Search results for: image and telemetric data
21860 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 20721859 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution
Authors: Al Omari Mohammed Ahmed
Abstract:
This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring
Procedia PDF Downloads 44321858 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys
Procedia PDF Downloads 18121857 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 24021856 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 21721855 Community Perception and Knowledge on Oral Cancer Screening Methods in Kuwait
Authors: Lavanya Dharmendran, Shenuka Singh, Sona Baburathanam
Abstract:
The aim of the study is to understand the level of awareness in a community of a specific region of Kuwait regarding oral cancer and its screening methods so as to enhance the uptake of oral cancer screening methods. This is a cross-sectional study comprising 100 adult participants residing in the governate of Farwaniya, Kuwait. Participants of above 18 years of both genders will be selected using convenience sampling. Data collection includes the administration of a self-administered questionnaire. The questionnaire comprises three sections, each section assessing the knowledge, attitudes and practices of the participants’ opinions about oral cancer and screening methods. Data will be analyzed using Humphris Oral Cancer Knowledge Scale. Inferential statistics will be done using Chi-Square or Fisher’s exact test for categorical data. A level of p<.05 will be established as being significant. All ethical considerations, such as respect for personal confidentiality and informed consent, will be applied in this study. This study revealed that although respondents were aware of the term oral cancer, more than half of the study participants were unaware of the symptoms associated with this condition. Smoking and alcohol were identified as risk factors for oral cancer, but the majority of participants did not identify the Human Papilloma Virus (HPV) as an added risk factor. This suggests a greater need for dental practitioners to include educational strategies in routine dental visits to ensure greater awareness of oral cancer.Keywords: oral cancer, oral screening, oral public health, oral health
Procedia PDF Downloads 7621854 Cultural Heritage, Manga, and Film: Japanese Tourism at Petit Trianon, Versailles
Authors: Denise C. I. Maior-Barron
Abstract:
This conference presentation proposes to discuss the Japanese tourist perception of Marie Antoinette, at the heritage site which represents the home par excellence of the last Queen of France: Petit Trianon, Versailles. The underpinning analysis has a two-fold aim of firstly identifying the elements that contributed at the said perception and secondly of placing this in the wider context of tabi (travel) culture. The contribution of the presentation lies in its relevance to the analysis of postmodern trends of Japanese travel culture in relation to the consumption of European cultural heritage, through an insight into Japanese contemporary perception of heritage sites and their associated historical figures subject to controversy. Based upon the author’s doctoral studies field research at Petit Trianon - survey led in situ between 2010-2012, applied with the questionnaire method on a total of 307 respondents out of which 53 Japanese nationals - the media sources that were revealed to have had a direct influence on these nationals’ perception of Marie Antoinette, were Riyoko Ikeda’s shōjo manga La Rose de Versailles (1972) and Sofia Coppola’s film Marie-Antoinette (2006). The interpretation of the survey results through an assessment of visitor discourse determined the research methodology to be qualitative as opposed to quantitative, thus what confirmed the empirical hypothesis of the survey was a pattern of perception instead of percentages. Consequently, the interpretation focused on the answers to the questions relating to the image of Marie Antoinette in relation to historical knowledge, cultural background and last but not least media influences.Keywords: cultural heritage, manga, film, tabi
Procedia PDF Downloads 44421853 Revitalization of Industrial Brownfields in Historical Districts
Authors: Adel Menchawy, Noha Labib
Abstract:
Many cities have quarters that confer on them sense of identity and place through its cultural history. They are often vital part of the cities charm and appeal, their functional and visual qualities are important to the city’s image and identity. Brownfield sites present an important part of our built landscape. They provide tangible and intangible links to our past and have great potential to play significant roles in the future of our cities, towns and rural environments. Brownfield sites are places that were previously industrial factories or areas that might have had waste kept at that location or been exposed to many types of hazards. Thus its redevelopment revitalizes and strengthens towns and communities as it helps in economic growth, builds community pride and protects public health and the environment Three case studies are discussed in this paper; the first one is the city of Sterling which was developed and revitalized entirely and became a city with identity after it was derelict, the Second is the city of Castlefield with was a place no one was eager to visit now it became a touristic area. And finally the city of Cleveland which adopted a strategy that transferred it from being a polluted, derelict place into a mixed use development city Brownfield revitalization offers a great opportunity to transfer the city from being derelict, useless and contaminated into a place where tourists would love to come. Also it will increase the economy of the place, increase the social level, it can improve energy efficiency, reduce natural consumption, clean air, water and land and take advantage of existing buildings and sites and transfers them into an adaptive reuse after being remediatedKeywords: Brownfield Revitalization, Sustainable Brownfield, Historical conservation, Adaptive reuse
Procedia PDF Downloads 26921852 Poverty Dynamics in Thailand: Evidence from Household Panel Data
Authors: Nattabhorn Leamcharaskul
Abstract:
This study aims to examine determining factors of the dynamics of poverty in Thailand by using panel data of 3,567 households in 2007-2017. Four techniques of estimation are employed to analyze the situation of poverty across households and time periods: the multinomial logit model, the sequential logit model, the quantile regression model, and the difference in difference model. Households are categorized based on their experiences into 5 groups, namely chronically poor, falling into poverty, re-entering into poverty, exiting from poverty and never poor households. Estimation results emphasize the effects of demographic and socioeconomic factors as well as unexpected events on the economic status of a household. It is found that remittances have positive impact on household’s economic status in that they are likely to lower the probability of falling into poverty or trapping in poverty while they tend to increase the probability of exiting from poverty. In addition, not only receiving a secondary source of household income can raise the probability of being a never poor household, but it also significantly increases household income per capita of the chronically poor and falling into poverty households. Public work programs are recommended as an important tool to relieve household financial burden and uncertainty and thus consequently increase a chance for households to escape from poverty.Keywords: difference in difference, dynamic, multinomial logit model, panel data, poverty, quantile regression, remittance, sequential logit model, Thailand, transfer
Procedia PDF Downloads 11921851 Factors Affecting Employee’s Effectiveness at Job in Banking Sectors of Pakistan
Authors: Sajid Aman
Abstract:
Jobs in the banking sector in Pakistan are perceived as very tough, due to which employee turnover is very high. However, the managerial role is very important in influencing employees’ attitudes toward their turnout. This paper explores the manager’s role in influencing employees’ effectiveness on the job. The paper adopted a pragmatic approach by combining both qualitative and quantitative data. The study employed an exploratory sequential strategy under a mixed-method research design. Qualitative data was analyzed using thematic analysis. Five major themes, such as the manager’s attitude towards employees, his leadership style, listening to employee’s personal problems, provision of personal loans without interest and future career prospects, emerged as key factors increasing employee’s effectiveness in the banking sector. The quantitative data revealed that a manager’s attitude, leadership style, availability to listen to employees’ personal problems, and future career prospects and listening to employee’s personal problems are strongly associated with employees’ effectiveness at the job. However, personal loan without interest was noted as having no significant association with employee’s effectiveness at the job. The study concludes manager’s role is more important in the effectiveness of the employees at their job in the banking sector. It is suggested that managers should have a positive attitude towards employees and give time to listening to employee’s problems, even personal ones.Keywords: banking sector, employee’s effectiveness, manager’s role, leadership style
Procedia PDF Downloads 3721850 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)
Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri
Abstract:
The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.Keywords: sig, geothermal, potenteil, temperature
Procedia PDF Downloads 46721849 An Overview of the Wind and Wave Climate in the Romanian Nearshore
Authors: Liliana Rusu
Abstract:
The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.Keywords: numerical simulations, Romanian nearshore, waves, wind
Procedia PDF Downloads 34621848 Impact of Geomagnetic Storm on Ionosphere
Authors: Affan Ahmed
Abstract:
This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling
Procedia PDF Downloads 1521847 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 19921846 The Studies of Client Requirements in Home Stay: A Case Study of Thailand
Authors: Kanamon Suwantada
Abstract:
The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy
Procedia PDF Downloads 31321845 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria
Authors: Salah Hadjout, Mohamed Zouidi
Abstract:
In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria
Procedia PDF Downloads 10621844 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.Keywords: palm oil, fatty acid, NIRS, regression
Procedia PDF Downloads 51021843 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 26321842 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries
Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna
Abstract:
Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling
Procedia PDF Downloads 25221841 Understanding and Addressing the Tuberculosis Notification Gap in Nepal
Authors: Lok Raj Joshi, Naveen Prakash Shah, Sharad Kumar Sharma, I. Ratna Bhattarai, Rajendra Basnet, Deepak Dahal, Bahagwan Maharjan, Seraphine Kaminsa
Abstract:
Context: Tuberculosis (TB) is a significant health issue in Nepal, a country with a high burden of the disease. Despite efforts to control TB, there is still a gap in the notification of TB cases, which hinders effective control and treatment. This paper aims to address this notification gap and proposes strategies to improve TB control in Nepal. Research Aim: The aim of this research is to understand and address the tuberculosis notification gap in Nepal. The focus is on enhancing the healthcare system, involving the private sector and communities, raising awareness, and addressing social determinants to achieve sustainable TB control. Methodology: The research methodology involved a review of existing epidemiological data and research studies related to TB in Nepal. Additionally, consultation with an expert group from the TB control program in Nepal provided insights into the current state of TB control and challenges in addressing the notification gap. Findings: The findings reveal that only 55% of TB cases were reported in 2022, indicating a significant notification gap. Of the reported cases, only 32% and 19% were referred by the private sector and community, respectively. Furthermore, 20% of diagnosed cases were not treated in the initial phase. The estimated number of cases of multidrug-resistant TB (MDR TB) was 2,800, suggesting a low diagnosis rate. Among the diagnosed MDR TB cases, only 60% were receiving treatment. Additionally, it was observed that 20% of diagnosed MDR TB cases were from India and not enrolling in TB treatment in Nepal, indicating a high rate of defaulters. Theoretical Importance: The study highlights the importance of adopting a holistic strategy to address the notification gap in TB cases in Nepal. It emphasizes the need to enhance healthcare infrastructure, raise awareness, involve the private sector and local communities, establish effective methods to trace initial defaulters, implement TB interventions in border regions, and mitigate the social stigma associated with the disease. Data Collection and Analysis Procedures: Data for this study was collected through a review of existing epidemiological data and research studies. The data were then analyzed to identify patterns, trends, and gaps in TB case notification in Nepal.Keywords: TB, tuberculosis, private sector, community, migrants, nepal
Procedia PDF Downloads 10421840 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making
Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab
Abstract:
Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning
Procedia PDF Downloads 35721839 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources
Authors: Amin Khamoosh, Hamed Faramarzifar
Abstract:
In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques
Procedia PDF Downloads 5921838 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems
Authors: Baba Mbaye
Abstract:
In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering
Procedia PDF Downloads 22221837 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia
Authors: Gaya Tridinanti
Abstract:
Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.Keywords: acquisition, enhancing, digital storytelling, English vocabulary
Procedia PDF Downloads 26221836 Analysis of the Relations between Obsessive Compulsive Symptoms and Anxiety Sensitivity in Adolescents: Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the predictive effect of anxiety sensitivity on obsessive compulsive symptoms. The sample of the study consists of 542 students selected with appropriate sampling method from the secondary and high schools in Erzurum city center. Obsessive Compulsive Inventory and Anxiety Sensitivity Index were used in the study to collect data. The data obtained through the study was analyzed with structural equation modeling. As a result of the study, it was determined that there is a significant relationship between obsessive Compulsive Disorder (OCD) and anxiety sensitivity. Anxiety sensitivity has direct and indirect meaningful effects on the latent variable of OCD in the sub-dimensions of doubting-checking, obsessing, hoarding, washing, ordering, and mental neutralizing, and also anxiety sensitivity is a significant predictor of obsessive compulsive symptoms.Keywords: obsession, compulsion, structural equation, anxiety sensitivity
Procedia PDF Downloads 54321835 Geological Structure as the Main Factor in Landslide Deployment in Purworejo District Central Java Province Indonesia
Authors: Hilman Agil Satria, Rezky Naufan Hendrawan
Abstract:
Indonesia is vulnerable to geological hazard because of its location in subduction zone and have tropical climate. Landslide is one of the most happened geological hazard in Indonesia, based on Indonesia Geospasial data, at least 194 landslides recorded in 2013. In fact, research location is placed as the third city that most happened landslide in Indonesia. Landslide caused damage of many houses and wrecked the road. The purpose of this research is to make a landslide zone therefore can be used as one of mitigation consideration. The location is in Bruno, Porworejo district Central Java Province Indonesia at 109.903 – 109.99 and -7.59 – -7.50 with 10 Km x 10 Km wide. Based on geological mapping result, the research location consist of Late Miocene sandstone and claystone, and Pleistocene volcanic breccia and tuff. Those landslide happened in the lithology that close with fault zone. This location has so many geological structures: joints, faults and folds. There are 3 thrust faults, 1 normal faults, 4 strike slip faults and 6 folds. This geological structure movement is interpreted as the main factor that has triggered landslide in this location. This research use field data as well as samples of rock, joint, slicken side and landslide location which is combined with DEM SRTM to analyze geomorphology. As the final result of combined data will be presented as geological map, geological structure map and landslide zone map. From this research we can assume that there is correlation between geological structure and landslide locations.Keywords: geological structure, landslide, Porworejo, Indonesia
Procedia PDF Downloads 28921834 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 8221833 Climate Change Vulnerability and Agrarian Communities: Insights from the Composite Vulnerability Index of Indian States of Andhra Pradesh and Karnataka
Authors: G. Sridevi, Amalendu Jyotishi, Sushanta Mahapatra, G. Jagadeesh, Satyasiba Bedamatta
Abstract:
Climate change is a main challenge for agriculture, food security and rural livelihoods for millions of people in India. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather conditions. Among India’s population of more than one billion people, about 68% are directly or indirectly involved in the agricultural sector. This sector is particularly vulnerable to present-day climate variability. In this contest this paper examines the Socio-economic and climate analytical study of the vulnerability index in Indian states of Andhra Pradesh and Karnataka. Using secondary data; it examines the vulnerability through five different sub-indicator of socio-demographic, agriculture, occupational, common property resource (CPR), and climate in respective states among different districts. Data used in this paper has taken from different sources, like census in India 2011, Directorate of Economics and Statistics of respective states governments. Rainfall data was collected from the India Meteorological Department (IMD). In order to capture the vulnerability from two different states the composite vulnerability index (CVI) was developed and used. This indicates the vulnerability situation of different districts under two states. The study finds that Adilabad district in Andhra Pradesh and Chamarajanagar in Karnataka had highest level of vulnerability while Hyderabad and Bangalore in respective states have least level of vulnerability.Keywords: vulnerability, agriculture, climate change, global warming
Procedia PDF Downloads 46121832 Barriers to Job Localization Policy in Private Sector: Case Study from Oman
Authors: Yahya Al Nahdi
Abstract:
Even though efforts to increase the participation of nationals in the workforce have been in place for more than a decade in the Sultanate of Oman, the results are not impressive. Citizens’ workforce participation – it is argued in the literature – is hindered by institutional, as well as attitudinal concerns. The purpose of this study was to determine barriers to Omanization (employment of Omani nationals) in the private sector as perceived by the senior managers in government and private sector. Data were collected predominantly through in-depth, semi-structured interviews with managers who directly deal with Omanization policies from both the public and private sector. Results from the data analysis have shown that the majority of participants acknowledged a work preference in the movement (public sector). The private sector employees' compensation and benefits package was perceived to be less attractive than that offered in the government (public sector). The negative perceptions (stereotypes) shared by expatriates regarding work attitudes and competencies of citizens in the local labour market was also overwhelmingly perceived as a major hindrance. Furthermore, institutional issues such as, ineffectiveness of rules and regulation regarding Omanization, inappropriate quota system and lack of public awareness towards private sector’s jobs, are also perceived problematic to successful Omanization. Finally, results from the data analysis were used in recommending strategies for potential consideration in the pursuit of a successful Omanization programme.Keywords: localization, job security, labour force structure, Omanization, private sector, public sector
Procedia PDF Downloads 40121831 Examining Litter Distributions in Lethbridge, Alberta, Canada, Using Citizen Science and GIS Methods: OpenLitterMap App and Story Maps
Authors: Tali Neta
Abstract:
Humans’ impact on the environment has been incredibly brutal, with enormous plastic- and other pollutants (e.g., cigarette buds, paper cups, tires) worldwide. On land, litter costs taxpayers a fortune. Most of the litter pollution comes from the land, yet it is one of the greatest hazards to marine environments. Due to spatial and temporal limitations, previous litter data covered very small areas. Currently, smartphones can be used to obtain information on various pollutants (through citizen science), and they can greatly assist in acknowledging and mitigating the environmental impact of litter. Litter app data, such as the Litterati, are available for study through a global map only; these data are not available for download, and it is not clear whether irrelevant hashtags have been eliminated. Instagram and Twitter open-source geospatial data are available for download; however, these are considered inaccurate, computationally challenging, and impossible to quantify. Therefore, the resulting data are of poor quality. Other downloadable geospatial data (e.g., Marine Debris Tracker8 and Clean Swell10) are focused on marine- rather than terrestrial litter. Therefore, accurate terrestrial geospatial documentation of litter distribution is needed to improve environmental awareness. The current research employed citizen science to examine litter distribution in Lethbridge, Alberta, Canada, using the OpenLitterMap (OLM) app. The OLM app is an application used to track litter worldwide, and it can mark litter locations through photo georeferencing, which can be presented through GIS-designed maps. The OLM app provides open-source data that can be downloaded. It also offers information on various litter types and “hot-spots” areas where litter accumulates. In this study, Lethbridge College students collected litter data with the OLM app. The students produced GIS Story Maps (interactive web GIS illustrations) and presented these to school children to improve awareness of litter's impact on environmental health. Preliminary results indicate that towards the Lethbridge Coulees’ (valleys) East edges, the amount of litter significantly increased due to shrubs’ presence, that acted as litter catches. As wind generally travels from west to east in Lethbridge, litter in West-Lethbridge often finds its way down in the east part of the coulees. The students’ documented various litter types, while the majority (75%) included plastic and paper food packaging. The students also found metal wires, broken glass, plastic bottles, golf balls, and tires. Presentations of the Story Maps to school children had a significant impact, as the children voluntarily collected litter during school recess, and they were looking into solutions to reduce litter. Further litter distribution documentation through Citizen Science is needed to improve public awareness. Additionally, future research will be focused on Drone imagery of highly concentrated litter areas. Finally, a time series analysis of litter distribution will help us determine whether public education through Citizen Science and Story Maps can assist in reducing litter and reaching a cleaner and healthier environment.Keywords: citizen science, litter pollution, Open Litter Map, GIS Story Map
Procedia PDF Downloads 83