Search results for: motion data acquisition
21667 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4
Authors: Ryan A. Black, Stacey A. McCaffrey
Abstract:
Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.Keywords: instrument development, item response theory, latent trait theory, psychometrics
Procedia PDF Downloads 35921666 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 44921665 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism
Authors: Rui Liu, Pengyu Cui, Nan Jiang
Abstract:
At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion
Procedia PDF Downloads 20521664 Analysis of Radial Pulse Using Nadi-Parikshan Yantra
Authors: Ashok E. Kalange
Abstract:
Diagnosis according to Ayurveda is to find the root cause of a disease. Out of the eight different kinds of examinations, Nadi-Pariksha (pulse examination) is important. Nadi-Pariksha is done at the root of the thumb by examining the radial artery using three fingers. Ancient Ayurveda identifies the health status by observing the wrist pulses in terms of 'Vata', 'Pitta' and 'Kapha', collectively called as tridosha, as the basic elements of human body and in their combinations. Diagnosis by traditional pulse analysis – NadiPariksha - requires a long experience in pulse examination and a high level of skill. The interpretation tends to be subjective, depending on the expertise of the practitioner. Present work is part of the efforts carried out in making Nadi-Parikshan objective. Nadi Parikshan Yantra (three point pulse examination system) is developed in our laboratory by using three pressure sensors (one each for the Vata, Pitta and Kapha points on radial artery). The radial pulse data was collected of a large number of subjects. The radial pulse data collected is analyzed on the basis of relative amplitudes of the three point pulses as well as in frequency and time domains. The same subjects were examined by Ayurvedic physician (Nadi Vaidya) and the dominant Dosha - Vata, Pitta or Kapha - was identified. The results are discussed in details in the paper.Keywords: Nadi Parikshan Yantra, Tridosha, Nadi Pariksha, human pulse data analysis
Procedia PDF Downloads 19221663 Risk-Based Institutional Evaluation of Trans Sumatera Toll Road Infrastructure Development to Improve Time Performance
Authors: Muhammad Ridho Fakhrin, Leni Sagita Riantini, Yusuf Latief
Abstract:
Based on the 2015-2019 RPJMN data, the realization of toll road infrastructure development in Indonesia experienced a delay of 49% or 904 km of the total plan. One of the major causes of delays in development is caused by institutional factors. The case study taken in this research is the construction of the Trans Sumatra Toll Road (JTTS). The purpose of this research is to identify the institutional forms, functions, roles, duties, and responsibilities of each stakeholder and the risks that occur in the Trans Sumatra Toll Road Infrastructure Development. Risk analysis is implemented on functions, roles, duties, responsibilities of each existing stakeholder and is carried out at the Funding Stage, Technical Planning Stage, and Construction Implementation Stage in JTTS. This research is conducted by collecting data through a questionnaire survey, then processed using statistical methods, such as homogeneity, data adequacy, validity, and reliability test, continued with risk assessment based on a risk matrix. The results of this study are the evaluation and development of institutional functions in risk-based JTTS development can improve time performance and minimize delays in the construction process.Keywords: institutional, risk management, time performance, toll road
Procedia PDF Downloads 16821662 Teaching Tools for Web Processing Services
Authors: Rashid Javed, Hardy Lehmkuehler, Franz Josef-Behr
Abstract:
Web Processing Services (WPS) have up growing concern in geoinformation research. However, teaching about them is difficult because of the generally complex circumstances of their use. They limit the possibilities for hands- on- exercises on Web Processing Services. To support understanding however a Training Tools Collection was brought on the way at University of Applied Sciences Stuttgart (HFT). It is limited to the scope of Geostatistical Interpolation of sample point data where different algorithms can be used like IDW, Nearest Neighbor etc. The Tools Collection aims to support understanding of the scope, definition and deployment of Web Processing Services. For example it is necessary to characterize the input of Interpolation by the data set, the parameters for the algorithm and the interpolation results (here a grid of interpolated values is assumed). This paper reports on first experiences using a pilot installation. This was intended to find suitable software interfaces for later full implementations and conclude on potential user interface characteristics. Experiences were made with Deegree software, one of several Services Suites (Collections). Being strictly programmed in Java, Deegree offers several OGC compliant Service Implementations that also promise to be of benefit for the project. The mentioned parameters for a WPS were formalized following the paradigm that any meaningful component will be defined in terms of suitable standards. E.g. the data output can be defined as a GML file. But, the choice of meaningful information pieces and user interactions is not free but partially determined by the selected WPS Processing Suite.Keywords: deegree, interpolation, IDW, web processing service (WPS)
Procedia PDF Downloads 35821661 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 37521660 Policy Implications of Demographic Impacts on COVID-19, Pneumonia, and Influenza Mortality: A Multivariable Regression Approach to Death Toll Reduction
Authors: Saiakhil Chilaka
Abstract:
Understanding the demographic factors that influence mortality from respiratory diseases like COVID-19, pneumonia, and influenza is crucial for informing public health policy. This study utilizes multivariable regression models to assess the relationship between state, sex, and age group on deaths from these diseases using U.S. data from 2020 to 2023. The analysis reveals that age and sex play significant roles in mortality, while state-level variations are minimal. Although the model’s low R-squared values indicate that additional factors are at play, this paper discusses how these findings, in light of recent research, can inform future public health policy, resource allocation, and intervention strategies.Keywords: COVID-19, multivariable regression, public policy, data science
Procedia PDF Downloads 2621659 Climate Change and Landslide Risk Assessment in Thailand
Authors: Shotiros Protong
Abstract:
The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand
Procedia PDF Downloads 56621658 Topology-Based Character Recognition Method for Coin Date Detection
Authors: Xingyu Pan, Laure Tougne
Abstract:
For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.Keywords: coin, detection, character recognition, topology
Procedia PDF Downloads 25521657 The State of Employee Motivation During Covid-19 Outbreak in Sri Lankan Construction Sector
Authors: Tharaki Hetti Arachchi
Abstract:
Sri Lanka has undergone numerous changes in the fields of social-economic and cultural processors during the past decades. Consequently, the Sri Lankan construction industry was subjected to rapid growth while contributing a considerable amount to the national economy. The prevailing situation under the Covid-19 pandemic exhibited challenges to almost all of the sectors of the country in attaining success. Although productivity is one of the dimensions that measure the degree of project success, achieving sufficient productivity has become challengeable due to the Covid-19 outbreak. As employee motivation is an influential factor in defining productivity, the present study becomes significant in discovering ways of enhancing construction productivity via employee motivation. The study has adopted a combination of qualitative and quantitative methodologies in attaining the study objectives. While the research population refers to construction professionals in Sri Lanka, the study sample is aimed at Quantity Surveyors in the bottom and middle managements of organizational hierarchies. The data collection was implemented via primary and secondary sources. The primary data collection was accomplished by undertaking semi-structured interviews and online questionnaire surveys while sampling the overall respondents based on the purposive sample method. The responses of the questionnaire survey were gathered in a form of a ‘Likert Scale’ to examine the degree of applicability on each respondent. Overall, 76.36% of primary data were recovered from the expected count while obtaining 60 responses from the questionnaire survey and 24 responses from interviews. Secondary data were obtained by reviewing sources such as research articles, journals, newspapers, books, etc. The findings suggest adopting and enhancing sixteen motivational factors in achieving greater productivity in the Sri Lankan construction sector.Keywords: Covid 19 pandemic, motivation, quantity surveying, Sri Lanka
Procedia PDF Downloads 9921656 Impact of Weather Conditions on Non-Food Retailers and Implications for Marketing Activities
Authors: Noriyuki Suyama
Abstract:
This paper discusses purchasing behavior in retail stores, with a particular focus on the impact of weather changes on customers' purchasing behavior. Weather conditions are one of the factors that greatly affect the management and operation of retail stores. However, there is very little research on the relationship between weather conditions and marketing from an academic perspective, although there is some importance from a practical standpoint and knowledge based on experience. For example, customers are more hesitant to go out when it rains than when it is sunny, and they may postpone purchases or buy only the minimum necessary items even if they do go out. It is not difficult to imagine that weather has a significant impact on consumer behavior. To the best of the authors' knowledge, there have been only a few studies that have delved into the purchasing behavior of individual customers. According to Hirata (2018), the economic impact of weather in the United States is estimated to be 3.4% of GDP, or "$485 billion ± $240 billion per year. However, weather data is not yet fully utilized. Representative industries include transportation-related industries (e.g., airlines, shipping, roads, railroads), leisure-related industries (e.g., leisure facilities, event organizers), energy and infrastructure-related industries (e.g., construction, factories, electricity and gas), agriculture-related industries (e.g., agricultural organizations, producers), and retail-related industries (e.g., retail, food service, convenience stores, etc.). This paper focuses on the retail industry and advances research on weather. The first reason is that, as far as the author has investigated the retail industry, only grocery retailers use temperature, rainfall, wind, weather, and humidity as parameters for their products, and there are very few examples of academic use in other retail industries. Second, according to NBL's "Toward Data Utilization Starting from Consumer Contact Points in the Retail Industry," labor productivity in the retail industry is very low compared to other industries. According to Hirata (2018) mentioned above, improving labor productivity in the retail industry is recognized as a major challenge. On the other hand, according to the "Survey and Research on Measurement Methods for Information Distribution and Accumulation (2013)" by the Ministry of Internal Affairs and Communications, the amount of data accumulated by each industry is extremely large in the retail industry, so new applications are expected by analyzing these data together with weather data. Third, there is currently a wealth of weather-related information available. There are, for example, companies such as WeatherNews, Inc. that make weather information their business and not only disseminate weather information but also disseminate information that supports businesses in various industries. Despite the wide range of influences that weather has on business, the impact of weather has not been a subject of research in the retail industry, where business models need to be imagined, especially from a micro perspective. In this paper, the author discuss the important aspects of the impact of weather on marketing strategies in the non-food retail industry.Keywords: consumer behavior, weather marketing, marketing science, big data, retail marketing
Procedia PDF Downloads 8721655 Suspended Sediment Concentration and Water Quality Monitoring Along Aswan High Dam Reservoir Using Remote Sensing
Authors: M. Aboalazayem, Essam A. Gouda, Ahmed M. Moussa, Amr E. Flifl
Abstract:
Field data collecting is considered one of the most difficult work due to the difficulty of accessing large zones such as large lakes. Also, it is well known that the cost of obtaining field data is very expensive. Remotely monitoring of lake water quality (WQ) provides an economically feasible approach comparing to field data collection. Researchers have shown that lake WQ can be properly monitored via Remote sensing (RS) analyses. Using satellite images as a method of WQ detection provides a realistic technique to measure quality parameters across huge areas. Landsat (LS) data provides full free access to often occurring and repeating satellite photos. This enables researchers to undertake large-scale temporal comparisons of parameters related to lake WQ. Satellite measurements have been extensively utilized to develop algorithms for predicting critical water quality parameters (WQPs). The goal of this paper is to use RS to derive WQ indicators in Aswan High Dam Reservoir (AHDR), which is considered Egypt's primary and strategic reservoir of freshwater. This study focuses on using Landsat8 (L-8) band surface reflectance (SR) observations to predict water-quality characteristics which are limited to Turbidity (TUR), total suspended solids (TSS), and chlorophyll-a (Chl-a). ArcGIS pro is used to retrieve L-8 SR data for the study region. Multiple linear regression analysis was used to derive new correlations between observed optical water-quality indicators in April and L-8 SR which were atmospherically corrected by values of various bands, band ratios, and or combinations. Field measurements taken in the month of May were used to validate WQP obtained from SR data of L-8 Operational Land Imager (OLI) satellite. The findings demonstrate a strong correlation between indicators of WQ and L-8 .For TUR, the best validation correlation with OLI SR bands blue, green, and red, were derived with high values of Coefficient of correlation (R2) and Root Mean Square Error (RMSE) equal 0.96 and 3.1 NTU, respectively. For TSS, Two equations were strongly correlated and verified with band ratios and combinations. A logarithm of the ratio of blue and green SR was determined to be the best performing model with values of R2 and RMSE equal to 0.9861 and 1.84 mg/l, respectively. For Chl-a, eight methods were presented for calculating its value within the study area. A mix of blue, red, shortwave infrared 1(SWR1) and panchromatic SR yielded the greatest validation results with values of R2 and RMSE equal 0.98 and 1.4 mg/l, respectively.Keywords: remote sensing, landsat 8, nasser lake, water quality
Procedia PDF Downloads 9921654 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction
Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili
Abstract:
Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software
Procedia PDF Downloads 13421653 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment
Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman
Abstract:
Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands
Procedia PDF Downloads 7021652 Electron-Ion Recombination of N^{2+} and O^{3+} Ions
Authors: Shahin A. Abdel-Naby, Asad T. Hassan, Stuart Loch, Michael Fogle, Negil R. Badnell, Michael S. Pindzola
Abstract:
Accurate and reliable laboratory astrophysical data for electron-ion recombination are needed for plasma modeling. Dielectronic recombination (DR) rate coefficients are calculated for boron-like nitrogen and oxygen ions using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. The calculations are performed in intermediate coupling scheme associated with n = 0 (2 2) and n = 1 (2 3) core-excitations. Good agreements are found between the theoretically convoluted rate coefficients and the experimental measurements performed at CRYRING heavy-ion storage ring for both ions. Fitting coefficients for the rate coefficients are produced for these ions in the temperature range q2(102-107) K, where q is the ion charge before recombination.Keywords: Atomic data, atomic processes, electron-ion collision, plasma
Procedia PDF Downloads 17121651 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation
Authors: Matthias Leitner, Gernot Pottlacher
Abstract:
Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion
Procedia PDF Downloads 22321650 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining
Procedia PDF Downloads 44421649 Modern and Postmodern Marketing Approaches to Consumer Loyalty in Case of Indonesia Real Estate Developer
Authors: Lincoln Panjaitan, Antonius Sumarlin
Abstract:
The development of property businesses in the metropolitan area is growing rapidly forcing big real estate developers to come up with various strategies in winning the heart of consumers. This empirical research is focusing on how the two schools of marketing thoughts; namely, Modern and postmodern marketing employed by the preceding developers to retain consumers’ commitment toward their prospective brands. The data was collected from three different properties of PT. Intiland Tbk using accidental sampling technique. The data of 600 respondents was then put into Structural Equation Model (SEM). The result of the study suggests that both schools of thought can equally produce commitment and loyalty of consumers; however, the difference lays where the loyalty belongs to. The first is more toward developer’s brand and the latter is more toward the co-creation value of the housing community.Keywords: consumer loyalty, consumer commitment, knowledge sharing platform, marketing mix
Procedia PDF Downloads 34621648 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management
Authors: Peifang Hsieh
Abstract:
The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.Keywords: child abuse, high-risk families, big data analysis, risk prediction model
Procedia PDF Downloads 13621647 Feasibility Study for the Implementation of a Condition-Based Maintenance System in the UH-60 Helicopters
Authors: Santos Cabrera, Halbert Yesid, Moncada Nino, Alvaro Fernando, Rincon Cuta, Yeisson Alexis
Abstract:
The present work evaluates the feasibility of implementing a health and use monitoring system (HUMS), based on vibration analysis as a condition-based maintenance program for the UH60L 'Blackhawk' helicopters. The mixed approach used consists of contributions from national and international experts, the analysis of data extracted from the software (Meridium), the correlation of variables derived from the diagnosis of availability, the development, and application of the HUMS system, the evaluation of the latter through of the use of instruments designed for the collection of information using the DELPHI method and data capture with the device installed in the helicopter studied. The results obtained in the investigation reflect the context of maintenance in aerial operations, a reduction of operation and maintenance costs of over 2%, better use of human resources, improvement in availability (5%), and fulfillment of the aircraft’s security standards, enabling the implementation of the monitoring system (HUMS) in the condition-based maintenance program. New elements are added to the study of maintenance based on condition -specifically, in the determination of viability based on qualitative and quantitative data according to the methodology. The use of condition-based maintenance will allow organizations to adjust and reconfigure their strategic, logistical, and maintenance capabilities, aligning them with their strategic objectives of responding quickly and adequately to changes in the environment and operational requirements.Keywords: air transportation sustainability, HUMS, maintenance based condition, maintenance blackhawk capability
Procedia PDF Downloads 16321646 Crime Victim Support Services in Bangladesh: An Analysis
Authors: Mohammad Shahjahan, Md. Monoarul Haque
Abstract:
In the research work information and data were collected from both types of sources, direct and indirect. Numerological, qualitative and participatory analysis methods have been followed. There were two principal sources of collecting information and data. Firstly, the data provided by the service recipients (300 nos. of women and children victims) in the Victim Support Centre and service providing policemen, executives and staffs (60 nos.). Secondly, data collected from Specialists, Criminologists and Sociologists involved in victim support services through Consultative Interview, KII, Case Study and FGD etc. The initial data collection has been completed with the help of questionnaires as per strategic variations and with the help of guidelines. It is to be noted that the main objective of this research was to determine whether services provided to the victims for their facilities, treatment/medication and rehabilitation by different government/non-government organizations was veritable at all. At the same time socio-economic background and demographic characteristics of the victims have also been revealed through this research. The results of the study show that although the number of victims has increased gradually due to socio-economic, political and cultural realities in Bangladesh, the number of victim support centers has not increased as expected. Awareness among the victims about the effectiveness of the 8 centers working in this regard is also not up to the mark. Two thirds of the victims coming to get service were not cognizant regarding the victim support services at all before getting the service. Most of those who have finally been able to come under the services of the Victim Support Center through various means, have received sheltering (15.5%), medical services (13.32%), counseling services (13.10%) and legal aid (12.66%). The opportunity to stay in security custody and psycho-physical services were also notable. Usually, women and children from relatively poor and marginalized families of the society come to victim support center for getting services. Among the women, young unmarried women are the biggest victims of crime. Again, women and children employed as domestic workers are more affected. A number of serious negative impacts fall on the lives of the victims. Being deprived of employment opportunities (26.62%), suffering from psycho-somatic disorder (20.27%), carrying sexually transmitted diseases (13.92%) are among them. It seems apparent to urgently enact distinct legislation, increase the number of Victim Support Centers, expand the area and purview of services and take initiative to increase public awareness and to create mass movement.Keywords: crime, victim, support, Bangladesh
Procedia PDF Downloads 9521645 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model
Authors: Zichun Guo
Abstract:
Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.Keywords: POI, house price, spatial heterogeneity, Guangzhou
Procedia PDF Downloads 6421644 Understanding Trauma Informed Pedagogy in On-Line Education during Turbulent Times: A Mixed Methods Study in a Canadian Social Work Context
Authors: Colleen McMillan, Alice Schmidt-Hanbidge, Beth Archer-Kuhn, Heather Boynton, Judith Hughes
Abstract:
It is well known that social work students enter the profession with higher scores of adverse childhood experiences (ACE). Add to that the fact that COVID-19 has forced higher education institutions to shift to online teaching and learning, where students, faculty and field educators in social work education have reported increased stressors as well as posing challenges in developing relationships with students and being able to identify mental health challenges including those related to trauma. This multi-institutional project included three Canadian post-secondary institutions at five sites (the University of Waterloo, the University of Calgary and the University of Manitoba) and partners; Desire To Learn (D2L), The Centre for Teaching Excellence at the University of Waterloo and the Taylor Institute for Teaching and Learning. A sequential mixed method research design was used. Survey data was collected from students, faculty and field education staff from the 3 universities using the Qualtrics Insight Platform, followed by virtual focus group data with students to provide greater clarity to the quantitative data. Survey data was analyzed using SPSS software, while focus group data was transcribed verbatim and organized with N-Vivo 12. Thematic analysis used line-by-line coding and constant comparative methods within and across focus groups. The following three objectives of the study were achieved: 1) Establish a Canadian baseline on trauma informed pedagogy and student experiences of trauma informed teaching in the online higher education environment during a pandemic; 2) Identify and document educator and student experiences of online learning regarding the ability to process trauma experiences; and, 3) Transfer the findings into a trauma informed pedagogical model for Social Work as a first step toward developing a universal trauma informed teaching model. The trauma informed pedagogy model would be presented in relation to the study findings.Keywords: trauma informed pedagogy, higher education, social work, mental health
Procedia PDF Downloads 9321643 Evaluating the Effectiveness of Methods That Increase the Knowledge of Youths about the Sexually Transmitted Diseases
Authors: Gonul Kurt, Semra Aciksoz
Abstract:
All types of interventions that increase the knowledge and awareness of youths about Sexually Transmitted Diseases (STD) are considered to be important for safe sex life and sexual health. The aim of this study was to determine the knowledge levels of nursing students about STD and evaluate the effectiveness of peer education and brochure methods to increase the knowledge and awareness about STD. This interventional study was carried out by participation of nursing students attending the first and second grade in a school of nursing on February–May 2015. The study participants were 200 undergraduate nursing student volunteers. The students were given education by peer trainers and brochure methods. First-grade students were divided into five groups with block randomization method and each group were given education by five peer trainers. Second-grade students were given education with brochure by the researchers. The knowledge level of study groups was evaluated before and after educational intervention. The data were collected using the “Data Collection Form” and “Sexually Transmitted Diseases Information Form”. The questionnaire forms developed by the researchers after the literature review. The SPSS 15.0 package software was used for the evaluation of the data obtained from the study. Data were analyzed by Mann-Whitney-U-Test, Wilcoxon Signed Ranks Test and Mc Nemar Test. A p value of <0.05 was regarded as statistically significant. All of participants in the study were female nursing students. The mean age of students was 18.99±0.32 years old in the peer education group and 20.04±0.37 in the brochure education group. There was no statistically significant difference between knowledge levels of the students in both groups before the education (p>0.05). It was determined that an increase in knowledge levels of the students in both groups after the education. This increase was statistically significant (p<0.05). It was determined that knowledge level of the students about STD in brochure group was higher than the peer education group (p<0.001). The results of this study indicate that brochure education method was more effective than the peer education method in both increasing knowledge and awareness about STD.Keywords: education method, knowledge, nursing students, sexually transmitted diseases
Procedia PDF Downloads 30221642 Recombination Rate Coefficients for NIII and OIV Ions
Authors: Shahin A. Abdel-Naby, Asad T. Hassan
Abstract:
Electron-ion recombination data are needed for plasma modeling. The recombination processes include radiative recombination (RR), dielectronic recombination (DR), and trielectronic recombination (TR). When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by photon emission. Reliable laboratory astrophysics data (theory and experiment) for DR rate coefficients are needed to determine the charge state distribution in photoionized sources such as X-ray binaries and active galactic nuclei. DR rate coefficients for NIII and OIV ions are calculated using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated with Δn = 0 (2→2) and Δn = 1 (2 →3) core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are found between these rate coefficients and the experimental measurements performed at the CRYRING heavy-ion storage ring for both ions.Keywords: atomic data, atomic process, electron-ion collision, plasmas
Procedia PDF Downloads 15621641 Tectonostratigraphic, Paleogeography and Amalgamation of Sumatra Terranes, Indonesia
Authors: Syahrir Andi Mangga, Ipranta
Abstract:
The geological, paleomagnetic, geochemical and geophysical Investigation in The Sumatra Region has yielded some new data, has stimulated a reassessment of stratigraphy, structure, tectonic evolution and which can show a Sumatra geodynamic model. Sumatra island has in the margin of southwest part of the Eurasia plate in the Sundaland cratonic block and occurred as the amalgamation of allochtonous microplates, continental fragments, Island arc and accrctionary by foreland complex which assembled prior to Tertiary. The allochtonous rocks (terranes), can be divided into 4 (four) Terranes with Paleozoic to Mesosoic in age, had different origin, lithology and are separated by a Suture as main fault with trending NW-SE. The terranes are: the Tigapuluh-Bohorok (East Sumatra block / Sibumasu block), Permo-Carboniferous in age and is characterized by the rock types formed in glacio-marine and was intruded by Late Triassic to Early Jurrasic granitics, occupied in the Eastern part of Sumatra, the paleomagnetic data shown 41° South. Tanjung Karang - Gunung Kasih Terrane, is composed of higher metamorphic rocks and supposed to be pre-Carboniferous in age, covered by Mesozoic sedimentary rocks and were intruded by granitic-dioritic rocks, occupied in the Southern part of Sumatra, the paleomagnetic data shown 19° North. The Kuantan-Duabelas Mountain (West Sumatra block) is occupied by metamorphic, sedimentary and volcanic rocks of Paleozoic - Mesozoic (Carboniferous - Triassic) in age, contains a Cathaysion fauna and flora and are intruded by the Mesozoic granitoid rocks. The terrane occurred in the western part of Sumatra. Meanwhile, the Gumai-Garba (Waloya Terrane) which is occupied by the tectonite/melange, metasediment, carbonate and volcanic rocks of Mesozoic (Jurassic - Cretaceous) in age, are intruted by the Late Cretaceous granitoid rocks, the paleomagnetic data shown 30° - 31° South.Keywords: tectonostratigraphy, amalgamation, allochtonous, terranes, sumatra
Procedia PDF Downloads 34621640 ePA-Coach: Design of the Intelligent Virtual Learning Coach for Senior Learners in Support of Digital Literacy in the Context of Electronic Patient Record
Authors: Ilona Buchem, Carolin Gellner
Abstract:
Over the last few years, the call for the support of senior learners in the development of their digital literacy has become prevalent, mainly due to the progression towards ageing societies paired with advances in digitalisation in all spheres of life, including e-health and electronic patient record (EPA). While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning focusing on knowledge acquisition and cognitive tasks, little research exists in learning models which target virtual mentoring and coaching with the help of pedagogical agents and address the social dimensions of learning. Research from studies with students in the context of formal education has already provided methods for designing intelligent virtual agents in support of personalised learning. However, this research has mostly focused on cognitive skills and has not yet been applied to the context of mentoring/coaching of senior learners, who have different characteristics and learn in different contexts. In this paper, we describe how insights from previous research can be used to develop an intelligent virtual learning coach (agent) for senior learners with a focus on building the social relationship between the agent and the learner and the key task of the agent to socialize learners to the larger context of digital literacy with a focus on electronic health records. Following current approaches to mentoring and coaching, the agent is designed not to enhance and monitor the cognitive performance of the learner but to serve as a trusted friend and advisor, whose role is to provide one-to-one guidance and support sharing of experiences among learners (peers). Based on literature review and synopsis of research on virtual agents and current coaching/mentoring models under consideration of the specific characteristics and requirements of senior learners, we describe the design framework which was applied to design an intelligent virtual learning coach as part of the e-learning system for digital literacy of senior learners in the ePA-Coach project founded by the German Ministry of Education and Research. This paper also presents the results from the evaluation study, which compared the use of the first prototype of the virtual learning coach designed according to the design framework with a voice narration in a multimedia learning environment with senior learners. The focus of the study was to validate the agent design in the context of the persona effect (Lester et al., 1997). Since the persona effect is related to the hypothesis that animated agents are perceived as more socially engaging, the study evaluated possible impacts of agent coaching in comparison with voice coaching on motivation, engagement, experience, and digital literacy.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 12121639 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 4321638 The Water-Way Route Management for Cultural Tourism Promotion at Angsila District: Challenge and Opportunity
Authors: Teera Intararuang
Abstract:
The purpose of this research is to study on the challenge and opportunity for waterway route management for promoting cultural tourism in Angsila District, Chonburi Province. To accomplish the goals and objectives, qualitative research will be applied. The research instruments used are observation, basic interviews, in-depth interviews, and interview key local performance. The study also uses both primary data and secondary data. From research result, it is revealed that all respondents had appreciated and strongly agree to promote their waterway route tourism as an intend for further increase for their income. However, it has some challenges to success this project due to natural obstacles such as water level, seasons and high temperature. Moreover, they lack financial support from government sectors also.Keywords: Angsila community, waterway tourism route, cultural tourism, way of life
Procedia PDF Downloads 252