Search results for: actual exam time usage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20494

Search results for: actual exam time usage

15334 Real Time Ultrasoft Transverse Photons Self Energy at Next To-Leading Order in Hot Scalar Quantum Electrodynamics

Authors: Karima Bouakaz, Amel Youcefi, Abdessamad Abada

Abstract:

We determine a compact analytic expression for the complete next-to-leading contribution to the retarded transverse photons self-energy in the context of hard-thermal-loop summed perturbation of massless quantum electrodynamics (QED) at high temperature to calculate the next-to-leading order dispersion relations for slow-moving transverse photons at high temperature scalar quantum electrodynamics (Scalar QED), using the real time formalism (RTF) in physical representation. We derive the analytic expressions of hard thermal loop (HTL) contributions to propagators and vertices to determine the expressions of the effective propagators and vertices in RTF that contribute to the complete next-to leading order contribution of retarded transverse photons self-energy.

Keywords: hard thermal loop, hot scalar QED, NLO computations, soft transverse photons

Procedia PDF Downloads 72
15333 Formulation Assay Of An Aloe Vera-based Oral Gel And Its Effect On Probiotics

Authors: Serier Bouchenak NORA, Bouguerni ABDELMADJID

Abstract:

Algeria is a Mediterranean country which provides an ideal habitat for a wide range of species of medicinal plants. The objective of this current work is to extract the gel contained in the leaves of Aloe vera in order to formulate an oral gel as a prebiotic and see its effects on probiotics (lactic and pseudo lactic bacteria and bifido bacterium). Aloe vera polysaccharid extract is a matrix mainly composed of non-digestible oligosaccharids or slow-fermentation polysaccharids, as this produces a lower pH. The behavior of Aloe vera during in vitro fermentation of the colon was similar to that of lactulose, indicating the possibility of using Aloe vera and its polysaccharids extracts as a prebiotic. The microbiological control of the two kinds of bacteria (bifidobacteria and staphylococci) has demonstrated the gel capacity to stimulate them by these bioactive compounds. The generation time of Bifidobacteria in fermented milk with added prebiotic Aloe vera gel is 80.408 min with a µ growth rate equal to 0.012 min -1. The doubling time is 61.459 min with a growth rate µ equal to 0.016 min -1 for the Streptococcus sp. species.

Keywords: aloe vera, probiotics, prebiotics, growth rate, bifidobacteria

Procedia PDF Downloads 59
15332 A Ground Observation Based Climatology of Winter Fog: Study over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

Every year, fog formation over the Indo-Gangetic Plains (IGPs) of Indian region during the winter months of December and January is believed to create numerous hazards, inconvenience, and economic loss to the inhabitants of this densely populated region of Indian subcontinent. The aim of the paper is to analyze the spatial and temporal variability of winter fog over IGPs. Long term ground observations of visibility and other meteorological parameters (1971-2010) have been analyzed to understand the formation of fog phenomena and its relevance during the peak winter months of January and December over IGP of India. In order to examine the temporal variability, time series and trend analysis were carried out by using the Mann-Kendall Statistical test. Trend analysis performed by using the Mann-Kendall test, accepts the alternate hypothesis with 95% confidence level indicating that there exists a trend. Kendall tau’s statistics showed that there exists a positive correlation between time series and fog frequency. Further, the Theil and Sen’s median slope estimate showed that the magnitude of trend is positive. Magnitude is higher during January compared to December for the entire IGP except in December when it is high over the western IGP. Decade wise time series analysis revealed that there has been continuous increase in fog days. The net overall increase of 99 % was observed over IGP in last four decades. Diurnal variability and average daily persistence were computed by using descriptive statistical techniques. Geo-statistical analysis of fog was carried out to understand the spatial variability of fog. Geo-statistical analysis of fog revealed that IGP is a high fog prone zone with fog occurrence frequency of more than 66% days during the study period. Diurnal variability indicates the peak occurrence of fog is between 06:00 and 10:00 local time and average daily fog persistence extends to 5 to 7 hours during the peak winter season. The results would offer a new perspective to take proactive measures in reducing the irreparable damage that could be caused due to changing trends of fog.

Keywords: fog, climatology, Mann-Kendall test, trend analysis, spatial variability, temporal variability, visibility

Procedia PDF Downloads 232
15331 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 184
15330 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory

Authors: J. Ranjbarn, A. Alibeigloo

Abstract:

In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.

Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response

Procedia PDF Downloads 363
15329 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 370
15328 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach

Authors: R. Unnikrishnan, K. Shankar

Abstract:

In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.

Keywords: biomechanical model, lumped mass, seat ejection, vibrational response

Procedia PDF Downloads 219
15327 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant

Procedia PDF Downloads 321
15326 Predicting Financial Distress in South Africa

Authors: Nikki Berrange, Gizelle Willows

Abstract:

Business rescue has become increasingly popular since its inclusion in the Companies Act of South Africa in May 2011. The Alternate Exchange (AltX) of the Johannesburg Stock Exchange has experienced a marked increase in the number of companies entering business rescue. This study sampled twenty companies listed on the AltX to determine whether Altman’s Z-score model for emerging markets (ZEM) or Taffler’s Z-score model is a more accurate model in predicting financial distress for small to medium size companies in South Africa. The study was performed over three different time horizons; one, two and three years prior to the event of financial distress, in order to determine how many companies each model predicted would be unlikely to succeed as well as the predictive ability and accuracy of the respective models. The study found that Taffler’s Z-score model had a greater ability at predicting financial distress from all three-time horizons.

Keywords: Altman’s ZEM-score, Altman’s Z-score, AltX, business rescue, Taffler’s Z-score

Procedia PDF Downloads 351
15325 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures

Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar

Abstract:

Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.

Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses

Procedia PDF Downloads 519
15324 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 360
15323 Numerical Modeling of Air Pollution with PM-Particles and Dust

Authors: N. Gigauri, A. Surmava, L. Intskirveli, V. Kukhalashvili, S. Mdivani

Abstract:

The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³).

Keywords: air pollution, dust, numerical modeling, PM-particles

Procedia PDF Downloads 129
15322 Bifurcation Curve for Semipositone Problem with Minkowski-Curvature Operator

Authors: Shao-Yuan Huang

Abstract:

We study the shape of the bifurcation curve of positive solutions for the semipositone problem with the Minkowski-curvature operator. The Minkowski-curvature problem plays an important role in certain fundamental issues in differential geometry and in the special theory of relativity. In addition, it is well known that studying the multiplicity of positive solutions is equivalent to studying the shape of the bifurcation curve. By the shape of the bifurcation curve, we can understand the change in the multiplicity of positive solutions with varying parameters. In this paper, our main technique is a time-map method used in Corsato's PhD Thesis. By this method, studying the shape of the bifurcation curve is equivalent to studying the shape of a certain function T with improper integral. Generally speaking, it is difficult to study the shape of T. So, in this paper, we consider two cases that the nonlinearity is convex or concave. Thus we obtain the following results: (i) If f''(u) < 0 for u > 0, then the bifurcation curve is C-shaped. (ii) If f''(u) > 0 for u > 0, then there exists η>β such that the bifurcation curve does not exist for 0 η. Furthermore, we prove that the bifurcation is C-shaped for L > η under a certain condition.

Keywords: bifurcation curve, Minkowski-curvature problem, positive solution, time-map method

Procedia PDF Downloads 89
15321 Examining Motivational Dynamics and L2 Learning Transitions of Air Cadets Between Year One and Year Two: A Retrodictive Qualitative Modelling Approach

Authors: Kanyaporn Sommeechai

Abstract:

Air cadets who aspire to become military pilots upon graduation undergo rigorous training at military academies. As first-year cadets are akin to civilian freshmen, they encounter numerous challenges within the seniority-based military academy system. Imposed routines, such as mandatory morning runs and restrictions on mobile phone usage for two semesters, have the potential to impact their learning process and motivation to study, including second language (L2) acquisition. This study aims to investigate the motivational dynamics and L2 learning transitions experienced by air cadets. To achieve this, a Retrodictive Qualitative Modelling approach will be employed, coupled with the adaptation of the three-barrier structure encompassing institutional factors, situational factors, and dispositional factors. Semi-structured interviews will be conducted to gather rich qualitative data. By analyzing and interpreting the collected data, this research seeks to shed light on the motivational factors that influence air cadets' L2 learning journey. The three-barrier structure will provide a comprehensive framework to identify and understand the institutional, situational, and dispositional factors that may impede or facilitate their motivation and language learning progress. Moreover, the study will explore how these factors interact and shape cadets' motivation and learning experiences. The outcomes of this research will yield fundamental data that can inform strategies and interventions to enhance the motivation and language learning outcomes of air cadets. By better understanding their motivational dynamics and transitions, educators and institutions can create targeted initiatives, tailored pedagogical approaches, and supportive environments that effectively inspire and engage air cadets as L2 learners.

Keywords: second language, education, motivational dynamics, learning transitions

Procedia PDF Downloads 60
15320 The Role of Non-Native Plant Species in Enhancing Food Security in Sub-Saharan Africa

Authors: Thabiso Michael Mokotjomela, Jasper Knight

Abstract:

Intensification of agricultural food production in sub-Saharan Africa is of paramount importance as a means of increasing the food security of communities that are already experiencing a range of environmental and socio-economic stresses. However, achieving this aim faces several challenges including ongoing climate change, increased resistance of diseases and pests, extreme environmental degradation partly due to biological invasions, land tenure and management practices, socio-economic developments of rural populations, and national population growth. In particular, non-native plant species tend to display greater adaptation capacity to environmental stress than native species that form important food resource base for human beings, thus suggesting a potential for usage to shift accordingly. Based on review of the historical benefits of non-native plant species in food production in sub-Saharan Africa, we propose that use of non-invasive, non-native plant species and/or the genetic modification of native species might be viable options for future agricultural sustainability in this region. Coupled with strategic foresight planning (e.g. use of biological control agents that suppress plant species’ invasions), the consumptive use of already-introduced non-native species might help in containment and control of possible negative environmental impacts of non-native species on native species, ecosystems and biodiversity, and soil fertility and hydrology. Use of non-native species in food production should be accompanied by low cost agroecology practices (e.g. conservation agriculture and agrobiodiversity) that may promote the gradual recovery of natural capital, ecosystem services, and promote conservation of the natural environment as well as enhance food security.

Keywords: food security, invasive species, agroecology, agrobiodiversity, socio-economic stresses

Procedia PDF Downloads 359
15319 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.

Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan

Procedia PDF Downloads 22
15318 Characterization of Shorebird Populations in the Algerian Coast

Authors: Imad Eddine Rezouani, Khalil Draidi, Badis bakhouche, Selman Anes Chabani

Abstract:

The Algerian coast is an important site for wintering and migratory birds. Four species of shorebirds were surveyed, including Kentish plover Charadrius alexandrinus, Little ringed plover Charadrius dubius, Common ringed plover Charadrius hiaticula, and black-winged stilt Himantopus hilarious in three different sites, two important wetlands: Reghaia lake and Macta and a small area Sublette promenade to provide a new data about time activity budget. The study found a higher frequency of abundance in April during the study period (February to May), with a mean of 49. Estimating the temporal activity budget of these coastal birds, it was found that there were three main activities in different proportions between males and females: Pecking (29.51 %) for males, (26.59%) for females, Looking above (28.01%) for males, (19.54 %) for females And Away (9.95%) for males, (11.75%), contrarily the two previous one. Differences between study areas revealed differences in species behavior and distribution.

Keywords: wetland, behavioral, algerian coast, shorebirds, time budget activity

Procedia PDF Downloads 50
15317 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization

Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay

Abstract:

In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.

Keywords: WEDM, MRR, optimization, surface roughness

Procedia PDF Downloads 67
15316 Evaluation of Mechanical Properties and Analysis of Rapidly Heat Treated M-42 High Speed Steel

Authors: R. N. Karthik Babu, R. Sarvesh, A. Rajendra Prasad, G. Swaminathan

Abstract:

M42 is a molybdenum-series high-speed alloy steel widely used because of its better hot-hardness and wear resistance. These steels are conventionally heat treated in a salt bath furnace with up to three stages of preheating with predetermined soaking and holding periods. Such methods often involve long periods of processing with a large amount of energy consumed. In this study, the M42 steel samples were heat-treated by rapidly heating the specimens to the austenising temperature of 1260 °C and cooled conventionally by quenching in a neutral salt bath at a temperature of 550 °C with the aid of a hybrid microwave furnace. As metals reflect microwaves, they cannot directly be heated up when placed in a microwave furnace. The technology used herein requires the specimens to be placed in a crucible lined with SiC which is a good absorber of microwaves and the SiC lining heats the metal through radiation which facilitates the volumetric heating of the metal. A sample of similar dimensions was heat treated conventionally and cooled in the same manner. Conventional tempering process was then carried out on both these samples and analysed for various parameters such as micro-hardness, processing time, etc. Microstructure analysis and scanning electron microscopy was also carried out. The objective of the study being that similar or better properties, with substantial time and energy saving and cost cutting are achievable by rapid heat treatment through hybrid microwave furnaces. It is observed that the heat treatment is done with substantial time and energy savings, and also with minute improvement in mechanical properties of the tool steel heat treated.

Keywords: rapid heating, heat treatment, metal processing, microwave heating

Procedia PDF Downloads 282
15315 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 65
15314 The Moderating Roles of Bedtime Activities and Anxiety and Depression in the Relationship between Attention-Deficit/Hyperactivity Disorder and Sleep Problems in Children

Authors: Lian Tong, Yan Ye, Qiong Yan

Abstract:

Background: Children with attention-deficit/hyperactivity disorder (ADHD) often experience sleep problems, but the comorbidity mechanism has not been sufficiently studied. This study aimed to determine the comorbidity of ADHD and sleep problems as well as the moderating effects of bedtime activities and depression/anxiety symptoms on the relationship between ADHD and sleep problems. Methods: We recruited 934 primary students from third to fifth grade and their parents by stratified random sampling from three primary schools in Shanghai, China. This study used parent-reported versions of the ADHD Rating Scale-IV, Children’s Sleep Habits Questionnaire, and Achenbach Child Behavior Checklist. We used hierarchical linear regression analysis to clarify the moderating effects of bedtime activities and depression/anxiety symptoms. Results: We found that children with more ADHD symptoms had shorter sleep durations and more sleep problems on weekdays. Screen time before bedtime strengthened the relationship between ADHD and sleep-disordered breathing. Children with more screen time were more likely to have sleep onset delay, while those with less screen time had more sleep onset problems with increasing ADHD symptoms. The high bedtime eating group experienced more night waking with increasing ADHD symptoms compared with the low bedtime eating group. Anxiety/depression exacerbated total sleep problems and further interacted with ADHD symptoms to predict sleep length and sleep duration problems. Conclusions: Bedtime activities and emotional problems had important moderating effects on the relationship between ADHD and sleep problems. These findings indicate that appropriate bedtime management and emotional management may reduce sleep problems and improve sleep duration for children with ADHD symptoms.

Keywords: ADHD, sleep problems, anxiety/depression, bedtime activities, children

Procedia PDF Downloads 195
15313 Formulation of Highly Dosed Drugs Using Different Granulation Techniques: A Comparative Study

Authors: Ezeddin Kolaib

Abstract:

Paracetamol tablets and cimetidine tablets were prepared by single-step granulation/tabletting and by compression after high shear granulation. The addition of PVP (polyvinylpyrrolidone) was essential for single-step granulation/tabletting of formulation containing high concentrations of paracetamol or cimetidine. Paracetamol tablets without and with PVP obtained by single-step granulation/tabletting exhibited a significantly higher tensile strength, a significantly lower disintegration time, a lower friability and a faster dissolution compared to those prepared by compression after high shear granulation. Cimetidine tablets with PVP obtained by single-step granulation/tabletting exhibited a significantly lower tensile strength, a significantly lower disintegration time and a faster dissolution compared to those prepared by compression after high shear granulation. Single-step granulation/tabletting allowed to produce tablets containing up to 80% paracetamol or cimetidine with a dissolution profile complying with the USP requirements. For pure paracetamol or pure cimetidine the addition of crospovidone as a disintegrant was required to obtain a dissolution profile that complied with the pharmacopoeial requirements. Long term and accelerated stability studies of paracetamol tablets produced by single-step granulation/tabletting over a period of one year showed no significant influence on the tablet tensile strength, friability and dissolution. Although a significant increase of the disintegration time was observed, it remained below 10 min. These results indicated that single-step granulation/tabletting could be an efficient technique for the production of highly dosed drugs such as paracetamol and cimetidine.

Keywords: single-step granulation/tabletting, twin screw extrusion, high shear granulation, high dosage drugs, paracetamol, cimetidine

Procedia PDF Downloads 289
15312 Unreliable Production Lines with Simultaneously Unbalanced Operation Time Means, Breakdown, and Repair Rates

Authors: Sabry Shaaban, Tom McNamara, Sarah Hudson

Abstract:

This paper investigates the benefits of deliberately unbalancing both operation time means (MTs) and unreliability (failure and repair rates) for non-automated production lines.The lines were simulated with various line lengths, buffer capacities, degrees of imbalance and patterns of MT and unreliability imbalance. Data on two performance measures, namely throughput (TR) and average buffer level (ABL) were gathered, analyzed and compared to a balanced line counterpart. A number of conclusions were made with respect to the ranking of configurations, as well as to the relationships among the independent design parameters and the dependent variables. It was found that the best configurations are a balanced line arrangement and a monotone decreasing MT order, coupled with either a decreasing or a bowl unreliability configuration, with the first generally resulting in a reduced TR and the second leading to a lower ABL than those of a balanced line.

Keywords: unreliable production lines, unequal mean operation times, unbalanced failure and repair rates, throughput, average buffer level

Procedia PDF Downloads 475
15311 Social Media Impact on Professional and Profile Level of Dental Students in Saudi Arabia

Authors: Aliyaa Zaidan, Rayan Bahabri

Abstract:

The twenty-first century revealed an accelerating change and intensifying complexity of communication technology. Online social networking engines have gained astounding recognition worldwide. The influence of those social media platforms on dentistry and dental students is not well established. Therefore, this study aimed to evaluate the impact of using social media on professional and profile level among dental students in Saudi Arabia. A cross-sectional study developed via online questionnaire concerning on social media usage and its effect on professional and profile level of dental students and dental interns from several universities in Saudi Arabia. A total of 296 dental students and dental interns in Saudi Arabia responded to the questionnaire. Ninety-eight percent of the participants usually use the social media on a regular basis. Most social media sites used among the participants were Snapchat, Instagram, and YouTube by 85%, 81%, 77% respectively. Forty-one percent of the participants agreed that using social media in the dental field is a necessity nowadays. Thirty-eight percent of participants agreed that using social media is an easy way to gain a reliable knowledge, while 43% agreed that social media will improve the quality of healthcare. Furthermore, 65% of the students deemed using social media for academic purposes will improve their performance. Fifty-five percent of the respondents often use social media tools to obtain information about subject or procedures related to the dental field. Regarding profile reputation of dental students, 40% of the respondents agreed that their profile information published on social networking websites, could be used by others to judge their level of professionalism. Male and female dental students both agreed that their reputation would be adversely affected by 37%,63%, respectively, if their social networking activity were viewed by members of the public. The discrepancy among student levels reveals that social media profile positively influence the acceptance to postgraduate programs (P= 0.01).

Keywords: dental students, professional, reputation, social media

Procedia PDF Downloads 200
15310 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 563
15309 Microstructure Characterization on Silicon Carbide Formation from Natural Wood

Authors: Noor Leha Abdul Rahman, Koay Mei Hyie, Anizah Kalam, Husna Elias, Teng Wang Dung

Abstract:

Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur.

Keywords: density, SEM, silicon carbide, XRD

Procedia PDF Downloads 413
15308 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design

Authors: Elvan Ender, Murat Zencirkıran

Abstract:

One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.

Keywords: Bursa, flower characteristics, natural plants, planting design

Procedia PDF Downloads 258
15307 Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System

Authors: Mojtaba Barzegar, Alireza Shirazi, Saied Rabi Mahdavi

Abstract:

Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams.

Keywords: intra operative radiotherapy, ethanol chlorobenzene, ksat, output factor, monte carlo simulation

Procedia PDF Downloads 468
15306 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 151
15305 Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound

Authors: Dmitry Nosik, Nickolay Nosik, Elli Kaplina, Olga Lobach, Marina Chataeva, Lev Rasnetsov

Abstract:

Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection.

Keywords: antiviral drug, human immunodeficiency virus (hiv), herpes simplex virus (hsv), mixed viral infection

Procedia PDF Downloads 330