Search results for: RLS identification algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6328

Search results for: RLS identification algorithm

1108 A Comparative Analysis of Innovation Maturity Models: Towards the Development of a Technology Management Maturity Model

Authors: Nikolett Deutsch, Éva Pintér, Péter Bagó, Miklós Hetényi

Abstract:

Strategic technology management has emerged and evolved parallelly with strategic management paradigms. It focuses on the opportunity for organizations operating mainly in technology-intensive industries to explore and exploit technological capabilities upon which competitive advantage can be obtained. As strategic technology management involves multifunction within an organization, requires broad and diversified knowledge, and must be developed and implemented with business objectives to enable a firm’s profitability and growth, excellence in strategic technology management provides unique opportunities for organizations in terms of building a successful future. Accordingly, a framework supporting the evaluation of the technological readiness level of management can significantly contribute to developing organizational competitiveness through a better understanding of strategic-level capabilities and deficiencies in operations. In the last decade, several innovation maturity assessment models have appeared and become designated management tools that can serve as references for future practical approaches expected to be used by corporate leaders, strategists, and technology managers to understand and manage technological capabilities and capacities. The aim of this paper is to provide a comprehensive review of the state-of-the-art innovation maturity frameworks, to investigate the critical lessons learned from their application, to identify the similarities and differences among the models, and identify the main aspects and elements valid for the field and critical functions of technology management. To this end, a systematic literature review was carried out considering the relevant papers and articles published in highly ranked international journals around the 27 most widely known innovation maturity models from four relevant digital sources. Key findings suggest that despite the diversity of the given models, there is still room for improvement regarding the common understanding of innovation typologies, the full coverage of innovation capabilities, and the generalist approach to the validation and practical applicability of the structure and content of the models. Furthermore, the paper proposes an initial structure by considering the maturity assessment of the technological capacities and capabilities - i.e., technology identification, technology selection, technology acquisition, technology exploitation, and technology protection - covered by strategic technology management.

Keywords: innovation capabilities, innovation maturity models, technology audit, technology management, technology management maturity models

Procedia PDF Downloads 61
1107 Dermatophytoses: Spectrum Evolution of Dermatophytes in Sfax, Tunisia, Between 1999 and 2019

Authors: Khemakhem Nahed, Hammami Fatma, Trabelsi Houaida, Neji Sourour, Sellami Hayet, Makni Fattouma, Turki Hamida, Ayadi Ali

Abstract:

Dermatophytoses are considered a public health problem and represent 10% of dermatological consultations in our region. Their epidemiology is influenced by various factors, such as lifestyle, human migration patterns, changes in the environment and the host relationship. The understanding of epidemiology has a major impact on their prevention and treatment. The aim of the study is to determine the prevalence pattern of aetiological agents and to describe the clinical characteristics of dermatophytoses between 1999 and 2019. Out of 65 059 subjects suspected to have superficial mycoses, 36 220 (55.67%) were affected with dermatophytoses. The mean age was 40.1 years (range: 10 days to 99 years). The sex ratio was 0.8. Our patients were from urban regions in 80.9% of cases. The most common type of infection was onychomycosis (42.64%), followed by tinea pedis (20.8%), intertrigo (18.3%), tinea corporis (8.48%) and tinea capitis (7.87%). The most isolated dermatophyte was Trichophyton rubrum (76.5%), followed by T. mentagrophytes complex (6.3%), Microsporum canis (5.8%), T. violaceum (5.3%), T. verrucosum (0.83%) and Epidermophyton floccosum (0.3%). Zoophilic agents have become more prevalent and their frequency has been increased from 6.46% in 1999 to 13% in 2019. It is interesting to note that M. canis has been on the rise since 2010 and it was the first etiological agent of tinea capitis (48%), while infections caused by T. violaceum continued to decrease from 1999 (16.2%) to 2019 (4.7%). Other dermatophytes have been rarely isolated: T. tonsurans (9 cases), T. schoenleinii (3 cases), T. soudanense (2 cases), M. fulvum (1 case), M. audouinii (1 case) and M. ferrugineum (2 cases).T. mentagrophytes var. quinckeanum was isolated from an inflammatory tinea capitis lesion in an a-3-year-old girl. T. mentagrophytes var. erinacei was isolated from the first case of tinea manuum, in-a-10-year-old girl. The same fungus was isolated from the hair and scales of the hedgehog. Our study showed significant changes in the dermatophytes spectrum in our region. The prevalence of zoophilic species increased in recent years due to people's behavioral changes with the adoption of pets and animal husbandry in urban settings. Molecular methods are often crucial that help us to refine the identification strains of dermatophytes and to identify their origin of the contamination.

Keywords: dermatophytoses, PCR-sequencing, spectrum, Sfax, Tunisia

Procedia PDF Downloads 113
1106 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem

Authors: Bidzina Matsaberidze

Abstract:

It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.

Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions

Procedia PDF Downloads 92
1105 West Nile Virus in North-Eastern Italy: Overview of Integrated Surveillance Activities

Authors: Laura Amato, Paolo Mulatti, Fabrizio Montarsi, Matteo Mazzucato, Laura Gagliazzo, Michele Brichese, Manlio Palei, Gioia Capelli, Lebana Bonfanti

Abstract:

West Nile virus (WNV) re-emerged in north-eastern Italy in 2008, after ten years from its first appearance in Tuscany. In 2009, a national surveillance programme was implemented, and re-modulated in north-eastern Italy in 2011. Hereby, we present the results of surveillance activities in 2008-2016 in the north-eastern Italian regions, with inferences on WNV epidemiological trend in the area. The re-modulated surveillance programmes aimed at early detecting WNV seasonal reactivation by searching IgM antibodies in horses. In 2013, the surveillance plans were further modified including a risk-based approach. Spatial analysis techniques, including Bernoulli space-time scan-statistics, were applied to the results of 2010–2012 surveillance on mosquitoes, equines, and humans to identify areas where WNV reactivation was more likely to occur. From 2008 to 2016, residential horses tested positive for anti-WNV antibodies on a yearly basis (503 cases), also in areas where WNV circulation was not detected in mosquito populations. Surveillance activities detected 26 syndromic cases in horses, 102 infected mosquito pools and WNV in 18 dead wild birds. Human cases were also recurrently detected in the study area during the surveillance period (68 cases of West Nile neuroinvasive disease). The recurrent identification of WNV in animals, mosquitoes, and humans indicates the virus has likely become endemic in the area. In 2016, findings of WNV positives in horses or mosquitoes were included as triggers for enhancing screening activities in humans. The evolution of the epidemiological situation prompts for continuous and accurate surveillance measures. The results of the 2013-2016 surveillance indicate that the risk-based approach was effective in early detecting seasonal reactivation of WNV, key factor of the integrated surveillance strategy in endemic areas.

Keywords: arboviruses, horses, Italy, surveillance, west nile virus, zoonoses

Procedia PDF Downloads 358
1104 Defining Unconventional Hydrocarbon Parameter Using Shale Play Concept

Authors: Rudi Ryacudu, Edi Artono, Gema Wahyudi Purnama

Abstract:

Oil and gas consumption in Indonesia is currently on the rise due to its nation economic improvement. Unfortunately, Indonesia’s domestic oil production cannot meet it’s own consumption and Indonesia has lost its status as Oil and Gas exporter. Even worse, our conventional oil and gas reserve is declining. Unwilling to give up, the government of Indonesia has taken measures to invite investors to invest in domestic oil and gas exploration to find new potential reserve and ultimately increase production. Yet, it has not bear any fruit. Indonesia has taken steps now to explore new unconventional oil and gas play including Shale Gas, Shale Oil and Tight Sands to increase domestic production. These new plays require definite parameters to differentiate each concept. The purpose of this paper is to provide ways in defining unconventional hydrocarbon reservoir parameters in Shale Gas, Shale Oil and Tight Sands. The parameters would serve as an initial baseline for users to perform analysis of unconventional hydrocarbon plays. Some of the on going concerns or question to be answered in regards to unconventional hydrocarbon plays includes: 1. The TOC number, 2. Has it been well “cooked” and become a hydrocarbon, 3. What are the permeability and the porosity values, 4. Does it need a stimulation, 5. Does it has pores, and 6. Does it have sufficient thickness. In contrast with the common oil and gas conventional play, Shale Play assumes that hydrocarbon is retained and trapped in area with very low permeability. In most places in Indonesia, hydrocarbon migrates from source rock to reservoir. From this case, we could derive a theory that Kitchen and Source Rock are located right below the reservoir. It is the starting point for user or engineer to construct basin definition in relation with the tectonic play and depositional environment. Shale Play concept requires definition of characteristic, description and reservoir identification to discover reservoir that is technically and economically possible to develop. These are the steps users and engineers has to do to perform Shale Play: a. Calculate TOC and perform mineralogy analysis using water saturation and porosity value. b. Reconstruct basin that accumulate hydrocarbon c. Brittlenes Index calculated form petrophysical and distributed based on seismic multi attributes d. Integrated natural fracture analysis e. Best location to place a well.

Keywords: unconventional hydrocarbon, shale gas, shale oil tight sand reservoir parameters, shale play

Procedia PDF Downloads 406
1103 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 63
1102 Barnard Feature Point Detector for Low-Contractperiapical Radiography Image

Authors: Chih-Yi Ho, Tzu-Fang Chang, Chih-Chia Huang, Chia-Yen Lee

Abstract:

In dental clinics, the dentists use the periapical radiography image to assess the effectiveness of endodontic treatment of teeth with chronic apical periodontitis. Periapical radiography images are taken at different times to assess alveolar bone variation before and after the root canal treatment, and furthermore to judge whether the treatment was successful. Current clinical assessment of apical tissue recovery relies only on dentist personal experience. It is difficult to have the same standard and objective interpretations due to the dentist or radiologist personal background and knowledge. If periapical radiography images at the different time could be registered well, the endodontic treatment could be evaluated. In the image registration area, it is necessary to assign representative control points to the transformation model for good performances of registration results. However, detection of representative control points (feature points) on periapical radiography images is generally very difficult. Regardless of which traditional detection methods are practiced, sufficient feature points may not be detected due to the low-contrast characteristics of the x-ray image. Barnard detector is an algorithm for feature point detection based on grayscale value gradients, which can obtain sufficient feature points in the case of gray-scale contrast is not obvious. However, the Barnard detector would detect too many feature points, and they would be too clustered. This study uses the local extrema of clustering feature points and the suppression radius to overcome the problem, and compared different feature point detection methods. In the preliminary result, the feature points could be detected as representative control points by the proposed method.

Keywords: feature detection, Barnard detector, registration, periapical radiography image, endodontic treatment

Procedia PDF Downloads 442
1101 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 32
1100 Teacher-Student Interactions: Case-Control Studies on Teacher Social Skills and Children’s Behavior

Authors: Alessandra Turini Bolsoni-Silva, Sonia Regina Loureiro

Abstract:

It is important to evaluate such variables simultaneously and differentiating types of behavior problems: internalizing, externalizing and with comorbidity of internalizing and externalizing. The objective was to compare, correlate and predict teacher educational practices (educational social skills and negative practices) and children's behaviors (social skills and behavior problems) of children with internalizing, externalizing and combined internalizing and externalizing problems, controlling variables of child (gender and education). A total of 262 children were eligible to compose the participants, considering preschool age from 3 to 5 years old (n = 109) and school age from 6 to 11 (n = 153) years old, and their teachers who were distributed, in designs case-control, non-clinical, with internalizing, externalizing problems and internalizing and externalizing comorbidity, using the Teacher's Report Form (TRF) as a criterion. The instruments were applied with the teachers, after consent from the parents/guardians: a) Teacher’s Report Form (TRF); b) Educational Social Skills Interview Guide for Teachers (RE-HSE-Pr); (c) Socially Skilled Response Questionnaire – Teachers (QRSH-Pr). The data were treated by univariate and multivariate analyses, proceeding with comparisons, correlations and predictions regarding the outcomes of children with and without behavioral problems, considering the types of problems. As main results stand out: (a) group comparison studies: in the Inter group there is emphasis on behavior problems in affection interactions, which does not happen in the other groups; as for positive practices, they discriminate against groups with externalizing and combined problems and not in internalizing ones, positive educational practices – hse are more frequent in the G-Exter and G-Inter+Exter groups; negative practices differed only in the G-Exter and G-Inter+Exter groups; b) correlation studies: it can be seen that the Inter+Exter group presents a greater number of correlations in the relationship between behavioral problems/complaints and negative practices and between children's social skills and positive practices/contexts; c) prediction studies: children's social skills predict internalizing, externalizing and combined problems; it is also verified that the negative practices are in the multivariate model for the externalizing and combined ones. This investigation collaborates in the identification of risk and protective factors for specific problems, helping in interventions for different problems.

Keywords: development, educational practices, social skills, behavior problems, teacher

Procedia PDF Downloads 92
1099 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters

Authors: Iveta Bryjova

Abstract:

Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.

Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity

Procedia PDF Downloads 304
1098 12 Real Forensic Caseworks Solved by the DNA STR-Typing of Skeletal Remains Exposed to Extremely Environment Conditions without the Conventional Bone Pulverization Step

Authors: Chiara Della Rocca, Gavino Piras, Andrea Berti, Alessandro Mameli

Abstract:

DNA identification of human skeletal remains plays a valuable role in the forensic field, especially in missing persons and mass disaster investigations. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because they are often the only biological materials remaining. However, the major limitation of using these compact samples relies on the extremely time–consuming and labor–intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step. In this context, a DNA extraction assay called the TBone Ex kit (DNA Chip Research Inc.) was developed to digest bone chips without powdering. Here, we simultaneously analyzed bone and tooth samples that arrived at our police laboratory and belonged to 15 different forensic casework that occurred in Sardinia (Italy). A total of 27 samples were recovered from different scenarios and were exposed to extreme environmental factors, including sunlight, seawater, soil, fauna, vegetation, and high temperature and humidity. The TBone Ex kit was used prior to the EZ2 DNA extraction kit on the EZ2 Connect Fx instrument (Qiagen), and high-quality autosomal and Y-chromosome STRs profiles were obtained for the 80% of the caseworks in an extremely short time frame. This study provides additional support for the use of the TBone Ex kit for digesting bone fragments/whole teeth as an effective alternative to pulverization protocols. We empirically demonstrated the effectiveness of the kit in processing multiple bone samples simultaneously, largely simplifying the DNA extraction procedure and the good yield of recovered DNA for downstream genetic typing in highly compromised forensic real specimens. In conclusion, this study turns out to be extremely useful for forensic laboratories, to which the various actors of the criminal justice system – such as potential jury members, judges, defense attorneys, and prosecutors – required immediate feedback.

Keywords: DNA, skeletal remains, bones, tbone ex kit, extreme conditions

Procedia PDF Downloads 45
1097 Analysing Trends in Rice Cropping Intensity and Seasonality across the Philippines Using 14 Years of Moderate Resolution Remote Sensing Imagery

Authors: Bhogendra Mishra, Andy Nelson, Mirco Boschetti, Lorenzo Busetto, Alice Laborte

Abstract:

Rice is grown on over 100 million hectares in almost every country of Asia. It is the most important staple crop for food security and has high economic and cultural importance in Asian societies. The combination of genetic diversity and management options, coupled with the large geographic extent means that there is a large variation in seasonality (when it is grown) and cropping intensity (how often it is grown per year on the same plot of land), even over relatively small distances. Seasonality and intensity can and do change over time depending on climatic, environmental and economic factors. Detecting where and when these changes happen can provide information to better understand trends in regional and even global rice production. Remote sensing offers a unique opportunity to estimate these trends. We apply the recently published PhenoRice algorithm to 14 years of moderate resolution remote sensing (MODIS) data (utilizing 250m resolution 16 day composites from Terra and Aqua) to estimate seasonality and cropping intensity per year and changes over time. We compare the results to the surveyed data collected by International Rice Research Institute (IRRI). The study results in a unique and validated dataset on the extent and change of extent, the seasonality and change in seasonality and the cropping intensity and change in cropping intensity between 2003 and 2016 for the Philippines. Observed trends and their implications for food security and trade policies are also discussed.

Keywords: rice, cropping intensity, moderate resolution remote sensing (MODIS), phenology, seasonality

Procedia PDF Downloads 306
1096 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 33
1095 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
1094 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 86
1093 Distance Learning and Modern Challenges of Education Management in Georgia

Authors: Giorgi Gaganidze, Eter Kharaishvili

Abstract:

The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.

Keywords: distance learning, management challenges, education management, innovative management

Procedia PDF Downloads 125
1092 Harmonic Assessment and Mitigation in Medical Diagonesis Equipment

Authors: S. S. Adamu, H. S. Muhammad, D. S. Shuaibu

Abstract:

Poor power quality in electrical power systems can lead to medical equipment at healthcare centres to malfunction and present wrong medical diagnosis. Equipment such as X-rays, computerized axial tomography, etc. can pollute the system due to their high level of harmonics production, which may cause a number of undesirable effects like heating, equipment damages and electromagnetic interferences. The conventional approach of mitigation uses passive inductor/capacitor (LC) filters, which has some drawbacks such as, large sizes, resonance problems and fixed compensation behaviours. The current trends of solutions generally employ active power filters using suitable control algorithms. This work focuses on assessing the level of Total Harmonic Distortion (THD) on medical facilities and various ways of mitigation, using radiology unit of an existing hospital as a case study. The measurement of the harmonics is conducted with a power quality analyzer at the point of common coupling (PCC). The levels of measured THD are found to be higher than the IEEE 519-1992 standard limits. The system is then modelled as a harmonic current source using MATLAB/SIMULINK. To mitigate the unwanted harmonic currents a shunt active filter is developed using synchronous detection algorithm to extract the fundamental component of the source currents. Fuzzy logic controller is then developed to control the filter. The THD without the active power filter are validated using the measured values. The THD with the developed filter show that the harmonics are now within the recommended limits.

Keywords: power quality, total harmonics distortion, shunt active filters, fuzzy logic

Procedia PDF Downloads 479
1091 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants

Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny

Abstract:

This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.

Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition

Procedia PDF Downloads 105
1090 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 247
1089 One Step Further: Pull-Process-Push Data Processing

Authors: Romeo Botes, Imelda Smit

Abstract:

In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.

Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list

Procedia PDF Downloads 244
1088 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia Coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Northern Ethiopia

Authors: Haftay Abraha Tadesse, Dawit Gebreegziabiher Hagos, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader

Abstract:

Background: Salmonella species and Escherichia coli (E. coli) are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Method: A cross-sectional study was conducted from January to December 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli. Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI:(4.69 27.10) were associated with overall bacterial contamination. About 100% of the tested isolates were sensitive to ciprofloxacin, gentamicin, Co trimoxazole , sulphamethoxazole, ceftriaxone, and trimethoprim and ciprofloxacin, gentamicin, and norfloxacine of E. coli and Salmonella species, respectively, while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor handwashing practice and not using glove during meat handling showed a significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species, and E. coli were 19 (51.4%) and 14 (31.8%), respectively.

Keywords: antimicrobial susceptibility test, butchery houses, E. coli, raw meat, salmonella species

Procedia PDF Downloads 173
1087 Decision Support System Based On GIS and MCDM to Identify Land Suitability for Agriculture

Authors: Abdelkader Mendas

Abstract:

The integration of MultiCriteria Decision Making (MCDM) approaches in a Geographical Information System (GIS) provides a powerful spatial decision support system which offers the opportunity to efficiently produce the land suitability maps for agriculture. Indeed, GIS is a powerful tool for analyzing spatial data and establishing a process for decision support. Because of their spatial aggregation functions, MCDM methods can facilitate decision making in situations where several solutions are available, various criteria have to be taken into account and decision-makers are in conflict. The parameters and the classification system used in this work are inspired from the FAO (Food and Agriculture Organization) approach dedicated to a sustainable agriculture. A spatial decision support system has been developed for establishing the land suitability map for agriculture. It incorporates the multicriteria analysis method ELECTRE Tri (ELimitation Et Choix Traduisant la REalité) in a GIS within the GIS program package environment. The main purpose of this research is to propose a conceptual and methodological framework for the combination of GIS and multicriteria methods in a single coherent system that takes into account the whole process from the acquisition of spatially referenced data to decision-making. In this context, a spatial decision support system for developing land suitability maps for agriculture has been developed. The algorithm of ELECTRE Tri is incorporated into a GIS environment and added to the other analysis functions of GIS. This approach has been tested on an area in Algeria. A land suitability map for durum wheat has been produced. Through the obtained results, it appears that ELECTRE Tri method, integrated into a GIS, is better suited to the problem of land suitability for agriculture. The coherence of the obtained maps confirms the system effectiveness.

Keywords: multicriteria decision analysis, decision support system, geographical information system, land suitability for agriculture

Procedia PDF Downloads 638
1086 Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory

Authors: Hiba El Assibi

Abstract:

This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences.

Keywords: minimax, alpha beta pruning, transposition tables, weakly solving, game theory

Procedia PDF Downloads 55
1085 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine

Authors: Jalal Maqbool, Gyu Myoung Lee

Abstract:

Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.

Keywords: aware, context, learning, mobile

Procedia PDF Downloads 245
1084 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations

Authors: Karthikeyan Kalirajan, Ashok Joshi

Abstract:

An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.

Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection

Procedia PDF Downloads 427
1083 Distribution of Malaria-Infected Anopheles Mosquitoes in Kudat, Ranau and Tenom of Sabah, Malaysia

Authors: Ahmad Fakhriy Hassan, Rohani Ahmad, Zurainee Mohamed Nor, Wan Najdah Wan Mohamad Ali

Abstract:

In Malaysia, it was realized that while the incidence of human malaria is decreasing, the incidence of Plasmodium knowlesi malaria appears to be on the rise, especially in rural areas of Sabah, East Malaysia. The primary vector for P. knowlesi malaria in Sabah is An. balabacensis a species found abundant in rural areas, shown to rest and feed outdoor throughout the night, which makes its control very challenging. This study aims to examine the distribution of malaria-infected Anopheles mosquitoes in three areas in Sabah, namely Kudat, Ranau, and Tenom, known as areas in Sabah that presented high number of malaria cases. Briefly, mosquitoes were caught every 6 weeks for the period of 18 months using Human Landing Catching (HLC) technique from May 2016 to November 2017. Identification of species was done using microscopy and molecular methods. Molecular method is also used to detect malaria parasite in all mosquito collected. An. balabacensis was present in all the study areas. In Kudat, six other Anopheles species were also detected, namely, An. barumbrosus, An. latens, An. letifer, An. maculatus, An. sundaicus and An. tesselatus. In Ranau five other Anopheles species were detected, namely, An. barumbrosus, An. donaldi., An. hodgkini, An. maculatus, and An. tesselatus while in Tenom seven more species An. donaldi, An. umbrosus, An. barumbrosus, An.latens, An. hodgkini, An. maculatus, and An. tesselatus were detected. This study showed 24% out of 259, 39% out of 127, and 26% out of 265 Anopheles mosquito collected in Kudat, Ranau, and Tenom were detected positive for malaria parasite respectively. In Kudat An. balabacensis, An. barumbrosus, An. latens, An. maculatus, An. sundaicus and An. tesselatus were the six out of eight Anopheles species that were found infected with malaria parasite. All Anopheles species collected in Ranau were positive for malaria while In Tenom, only five out of eight species; An. balabacensus, An. donaldi, An. hodgkini, An. maculatus, and An. latens were detected positive for malaria parasite. Interestingly, for all study areas An. balabacensis was shown to be the only species infected with four malaria species; P. falciparum, P. knowlesi, P. vivax, and Plasmodium sp. This finding clearly indicates that An. balabacensis is the dominant malaria vector in Kudat, Ranau, and Tenom.

Keywords: Anopheles balabacensis, human landing catching technique, nested PCR, Plasmodium knowlesi, Simian malaria

Procedia PDF Downloads 147
1082 Development of a Geomechanical Risk Assessment Model for Underground Openings

Authors: Ali Mortazavi

Abstract:

The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).

Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering

Procedia PDF Downloads 145
1081 Reflecting on Deafblindness: Recommendations for Implementing Effective Strategies

Authors: V. Argyropoulos, M. Nikolaraizi, K. Tanou

Abstract:

There is little available information concerning the cognitive and communicative abilities of the people who are deaf-blind. This mainly stems from the general inadequacy of existing assessment instruments employed with deafblind individuals. Although considerable variability exists with regard to cognitive capacities of the deaf-blind, careful examination of the literature reveals that the majority of these persons suffer from significant deficits in cognitive and adaptive functioning. The few reports available primarily are case studies, narrative program descriptions, or position papers by workers in the field. Without the objective verification afforded by controlled research, specialists in psychology, education, and other rehabilitation services must rely on personal speculations or biases to guide their decisions in the planning, implementation, and evaluation of services to deaf-blind children and adults. This paper highlights the framework and discusses the results of an action research network. The aim of this study was twofold: a) to describe and analyse the different ways in which a student with deafblindness approached a number of developmental issues such as novel tasks, exploration and manipulation of objects, reactions to social stimuli, motor coordination, and quality of play and b) to map the appropriate functional approach for the specific student that could be used to develop strategies for classroom participation and socialization. The persons involved in this collaborative action research scheme were general teachers, a school counsellor, academic staff and student teachers. Rating scales and checklists were used to gather information in natural activities and settings, and additional data were also obtained through interviews with the educators of the student. The findings of this case study indicated that there is a great need to focus on the development of effective intervention strategies. The results showed that the identification of positive reinforcers for this population might represent an important and challenging aspect of behaviour programmes. Finally, the findings suggest that additional empirical work is needed to increase attention to methodological and social validity issues.

Keywords: action research, cognitive and communicative abilities, deafblindness, effective strategies

Procedia PDF Downloads 185
1080 Sustainable Manufacturing of Concentrated Latex and Ribbed Smoked Sheets in Sri Lanka

Authors: Pasan Dunuwila, V. H. L. Rodrigo, Naohiro Goto

Abstract:

Sri Lanka is one the largest natural rubber (NR) producers of the world, where the NR industry is a major foreign exchange earner. Among the locally manufactured NR products, concentrated latex (CL) and ribbed smoked sheets (RSS) hold a significant position. Furthermore, these products become the foundation for many products utilized by the people all over the world (e.g. gloves, condoms, tires, etc.). Processing of CL and RSS costs a significant amount of material, energy, and workforce. With this background, both manufacturing lines have immensely challenged by waste, low productivity, lack of cost efficiency, rising cost of production, and many environmental issues. To face the above challenges, the adaptation of sustainable manufacturing measures that use less energy, water, materials, and produce less waste is imperative. However, these sectors lack comprehensive studies that shed light on such measures and thoroughly discuss their improvement potentials from both environmental and economic points of view. Therefore, based on a study of three CL and three RSS mills in Sri Lanka, this study deploys sustainable manufacturing techniques and tools to uncover the underlying potentials to improve performances in CL and RSS processing sectors. This study is comprised of three steps: 1. quantification of average material waste, economic losses, and greenhouse gas (GHG) emissions via material flow analysis (MFA), material flow cost accounting (MFCA), and life cycle assessment (LCA) in each manufacturing process, 2. identification of improvement options with the help of Pareto and What-if analyses, field interviews, and the existing literature; and 3. validation of the identified improvement options via the re-execution of MFA, MFCA, and LCA. With the help of this methodology, the economic and environmental hotspots, and the degrees of improvement in both systems could be identified. Results highlighted that each process could be improved to have less waste, monetary losses, manufacturing costs, and GHG emissions. Conclusively, study`s methodology and findings are believed to be beneficial for assuring the sustainable growth not only in Sri Lankan NR processing sector itself but also in NR or any other industry rooted in other developing countries.

Keywords: concentrated latex, natural rubber, ribbed smoked sheets, Sri Lanka

Procedia PDF Downloads 261
1079 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development

Authors: Patarasuda Chaisupa, R. Clay Wright

Abstract:

The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.

Keywords: synthetic biology, bioengineering, molecular biology, biotechnology

Procedia PDF Downloads 92