detailed information about companies. Besides, this drastic change in the market encourages companies to become sustainable. Sustainable business means the company puts consumed products back. Corporate sustainability, corresponds to sustainability at the level of the company, and gives equal importance to company growth and profitability together with environmental and social issues. The BIST Sustainability Index started to be calculated by the Istanbul Stock Exchange (BIST) in 2014 to evaluate the sustainability performance of companies in Turkey. The main objective of this study is to present the importance of sustainability reports in Turkey. To this aim, the performances of 15 companies in the BIST Sustainability Index were compared the periods before and after entering the index. On the other hand, sustainability reporting practices should be encouraged to increase studies on this issue. In this context, to remain on the agenda of the issue is a further objective of this study. To achieve these objectives, the financial data of the companies in the period before and after entering to the BIST Sustainability Index were analyzed using t-test in Statistical Package for the Social Sciences (SPSS) package. The results of the study showed that no significant difference between the performances of the companies in terms of the net profit margin, the return on assets and equity capital in these periods could be found. Therefore, it can be said that insufficient importance is given to sustainability issues in Turkey. The reasons for this situation might be considered as a lack of awareness due to the recent introduction and calculation of the index. It is expected that the awareness of firms and investors about sustainability will increase, and that they will demonstrate the necessary importance to this issue over time.

Keywords: sustainability reporting, sustainability index, firm performance, BIST sustainability index

Procedia PDF Downloads 275
6976 Stenotrophomonas maltophilia: The Major Carbapenem Resistance Bacteria from Waste Water Treatment Plant of Pig Farm

Authors: Young-Ji Kim, Jin-Hyeong Park, Hong-Seok Kim, Jung-Whan Chon, Kwang-Yeop Kim, Dong-Hyeon Kim, Il-Byeong Kang, Da-Na Jeong, Jin-Hyeok Yim, Ho-Seok Jang, Kwang-Young Song, Kun-Ho Seo

Abstract:

Stenotrophomonas maltophilia is one of the emerging opportunistic pathogens, and also known to have extensive drug resistance intrinsically including carbepenems which is last resort for most serious infections. One possible way for S. maltophilia to infect human is via wastewater treatment plant (WWTP). In the period between October 2016 and February 2017, effluent samples of WWTP from 3 different pig farms were collected once a month and screened for isolation of S. maltophilia. Total 16 strains of S. maltophilia were isolated and, the antibiotic susceptibility phenotypes were determined by Vitek 2 system for 16 antibiotics, ampicillin (AMP), amoxicillin/clavulanic acid (AMC), piperacillin/tazobactam (TZP), cefazolin (CZ), cefoxitin (FOX), cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), aztreonam (AZT), ertapenem (ETP), imipenem (IMP), amikacin (AK), gentamicin (GN), ciprofloxacin (CIP), tigecycline (TGC) and trimethoprim/sulfamethoxazole (SXT). All isolates showed high resistance to AMP (100%), CZ (100%), FOX (100%), CTX (100%), CAZ (100%), FEP (94%), AZT (100%), ETP (100%), IMP (100%), AK (100%), GN (100%) whereas were susceptible to CIP (0%), TGC (0%), SXT (6%). All strains harbored at least one of the antibiotic resistance determinant such as spgM, rmlA, and rpfF. Some isolates had similar MLST (multilocus sequence typing) types with clinical isolates, suggesting WWTP could have potential role in the transmission of S. maltophilia to aquatic environment and, possibly, to humans.

Keywords: Stenotrophomonas maltophilia, Carbapenem resistance, waste water treatment plant, pig farm

Procedia PDF Downloads 459
6975 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 199
6974 Mechanical Characterization and Durability of Eco-Efficient Ultra High Performance Concrete

Authors: Valeria Corinaldesi, Nicola Generosi, Jacopo Donnini

Abstract:

Ultra high performance concrete (UHPC) is an innovative material which tends to exhibit superior properties such as incredible mechanical and durability performance and non-brittleness behavior. Over the last twenty years, phenomenal advances have taken place in the research and application of UHPC. Recently, the approach is to improve UHPC sustainability by reducing its embodied energy. First of all, this goal can be achieved by reducing Portland cement dosage. In this work, an experimental investigation was carried out to characterize the mechanical behavior and durability of UHPCs prepared by reducing the cement amount by 30% in order to verify the impact of lower cement content and higher water-to-cement ratio on both mechanical performance and durability, if any. Eight different UHPC mixtures were compared, with two different cement dosages (either 1000 or 700 kg) and four different brass-coated steel fibres dosages (0 - 50 - 100 - 150 kg), in terms of 28-day compressive and flexural strengths. Then, the mixtures prepared with the lower cement content were further investigated in terms of abrasion resistance, water absorption, freezing and thawing cycles, and resistance to sulphate attack. Results obtained showed the feasibility of reducing cement dosage without compromising mechanical performance and UHPC's extraordinary durability.

Keywords: abrasion resistance, durability, eco-efficiency, freeze-thawing cycles, steel fibres, sulphate exposure, sustainability, UHPC

Procedia PDF Downloads 72
6973 Collaborative Approaches in Achieving Sustainable Private-Public Transportation Services in Inner-City Areas: A Case of Durban Minibus Taxis

Authors: Lonna Mabandla, Godfrey Musvoto

Abstract:

Transportation is a catalytic feature in cities. Transport and land use activity are interdependent and have a feedback loop between how land is developed and how transportation systems are designed and used. This recursive relationship between land use and transportation is reflected in how public transportation routes internal to the inner-city enhance accessibility, therefore creating spaces that are conducive to business activity, while the business activity also informs public transportation routes. It is for this reason that the focus of this research is on public transportation within inner-city areas where the dynamic is evident. Durban is the chosen case study where the dominating form of public transportation within the central business district (CBD) is minibus taxis. The paradox here is that minibus taxis still form part of the informal economy even though they are the leading form of public transportation in South Africa. There have been many attempts to formalise this industry to follow more regulatory practices, but minibus taxis are privately owned, therefore complicating any proposed intervention. The argument of this study is that the application of collaborative planning through a sustainable partnership between the public and private sectors will improve the social and environmental sustainability of public transportation. One of the major challenges that exist within such collaborative endeavors is power dynamics. As a result, a key focus of the study is on power relations. Practically, power relations should be observed over an extended period, specifically when the different stakeholders engage with each other, to reflect valid data. However, a lengthy data collection process was not possible to observe during the data collection phase of this research. Instead, interviews were conducted focusing on existing procedural planning practices between the inner-city minibus taxi association (South and North Beach Taxi Association), the eThekwini Transport Authority (ETA), and the eThekwini Town Planning Department. Conclusions and recommendations were then generated based on these data.

Keywords: collaborative planning, sustainability, public transport, minibus taxis

Procedia PDF Downloads 57
6972 The Social Impact of Green Buildings

Authors: Elise Machline

Abstract:

Policy instruments have been developed worldwide to reduce the energy demand of buildings. Two types of such instruments have been green building rating systems and energy efficiency standards for buildings -such as Green Star (Australia), LEED (United States, Leadership in Energy and Environmental Design), Energy Star (United States), and BREEAM (United Kingdom, Building Research Establishment Environmental Assessment Method). The popularity of the idea of sustainable development has allowed the actors to consider the potential value generated by the environmental performance of buildings, labeled “green value” in the literature. Sustainable performances of buildings are expected to improve their attractiveness, increasing their value. A growing number of empirical studies demonstrate that green buildings yield rental/sale premia, as well as higher occupancy rates and thus higher asset values. The results suggest that green buildings are not affordable to all and that their construction tends to have a gentrifying effect. An increasing number of countries are institutionalizing green strategies for affordable housing. In that sense, making green buildings affordable to all will depend on government policies. That research aims to investigate whether green building fosters inequality in Israel, under the banner of sustainability. The method is comparison (of the market value). This method involves comparing the green buildings sale prices with non-certified buildings of the same type that have undergone recent transactions. The “market value” is deduced from those sources by analogy. The results show that, in Israel, green building projects are usually addressed to the middle to upper classes. The green apartment’s sale premium is about 19% (comparing to non-certified dwelling). There is a link between energy and/or environmental performance and the financial value of the dwellings. Moreover, price differential is much higher than the value of energy savings. This perpetuates socio-spatial and socio-economic inequality as well as ecological vulnerability for the poor and other socially marginal groups. Moreover, there are no green affordable housings and the authorities do not subsidy green building or retrofitting.

Keywords: green building, gentrification, social housing, green value, green building certification

Procedia PDF Downloads 415
6971 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 72
6970 Oxygenation in Turbulent Flows over Block Ramps

Authors: Thendiyath Roshni, Stefano Pagliara

Abstract:

Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region.

Keywords: aeration, block ramps, oxygenation, turbulent flows

Procedia PDF Downloads 171
6969 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 116
6968 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 114
6967 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 82
6966 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 53
6965 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 285
6964 One Building at a Time for Tambak Lorok

Authors: Etika Sukma Adiyanti, H. N. Nurul Huda Putu Ekapraja, Gugun Gunawan

Abstract:

Global warming causes climate change and sea level rise. This is a threat for coastal regions, especially for coastal settlements with activities that are influenced by this natural phenomenon. Consequences are damage of houses, humid house environment, sustainability of the houses, obstructed economic activities and domestic works, disruption of sanitation facilities, lack of electricity, failure of transport system, psychological issues and other. Icons Tambak Lorok as 'Fisherman Village' is not something familiar to residents of the city of Semarang. Especially for the housewife who every day have to buy the ingredients high in protein and omega fish auction which is adjacent to the main street market in the village of Tambak Lorok. However, there are major problems that are being experienced by this small neighborhood. In fact, this issue includes seven infrastructure that should spoil the fishermen in activity with marine life. With this research, we will investigate water urbanism and climate change resiliency in Semarang, specifically the traditional fisher community of Tambak Lorok. We intend to find out how the local people in the fisher settlement Tambak Lorok deal with water urbanism, proverty and living with floods. So, we have a good solution for this problem, Floating Stage. We think that Tambak Lorok needs a new design for the common future. With this, One Building at A Time for Tambak Lorok, will be a good solution.

Keywords: fisher community, environment, climate change, settlement

Procedia PDF Downloads 212
6963 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 117
6962 The Role of Japan's Land-Use Planning in Farmland Conservation: A Statistical Study of Tokyo Metropolitan District

Authors: Ruiyi Zhang, Wanglin Yan

Abstract:

Strict land-use plan is issued based on city planning act for controlling urbanization and conserving semi-natural landscape. And the agrarian land resource in the suburbs has indispensable socio-economic value and contributes to the sustainability of the regional environment. However, the agrarian hinterland of metropolitan is witnessing severe farmland conversion and abandonment, while the contribution of land-use planning to farmland conservation remains unclear in those areas. Hypothetically, current land-use plan contributes to farmland loss. So, this research investigated the relationship between farmland loss and land-use planning at municipality level to provide base data for zoning in the metropolitan suburbs, and help to develop a sustainable land-use plan that will conserve the agrarian hinterland. As data and methods, 1) Farmland data of Census of Agriculture and Forestry for 2005 to 2015 and population data of 2015 and 2018 were used to investigate spatial distribution feathers of farmland loss in Tokyo Metropolitan District (TMD) for two periods: 2005-2010;2010-2015. 2) And the samples were divided by four urbanization facts. 3) DID data and zoning data for 2006 to 2018 were used to specify urbanization level of zones for describing land-use plan. 4) Then we conducted multiple regression between farmland loss, both abandonment and conversion amounts, and the described land-use plan in each of the urbanization scenario and in each period. As the results, the study reveals land-use plan has unignorable relation with farmland loss in the metropolitan suburbs at ward-city-town-village level. 1) The urban promotion areas planned larger than necessity and unregulated urbanization promote both farmland conversion and abandonment, and the effect weakens from inner suburbs to outer suburbs. 2) And the effect of land-use plan on farmland abandonment is more obvious than that on farmland conversion. The study advocates that, optimizing land-use plan will hopefully help the farmland conservation in metropolitan suburbs, which contributes to sustainable regional policy making.

Keywords: Agrarian land resource, land-use planning, urbanization level, multiple regression

Procedia PDF Downloads 144