Search results for: predictive models
2309 Effects of Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors
Authors: Arezoo Fallahi
Abstract:
Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2020, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to do exercise in future research.Keywords: social support, regulation, infertility, women, exercise
Procedia PDF Downloads 972308 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin
Procedia PDF Downloads 3282307 Microalgae Applied to the Reduction of Biowaste Produced by Fruit Fly Drosophila melanogaster
Authors: Shuang Qiu, Zhipeng Chen, Lingfeng Wang, Shijian Ge
Abstract:
Biowastes are a concern due to the large amounts of commercial food required for model animals during the biomedical research. Searching for sustainable food alternatives with negligible physiological effects on animals is critical to solving or reducing this challenge. Microalgae have been demonstrated as suitable for both human consumption and animal feed in addition to biofuel and bioenergy applications. In this study, the possibility of using Chlorella vulgaris and Senedesmus obliquus as a feed replacement to Drosophila melanogaster, one of the fly models commonly used in biomedical studies, was investigated to assess the fly locomotor activity, motor pattern, lifespan, and body weight. Compared to control, flies fed on 60% or 80% (w/w) microalgae exhibited varied walking performance including travel distance and apparent step size, and flies treated with 40% microalgae had shorter lifespans and decreased body weight. However, the 20% microalgae treatment showed no statistical differences in all parameters tested with respect to the control. When partially including 20% microalgae in the standard food, it can annually reduce the food waste (~ 202 kg) by 22.7 % and save $ 7,200 of the food cost, offering an environmentally superior and cost-effective food alternative without compromising physiological performance.Keywords: animal feed, Chlorella vulgaris, Drosophila melanogaster, food waste, microalgae
Procedia PDF Downloads 1692306 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1042305 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback
Authors: P. Nafisi Poor, P. Javid
Abstract:
Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability
Procedia PDF Downloads 1362304 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD
Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis
Abstract:
It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performanceKeywords: Axial fan design, CFD, Preliminary Design, Optimization
Procedia PDF Downloads 3982303 A Simple Computational Method for the Gravitational and Seismic Soil-Structure-Interaction between New and Existent Buildings Sites
Authors: Nicolae Daniel Stoica, Ion Mierlus Mazilu
Abstract:
This work is one of numerical research and aims to address the issue of the design of new buildings in a 3D location of existing buildings. In today's continuous development and congestion of urban centers is a big question about the influence of the new buildings on an already existent vicinity site. Thus, in this study, we tried to focus on how existent buildings may be affected by any newly constructed buildings and in how far this influence is really decreased. The problem of modeling the influence of interaction between buildings is not simple in any area in the world, and neither in Romania. Unfortunately, most often the designers not done calculations that can determine how close to reality these 3D influences nor the simplified method and the more superior methods. In the most literature making a "shield" (the pilots or molded walls) is absolutely sufficient to stop the influence between the buildings, and so often the soil under the structure is ignored in the calculation models. The main causes for which the soil is neglected in the analysis are related to the complexity modeling of interaction between soil and structure. In this paper, based on a new simple but efficient methodology we tried to determine for a lot of study cases the influence, in terms of assessing the interaction land structure on the behavior of structures that influence a new building on an existing one. The study covers additional subsidence that may occur during the execution of new works and after its completion. It also highlighted the efforts diagrams and deflections in the soil for both the original case and the final stage. This is necessary to see to what extent the expected impact of the new building on existing areas.Keywords: soil, structure, interaction, piles, earthquakes
Procedia PDF Downloads 2922302 Research on Resilience-Oriented Disintegration in System-of-System
Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.Keywords: system-of-systems, disintegration index, resilience, reinforcement learning
Procedia PDF Downloads 202301 Effective Validation Model and Use of Mobile-Health Apps for Elderly People
Authors: Leonardo Ramirez Lopez, Edward Guillen Pinto, Carlos Ramos Linares
Abstract:
The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people.Keywords: model, validation, effective, healthcare, elderly people, mobile app
Procedia PDF Downloads 2212300 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 1412299 Developing the Involvement of Nurses in Determining Health Policies
Authors: Yafa Haron, Hanna Adami
Abstract:
Background: World Health Organization emphasizes the contribution of nurses in planning and implementing health policies and reforms. Aim: To evaluate nursing students’ attitudes towards nurses’ involvement in health policy issues. Methods: Mixed-methods; qualitative and quantitative – a descriptive study. Participants - nursing students who were enrolled in their last year in the undergraduate program (BSN). Qualitative data included two open-ended questions: What is health policy and what is the importance of studying health policy, and 18 statements on the Likert Scale range 1-5. Results: Qualitativeanalysisrevealed that the majority of students defined health policy as a set of rules and regulations that defined procedures, borders, and proper conduct. 73% of students responded that nurses should be active in policymaking, but only 22% thought that nurses were currently involved in political issues. 28% thought that nurses do not have the knowledge and the time needed (60%) for political activity. 77% thought that the work environment did not encourage nurses to be politically active. Nursing students are aware of the importance towards nurses’ involvement in health policy issues, however, they do not have role models based on their low evaluation regarding nurses’ involvement in the health policy decision making process at the local or national level. Conclusions: Results emphasize the importance and the need of implementation the recommendation to include “advance policy changes” as core competency in nursing education and practice.Keywords: health policy, nursing education, health systems, student perceptions
Procedia PDF Downloads 1002298 Assessment and Prediction of Vehicular Emissions in Commonwealth Avenue, Quezon City at Various Policy and Technology Scenarios Using Simple Interactive Model (SIM-Air)
Authors: Ria M. Caramoan, Analiza P. Rollon, Karl N. Vergel
Abstract:
The Simple Interactive Models for Better Air Quality (SIM-air) is an integrated approach model that allows the available information to support the integrated urban air quality management. This study utilized the vehicular air pollution information system module of SIM-air for the assessment of vehicular emissions in Commonwealth Avenue, Quezon City, Philippines. The main objective of the study is to assess and predict the contribution of different types of vehicles to the vehicular emissions in terms of PM₁₀, SOₓ, and NOₓ at different policy and technology scenarios. For the base year 2017, the results show vehicular emissions of 735.46 tons of PM₁₀, 108.90 tons of SOₓ, and 2,101.11 tons of NOₓ. Motorcycle is the major source of particulates contributing about 52% of the PM₁₀ emissions. Meanwhile, Public Utility Jeepneys contribute 27% of SOₓ emissions and private cars using gasoline contribute 39% of NOₓ emissions. Ambient air quality monitoring was also conducted in the study area for the standard parameters of PM₁₀, S0₂, and NO₂. Results show an average of 88.11 µg/Ncm, 47.41 µg/Ncm and 22.54 µg/Ncm for PM₁₀, N0₂, and SO₂, respectively, all were within the DENR National Ambient Air Quality Guideline Values. Future emissions of PM₁₀, NOₓ, and SOₓ are estimated at different scenarios. Results show that in the year 2030, PM₁₀ emissions will be increased by 186.2%. NOₓ emissions and SOₓ emissions will also be increased by 38.9% and 5.5%, without the implementation of the scenarios.Keywords: ambient air quality, emissions inventory, mobile air pollution, vehicular emissions
Procedia PDF Downloads 1412297 Creative Peace Diplomacy Model by the Perspective of Dialogue Management for International Relations
Authors: Bilgehan Gültekin, Tuba Gültekin
Abstract:
Peace diplomacy is the most important international tool to keep peace all over the world. The study titled “peace diplomacy for international relations” is consist of three part. In the first part, peace diplomacy is going to be introduced as a tool of peace communication and peace management. And, in this part, peace communication will be explained by international communication perspective. In the second part of the study,public relations events and communication campaigns will be developed originally for peace diplomacy. In this part, it is aimed original public communication dialogue management tools for peace diplomacy. the aim of the final part of the study, is to produce original public communication model for international relations. The model includes peace modules, peace management projects, original dialogue procedures and protocols, dialogue education, dialogue management strategies, peace actors, communication models, peace team management and public diplomacy steps. The creative part of the study aims to develop a model used for international relations for all countries. Creative Peace Diplomacy Model will be developed in the case of Turkey-Turkey-France and Turkey-Greece relations. So, communication and public relations events and campaigns are going to be developed as original for only this study.Keywords: peace diplomacy, public communication model, dialogue management, international relations
Procedia PDF Downloads 5442296 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1972295 Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study
Authors: Qudama Albu-Jasim, Majdi Kanaan
Abstract:
A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system.Keywords: load rating, CSIBridge, strengthening, uncertainties, case study
Procedia PDF Downloads 2132294 Mass Polarization in Three-Body System with Two Identical Particles
Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic
Abstract:
The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions
Procedia PDF Downloads 3782293 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: beam structures, layerwise, optimization, variable stiffness
Procedia PDF Downloads 1472292 Understanding Climate Change with Chinese Elderly: Knowledge, Attitudes and Practices on Climate Change in East China
Authors: Pelin Kinay, Andy P. Morse, Elmer V. Villanueva, Karyn Morrissey, Philip L Staddon, Shanzheng Zhang, Jingjing Liu
Abstract:
The present study aims to evaluate the climate change and health related knowledge, attitudes and practices (KAP) of the elderly population (60 years plus) in Hefei and Suzhou cities of China (n=300). This cross-sectional study includes 150 participants in each city. Data regarding demographic characteristics, KAP, and climate change perceptions were collected using a semi-structured questionnaire. When asked about the potential impacts of climate change over 79% of participants stated that climate change affected their lifestyle. Participants were most concerned about storms (51.7%), food shortage (33.3%) and drought (26%). The main health risks cited included water contamination (32%), air pollution related diseases (38.3%) and lung disease (43%). Finally, a majority (68.3%) did not report receiving government assistance on climate change issues. Logistic regression models were used to analyse the data in order to understand the links between socio-demographical factors and KAP of the participants. These findings provide insights for potential adaptation strategies targeting the elderly. It is recommended that government should take responsibility in creating awareness strategies to improve the coping capacity of elderly in China to climate change and its health impacts and develop climate change adaptation strategies.Keywords: China, climate change, elderly, KAP
Procedia PDF Downloads 2692291 Quantitative Evaluation of Endogenous Reference Genes for ddPCR under Salt Stress Using a Moderate Halophile
Authors: Qinghua Xing, Noha M. Mesbah, Haisheng Wang, Jun Li, Baisuo Zhao
Abstract:
Droplet digital PCR (ddPCR) is being increasingly adopted for gene detection and quantification because of its higher sensitivity and specificity. According to previous observations and our lab data, it is essential to use endogenous reference genes (RGs) when investigating gene expression at the mRNA level under salt stress. This study aimed to select and validate suitable RGs for gene expression under salt stress using ddPCR. Six candidate RGs were selected based on the tandem mass tag (TMT)-labeled quantitative proteomics of Alkalicoccus halolimnae at four salinities. The expression stability of these candidate genes was evaluated using statistical algorithms (geNorm, NormFinder, BestKeeper and RefFinder). There was a small fluctuation in cycle threshold (Ct) value and copy number of the pdp gene. Its expression stability was ranked in the vanguard of all algorithms, and was the most suitable RG for quantification of expression by both qPCR and ddPCR of A. halolimnae under salt stress. Single RG pdp and RG combinations were used to normalize the expression of ectA, ectB, ectC, and ectD under four salinities. The present study constitutes the first systematic analysis of endogenous RG selection for halophiles responding to salt stress. This work provides a valuable theory and an approach reference of internal control identification for ddPCR-based stress response models.Keywords: endogenous reference gene, salt stress, ddPCR, RT-qPCR, Alkalicoccus halolimnae
Procedia PDF Downloads 1092290 Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria
Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata
Abstract:
Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.Keywords: contaminant, leachate, soil, groundwater, electrical, resistivity
Procedia PDF Downloads 1632289 DesignChain: Automated Design of Products Featuring a Large Number of Variants
Authors: Lars Rödel, Jonas Krebs, Gregor Müller
Abstract:
The growing price pressure due to the increasing number of global suppliers, the growing individualization of products and ever-shorter delivery times are upcoming challenges in the industry. In this context, Mass Personalization stands for the individualized production of customer products in batch size 1 at the price of standardized products. The possibilities of digitalization and automation of technical order processing open up the opportunity for companies to significantly reduce their cost of complexity and lead times and thus enhance their competitiveness. Many companies already use a range of CAx tools and configuration solutions today. Often, the expert knowledge of employees is hidden in "knowledge silos" and is rarely networked across processes. DesignChain describes the automated digital process from the recording of individual customer requirements, through design and technical preparation, to production. Configurators offer the possibility of mapping variant-rich products within the Design Chain. This transformation of customer requirements into product features makes it possible to generate even complex CAD models, such as those for large-scale plants, on a rule-based basis. With the aid of an automated CAx chain, production-relevant documents are thus transferred digitally to production. This process, which can be fully automated, allows variants to always be generated on the basis of current version statuses.Keywords: automation, design, CAD, CAx
Procedia PDF Downloads 802288 Knowledge Diffusion via Automated Organizational Cartography: Autocart
Authors: Mounir Kehal, Adel Al Araifi
Abstract:
The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography
Procedia PDF Downloads 4182287 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1042286 The Relationship between Knowledge Management Processes and Strategic Thinking at the Organization Level
Authors: Bahman Ghaderi, Hedayat Hosseini, Parviz Kafche
Abstract:
The role of knowledge management processes in achieving the strategic goals of organizations is crucial. To this end, understanding the relationship between knowledge management processes and different aspects of strategic thinking (followed by long-term organizational planning) should be considered. This research examines the relationship between each of the five knowledge management processes (creation, storage, transfer, audit, and deployment) with each dimension of strategic thinking (vision, creativity, thinking, communication and analysis) in one of the major sectors of the food industry in Iran. In this research, knowledge management and its dimensions (knowledge acquisition, knowledge storage, knowledge transfer, knowledge auditing, and finally knowledge utilization) as independent variables and strategic thinking and its dimensions (creativity, systematic thinking, vision, strategic analysis, and strategic communication) are considered as the dependent variable. The statistical population of this study consisted of 245 managers and employees of Minoo Food Industrial Group in Tehran. In this study, a simple random sampling method was used, and data were collected by a questionnaire designed by the research team. Data were analyzed using SPSS 21 software. LISERL software is also used for calculating and drawing models and graphs. Among the factors investigated in the present study, knowledge storage with 0.78 had the most effect, and knowledge transfer with 0.62 had the least effect on knowledge management and thus on strategic thinking.Keywords: knowledge management, strategic thinking, knowledge management processes, food industry
Procedia PDF Downloads 1742285 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization
Authors: Zhiyan Meng, Dan Liu, Jintao Meng
Abstract:
Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model
Procedia PDF Downloads 342284 Histological Evaluation of the Neuroprotective Roles of Trans Cinnamaldehyde against High Fat Diet and Streptozotozin Induced Neurodegeneration in Wistar Rats
Authors: Samson Ehindero, Oluwole Akinola
Abstract:
Substantial evidence has shown an association between type 2 diabetes (T2D) and cognitive decline, Trans Cinnamaldehyde (TCA) has been shown to have many potent pharmacological properties. In this present study, we are currently investigating the effects of TCA on type II diabetes-induced neurodegeneration. Neurodegeneration was induced in forty (40) adult wistar rats using high fat diet (HFD) for 4 months followed by low dose of streptozotocin (STZ) (40 mg/kg, i.p.) administration. TCA was administered orally for 30 days at the doses of 40mg/kg and 60mg/kg body weight. Animals were randomized and divided into following groups; A- control group, B- diabetic group, C- TCA (high dose), D- diabetic + TCA (high dose), E- diabetic + TCA (high dose) with high fat diet, F- TCA Low dose, G- diabetic + TCA (low dose) and H- diabetic + TCA (low dose) with high fat diet. Animals were subjected to behavioral tests followed by histological studies of the hippocampus. Demented rats showed impaired behavior in Y- Maze test compared to treated and control groups. Trans Cinnamaldehyde restores the histo architecture of the hippocampus of demented rats. This present study demonstrates that treatment with trans- cinnamaldehyde improves behavioral deficits, restores cellular histo architecture in rat models of neurodegeneration.Keywords: neurodegeneration, trans cinnamaldehyde, high fat diet, streptozotocin
Procedia PDF Downloads 1902283 Cytotoxicity of Nano β–Tricalcium Phosphate (β-TCP) on Human Osteoblast (hFOB1.19)
Authors: Jer Ping Ooi, Shah Rizal Bin Kasim, Nor Aini Saidin
Abstract:
The objective of this study was to synthesize nano-sized β-tricalcium phosphate (β-TCP) powder and assess its cytotoxic effects on human osteoblast (hFOB1.19) by using four cytotoxicity assays, namely, lactose dehydrogenase (LDHe), tetrazolium hydroxide (XTT), neutral red (NR), and sulforhodamine B (SRB) assays. β-tricalcium phosphate (β-TCP) is a calcium phosphate compound commonly used as an implant material. To date, bulk-sized β-TCP is reported to be readily tolerated by the osteogenic cells and body based on in vitro, in vivo experiments and clinical studies. However, to what extent of nano-sized β-TCP will react in models as compared to bulk β-TCP is yet to be investigated. Thus, in this project, the cells were treated with nano β-TCP powder within a range of concentrations from 0 to 1000 μg/mL for 24, 48, and 72 h. The cytotoxicity tests showed that loss of cell viability ( > 50%) was high for hFOB1.19 cells in all assays. Cell cycle and apoptosis analysis of hFOB1.19 cells revealed that 50 μg/mL of the compound led to 30.5% of cells being apoptotic after 72 h of incubation, and the percentage was increased to 58.6% when the concentration was increased to 200 μg/mL. When the incubation time was increased from 24 to 72 h, the percentage of apoptotic cells increased from 17.3% to 58.6% when the hFOB1.19 were exposed with 200 μg/mL of nano β-TCP powder. Thus, both concentration and exposure duration affected the cytotoxicity effects of the nano β-TCP powder on hFOB1.19. We hypothesize that these cytotoxic effects on hFOB1.19 are related to the nano-scale size of the β-TCP.Keywords: β-tricalcium phosphate, hFOB1.19, adipose-derived mesenchymal stem cells, cytotoxicity
Procedia PDF Downloads 3222282 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 2212281 Encouraging Teachers to be Reflective: Advantages, Obstacles and Limitations
Authors: Fazilet Alachaher
Abstract:
Within the constructivist perspective of teaching, which views skilled teaching as knowing what to do in uncertain and unpredictable situations, this research essay explores the topic of reflective teaching by investigating the following questions: (1) What is reflective teaching and why is it important? (2) Why should teachers be trained to be reflective and how can they be prepared to be reflective? (3) What is the role of the teaching context in teachers’ attempts to be reflective? This paper suggests that reflective teaching is important because of the various potential benefits to teaching. Through reflection, teachers can maintain their voices and creativeness thus have authority to affect students, curriculum and school policies. The discussions also highlight the need to prepare student teachers and their professional counterparts to be reflective, so they can develop the characteristics of reflective teaching and gain the potential benefits of reflection. This can be achieved by adopting models and techniques that are based on constructivist pedagogical approaches. The paper also suggests that maintaining teachers’ attempts to be reflective in a workplace context and aligning practice with pre-service teacher education programs require the administrators or the policy makers to provide the following: sufficient time for teachers to reflect and work collaboratively to discuss challenges encountered in teaching, fewer non-classroom duties, regular in-service opportunities, more facilities and freedom in choosing suitable ways of evaluating their students’ progress and needs.Keywords: creative teaching, reflective teaching, constructivist pedagogical approaches, teaching context, teacher’s role, curriculum and school policies, teaching context effect
Procedia PDF Downloads 4492280 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models
Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik
Abstract:
The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron
Procedia PDF Downloads 188