Search results for: digital surface model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24294

Search results for: digital surface model

19044 Service Interactions Coordination Using a Declarative Approach: Focuses on Deontic Rule from Semantics of Business Vocabulary and Rules Models

Authors: Nurulhuda A. Manaf, Nor Najihah Zainal Abidin, Nur Amalina Jamaludin

Abstract:

Coordinating service interactions are a vital part of developing distributed applications that are built up as networks of autonomous participants, e.g., software components, web services, online resources, involve a collaboration between a diverse number of participant services on different providers. The complexity in coordinating service interactions reflects how important the techniques and approaches require for designing and coordinating the interaction between participant services to ensure the overall goal of a collaboration between participant services is achieved. The objective of this research is to develop capability of steering a complex service interaction towards a desired outcome. Therefore, an efficient technique for modelling, generating, and verifying the coordination of service interactions is developed. The developed model describes service interactions using service choreographies approach and focusing on a declarative approach, advocating an Object Management Group (OMG) standard, Semantics of Business Vocabulary and Rules (SBVR). This model, namely, SBVR model for service choreographies focuses on a declarative deontic rule expressing both obligation and prohibition, which can be more useful in working with coordinating service interactions. The generated SBVR model is then be formulated and be transformed into Alloy model using Alloy Analyzer for verifying the generated SBVR model. The transformation of SBVR into Alloy allows to automatically generate the corresponding coordination of service interactions (service choreography), hence producing an immediate instance of execution that satisfies the constraints of the specification and verifies whether a specific request can be realised in the given choreography in the generated choreography.

Keywords: service choreography, service coordination, behavioural modelling, complex interactions, declarative specification, verification, model transformation, semantics of business vocabulary and rules, SBVR

Procedia PDF Downloads 159
19043 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 400
19042 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 146
19041 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa

Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka

Abstract:

Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.

Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise

Procedia PDF Downloads 209
19040 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study

Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung

Abstract:

Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.

Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification

Procedia PDF Downloads 307
19039 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.

Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle

Procedia PDF Downloads 494
19038 Exploring the Effect of Using Lesh Model in Enhancing Prospective Mathematics Teachers’ Number Sense

Authors: Areej Isam Barham

Abstract:

Developing students’ number sense is an essential element in the learning of mathematics. Number sense is one of the foundational ideas in mathematics where students need to understand numbers, representing them in different ways, and realize the relationships among numbers. Number sense also reflects students’ understanding of the meaning of operations, how they related to one another, how to compute fluently and make reasonable estimates. Developing students’ number sense in the mathematics classroom requires good preparation for mathematics teachers, those who will direct their students towards the real understanding of numbers and its implementation in the learning of mathematics. This study describes the development of elementary prospective mathematics teachers’ number sense through a mathematics teaching methods course at Qatar University. The study examined the effect of using the Lesh model in enhancing mathematics prospective teachers’ number sense. Thirty-nine elementary prospective mathematics teachers involved in the current study. The study followed an experimental research approach, and quantitative research methods were used to answer the research questions. Pre-post number sense test was constructed and implemented before and after teaching by using the Lesh model. Data were analyzed using Statistical Packages for Social Sciences (SPSS). Descriptive data analysis and t-test were used to examine the impact of using the Lesh model in enhancing prospective teachers’ number sense. Finding of the study indicated poor number sense and limited numeracy skills before implementing the use of the Lesh model, which highly demonstrate the importance of the study. The results of the study also revealed a positive impact on the use of the Lesh model in enhancing prospective teachers’ number sense with statistically significant differences. The discussion of the study addresses different features and issues related to the participants’ number sense. In light of the study, the research presents recommendations and suggestions for the future development of mathematics prospective teachers’ number sense.

Keywords: number sense, Lesh model, prospective mathematics teachers, development of number sense

Procedia PDF Downloads 144
19037 Chemical Partitioning of Trace Metals in Sub-Surface Sediments of Lake Acigol, Denizli, Turkey

Authors: M. Budakoglu, M. Karaman, D. Kiran, Z. Doner, B. Zeytuncu, B. Tanç, M. Kumral

Abstract:

Lake Acıgöl is one of the large saline lacustrine environment in Turkey. Eleven trace metals (Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Cd, Pb and As) in 9 surface and subsurface sediment samples from the Lake Acıgöl were analyzed with the bulk and sequential extraction analysis methods by ICP-MS to obtain the metal distribution patterns in this extreme environment. Five stepped sequential extraction technique (1- exchangeable, 2- bond to carbonates, 3- bond to iron and manganese oxides/hydroxides, 4- bond to organic matter and sulphides, and 5- residual fraction incorporated into clay and silicate mineral lattices) was used to characterize the various forms of metals in the <63μ size sediments. The metal contents (ppm) and their percentages for each extraction step were reported and compared with the results obtained from the total digestion. Results indicate that sum of the four fraction are in good agreement with the total digestion results of Ni, Cd, As, Zn, Cu and Fe with the satisfactory recoveries (94.04–109.0%) and the method used is reliable and repeatable for these elements. It was found that there were high correlations between Fe vs. Ni loads in the fraction of F2 and F4 with R2= 0,91 and 0,81, respectively. Comparison of totally 135 chemical analysis results in three sampling location and for 5 fraction between Fe-Co, Co-Ni and Fe-Ni element couples were presented elevated correlations with R2=0,98, 0,92 and 0,91, respectively.

Keywords: Lake Acigol, sequancial extraction, recent lake sediment, geochemical speciation of heavy metals

Procedia PDF Downloads 418
19036 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 56
19035 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 93
19034 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 94
19033 Discrete Element Method Simulation of Crushable Pumice Sand

Authors: Sayed Hessam Bahmani, Rolsndo P. Orense

Abstract:

From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen.

Keywords: pumice sand, triaxial compression, simulation, particle breakage

Procedia PDF Downloads 252
19032 Estimation of Adult Patient Doses for Chest X-Ray Diagnostic Examinations in a Tertiary Institution Health Centre

Authors: G. E. Okungbowa, H. O. Adams, S. E. Eze

Abstract:

This study is on the estimation of adult patient doses for Chest X-ray diagnostic examinations of new admitted undergraduate students attending a tertiary institution health centre as part of their routine clearance and check up on admitted into the institution. A total of 531 newly admitted undergraduate students were recruited for this survey in the first quarter of 2016 (January to March, 2016). CALDOSE_X 5.0 software was used to compute the Entrance Surface Dose (ESD) and Effective Dose (ED); while the Statistical Package for Social Sciences (SPSS) version 21.0 was used to carry out the statistical analyses. The basic patients' data and exposure parameters required for the software are age, sex, examination type, projection posture, tube potential and current-time product. The mean Entrance Surface Dose and Effective Doses of the undergraduate students were calculated using the software, and the values were compared with existing literature and internationally established diagnostic reference levels. The mean ESD calculated is 0.29 mGy, and the mean effective dose is 0.04 mSv. The values of ESD and ED obtained are below the internationally established diagnostic reference levels, which could be attributed to good radiographic techniques employed during the chest X-ray procedure for these students.

Keywords: x-ray, dose, examination, chest

Procedia PDF Downloads 188
19031 An Application of the Single Equation Regression Model

Authors: S. K. Ashiquer Rahman

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: price, domestic output, GNP, trend variable, wildcat activity

Procedia PDF Downloads 66
19030 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia

Abstract:

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.

Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic

Procedia PDF Downloads 300
19029 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 443
19028 A Study on the Performance Improvement of Zeolite Catalyst for Endothermic Reaction

Authors: Min Chang Shin, Byung Hun Jeong, Jeong Sik Han, Jung Hoon Park

Abstract:

In modern times, as flight speeds have increased due to improvements in aircraft and missile engine performance, thermal loads have also increased. Because of the friction heat of air flow with high speed on the surface of the vehicle, it is not easy to cool the superheat of the vehicle by the simple air cooling method. For this reason, a cooling method through endothermic heat is attracting attention by using a fuel that causes an endothermic reaction in a high-speed vehicle. There are two main ways of cooling the fuel through the endothermic reaction. The first is physical heat absorption. When the temperature rises, there is a sensible heat that accompanies it. The second is the heat of reaction corresponding to the chemical heat absorption, which absorbs heat during the fuel decomposes. Generally, since the decomposition reaction of the fuel proceeds at a high temperature, it does not achieve a great efficiency in cooling the high-speed flight body. However, when the catalyst is used, decomposition proceeds at a low temperature thereby increasing the cooling efficiency. However, when the catalyst is used as a powder, the catalyst enters the engine and damages the engine or the catalyst can deteriorate the performance due to the sintering. On the other hand, when used in the form of pellets, catalyst loss can be prevented. However, since the specific surface of pellet is small, the efficiency of the catalyst is low. And it can interfere with the flow of fuel, resulting in pressure loss and problems with fuel injection. In this study, we tried to maximize the performance of the catalyst by preparing a hollow fiber type pellet for zeolite ZSM-5, which has a higher amount of heat absorption, than other conventional pellets. The hollow fiber type pellet was prepared by phase inversion method. The hollow fiber type pellet has a finger-like pore and sponge-like pore. So it has a higher specific surface area than conventional pellets. The crystal structure of the prepared ZSM-5 catalyst was confirmed by XRD, and the characteristics of the catalyst were analyzed by TPD/TPR device. This study was conducted as part of the Basic Research Project (Pure-17-20) of Defense Acquisition Program Administration.

Keywords: catalyst, endothermic reaction, high-speed vehicle cooling, zeolite, ZSM-5

Procedia PDF Downloads 316
19027 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water

Authors: Zohreh Rashmei

Abstract:

Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.

Keywords: plasma, hydrogen peroxide, disinfection, E. coli

Procedia PDF Downloads 146
19026 Effect of Installation of Long Cylindrical External Store on Performance, Stability, Control and Handling Qualities of Light Transport Aircraft

Authors: Ambuj Srivastava, Narender Singh

Abstract:

This paper presents the effect of installation of cylindrical external store on the performance, stability, control and handling qualities of light transport category aircraft. A pair of long cylindrical store was installed symmetrically on either side of the fuselage (port and starboard) ahead of the wing and below the fuselage bottom surface running below pilot and co-pilot window. The cylindrical store was installed as hanging from aircraft surface through specially designed brackets. The adjoining structure was sufficiently reinforced for bearing aerodynamic loads. The length to diameter ratio of long cylindrical store was ~20. Based on academic studies and flow simulation analysis, a considerable detrimental effect on single engine second segment climb performance was found which was later validated through extensive flight testing exercise. The methodology of progressive flight envelope opening was adopted. The certification was sought from Regional airworthiness authorities and for according approval.

Keywords: second segment climb, maximum operating speed, cruise performance (single engine and twin engine), minimum control speed, and additional trim required

Procedia PDF Downloads 236
19025 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique

Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade

Abstract:

In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.

Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique

Procedia PDF Downloads 267
19024 Effect of Extrusion Parameters on the Rheological Properties of Ready-To-Eat Extrudates Developed from De-Oiled Rice Bran

Authors: Renu Sharma, D. C. Saxena, Tanuja Srivastava

Abstract:

Mechanical properties of ready-to-eat extrudates are perceived by the consumers as one of the quality criteria. Texture quality of any product has a strong influence on the sensory evaluation as well as on the acceptability of the product. The main texture characteristics influencing the product acceptability are crispness, elasticity, hardness and softness. In the present work, the authors investigated one of the most important textural characteristics of extrudates i.e. hardness. A five-level, four-factor central composite rotatable design was employed to investigate the effect of temperature, screw speed, feed moisture content and feed composition mainly rice bran content and their interactions, on the mechanical hardness of extrudates. Among these, feed moisture was found to be a prominent factor affecting the product hardness. It was found that with the increase of feed moisture content, the rice bran proportion leads to increase in hardness of extrudates whereas the increase of temperature leads to decrease of hardness of product. A good agreement between the predicted (26.49 N) and actual value (28.73N) of the response confirms the validation of response surface methodology (RSM)-model.

Keywords: deoiled rice bran, extrusion, rheological properties, RSM

Procedia PDF Downloads 378
19023 Building Information Modeling Applied for the Measurement of Water Footprint of Construction Supplies

Authors: Julio Franco

Abstract:

Water is used, directly and indirectly, in all activities of the construction productive chain, making it a subject of worldwide relevance for sustainable development. The ongoing expansion of urban areas leads to a high demand for natural resources, which in turn cause significant environmental impacts. The present work proposes the application of BIM tools to assist the measurement of the water footprint (WF) of civil construction supplies. Data was inserted into the model as element properties, allowing them to be analyzed by element or in the whole model. The WF calculation was automated using parameterization in Autodesk Revit software. Parameterization was associated to the materials of each element in the model so that any changes in these elements directly alter the results of WF calculations. As a case study, we applied into a building project model to test the parameterized calculus of WF. Results show that the proposed parameterization successfully automated WF calculations according to design changes. We envision this tool to assist the measurement and rationalization of the environmental impact in terms of WF of construction projects.

Keywords: building information modeling, BIM, sustainable development, water footprint

Procedia PDF Downloads 152
19022 Operation Cycle Model of ASz62IR Radial Aircraft Engine

Authors: M. Duk, L. Grabowski, P. Magryta

Abstract:

Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under

Keywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine

Procedia PDF Downloads 296
19021 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification

Procedia PDF Downloads 282
19020 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favourable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: thermophoresis, porous medium, variable surface heat flux, heat transfer

Procedia PDF Downloads 205
19019 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 219
19018 LORA: A Learning Outcome Modelling Approach for Higher Education

Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga

Abstract:

To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.

Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling

Procedia PDF Downloads 191
19017 Model of Application of Blockchain Technology in Public Finances

Authors: M. Vlahovic

Abstract:

This paper presents a model of public finances, which combines three concepts: participatory budgeting, crowdfunding and blockchain technology. Participatory budgeting is defined as a process in which community members decide how to spend a part of community’s budget. Crowdfunding is a practice of funding a project by collecting small monetary contributions from a large number of people via an Internet platform. Blockchain technology is a distributed ledger that enables efficient and reliable transactions that are secure and transparent. In this hypothetical model, the government or authorities on local/regional level would set up a platform where they would propose public projects to citizens. Citizens would browse through projects and support or vote for those which they consider justified and necessary. In return, they would be entitled to a tax relief in the amount of their monetary contribution. Since the blockchain technology enables tracking of transactions, it can be used to mitigate corruption, money laundering and lack of transparency in public finances. Models of its application have already been created for e-voting, health records or land registries. By presenting a model of application of blockchain technology in public finances, this paper takes into consideration the potential of blockchain technology to disrupt governments and make processes more democratic, secure, transparent and efficient. The framework for this paper consists of multiple streams of research, including key concepts of direct democracy, public finance (especially the voluntary theory of public finance), information and communication technology, especially blockchain technology and crowdfunding. The framework defines rules of the game, basic conditions for the implementation of the model, benefits, potential problems and development perspectives. As an oversimplified map of a new form of public finances, the proposed model identifies primary factors, that influence the possibility of implementation of the model, and that could be tracked, measured and controlled in case of experimentation with the model.

Keywords: blockchain technology, distributed ledger, participatory budgeting, crowdfunding, direct democracy, internet platform, e-government, public finance

Procedia PDF Downloads 155
19016 Facility Anomaly Detection with Gaussian Mixture Model

Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho

Abstract:

Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.

Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm

Procedia PDF Downloads 277
19015 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database

Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan

Abstract:

Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.

Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database

Procedia PDF Downloads 582